2222	3													
3 Ho	ours	/	70	Marks	Seat	No.								
Instructions –			(1)	All Question	s are Comp	oulsor	y.							
			(2)	Answer each	next main	Que	stio	on c	on a	a ne	ew	pag	e.	
			(3)	Illustrate you necessary.	ir answers v	with	nea	it sl	ketc	hes	wł	nere	ver	
			(4)	Figures to the	ne right ind	icate	ful	1 m	nark	s.				
			(5)	(5) Assume suitable data, if necessary.										
			(6)	Mobile Phon Communicati Examination	e, Pager an on devices Hall.	d an are 1	y o not	othe per	r E rmis	lect ssibl	roni le i	ic n		
]	Ma	rks
1.	Atter	npt	any	FIVE of the	e following:	:								10
a)	Draw impedance triangle and phasor diagram for R L series circuit.							es						
b)	Defin mathe	ie c ema	uality tical	y factor for p expression.	arallel reso	nance	e ar	nd	writ	e it	S			

- c) Define balanced 3 phase load.
- d) Define power factor and state its value for pure resistance.
- e) State maximum power transfer theorem.
- f) Give equations of delta to star transformation.
- g) State superposition theorem.

22324

Marks

2. Attempt any THREE of the following:

- a) Explain the generation of single phase AC supply by an elementary alternator with neat diagram.
- b) Impedance $Z_1 = (10 + j5)\Omega$ and $Z_2 = (8 + j6)\Omega$ are connected in parallel across V = (200 + j0) using the admittance method. Calculate the circuit current and branch currents.
- c) Give four advantages of three phase circuits over single phase circuits.
- d) Using mesh analysis, find current I in the circuit shown in Figure No. 1.

Figure No. 1.

3. Attempt any THREE of the following:

- a) A series RLC circuit is connected to 230 V, 50 Hz single phase supply. The value of R = 5 Ω , L = 13 mH, C = 140 μ F. Find the
 - i) Total reactance
 - ii) Impedance
 - iii) Current drawn
 - iv) Power factor
- b) In a 3ϕ star connected system, derive the relationship $V_L = \sqrt{3} V_{ph}$.

12

- Marks
- c) Using nodal analysis, find current I in the circuit shown in Figure No. 2.

Figure No. 2.

- d) Compare series resonance and parallel resonance on any four points.
- e) State the Thevenin's theorem. Also write stepwise procedure for applying Thevenin's theorem to simple circuits.

4. Attempt any THREE of the following:

12

a) A voltage of (200L53.13)V is applied across two impedance in parallel. The values of the impedance are $(12 + j16)\Omega$ and $(10 - j20)\Omega$.

Determine

- i) Active power
- ii) Reactive power
- iii) Apparent power in each branch and current in each branch.
- b) A RLC series circuit with a resistance of 20Ω , inductance of 0.25 H and capacitance of $100 \mu F$ is supplied with 240 V variable AC supply, Calculate
 - i) Resonance frequency
 - ii) Current at this condition
 - iii) Power factor
 - iv) Quality factor

- c) Explain neutral shift in case of 3ϕ star connected un balanced load with diagram.
- d) With neat circuit diagram, explain the concept of duality in electric circuit. State any four examples (pairs) of duality in electric circuit

5. Attempt any <u>TWO</u> of the following:

- a) Derive the formula for star to delta transformation.
- b) A coil having resistance of 10Ω and inductance of 0.1 H is connected in parallel with a capacitor of 10 μ F across a 200V, 50Hz supply. Find the current in the coil and capacitor. Also find the current taken from the supply and overall power factor. Draw a neat phasor diagram and circuit diagram.
- c) By Norton's theorem, find the current in 4Ω resistor in the network shown in Figure No. 3.

Figure No. 3.

22324

Marks

Attempt any TWO of the following: 6.

a) A resistance of 100Ω and 50 µF capacitor are connected in series across a 230V, 50Hz supply.

Find :

- i) Impedance
- Current flowing ii)
- Voltage across resistance and capacitance iii)
- Power factor and power iv)
- b) Determine the current in 5Ω resistor in the network given by superposition theorem. Refer Figure No. 4.

Figure No. 4.

c) A balanced delta, consists of per phase impedance of $(5 + i7)\Omega$. It is supplied with 200 V, 50 Hz 3 ϕ AC supply. Calculate line current, phase current, phase voltage, total power absorbed and power factor of the combination. Also draw vector diagram.