22223

Instructions - (1) All Questions are Compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
(7) Preferably, write the answers in sequential order.

1. Attempt any FIVE of the following: $\mathbf{1 0}$
a) State any Four advantages of irrigation.
b) Define
i) Runoff
ii) Dependable yield
c) Define duty and delta
d) State any two functions of a spillway.
e) Enlist the forces acting on a gravity dam.
f) Draw a neat sketch of Symon's rain gauge.
g) State any two silt control measures of a reservoir.
2. Attempt any THREE of the following: 12
a) Explain Hydrologic cycle with a neat sketch.
b) Describe Runoff and state factors affecting runoff
c) Describe in brief factors affecting duty.
d) Describe in brief with neat sketch area capacity curve.
3. Attempt any THREE of the following: 12
a) Explain the Practical Profile of a gravity dam.
b) Describe the concept of Low and High gravity dam.
c) Differentiate earthen dam and gravity dam w.r.t. seepage, foundation, construction and maintenance.
d) State the components and use of the Bandhara scheme.
4. Attempt any THREE of the following:
a) State advantages and disadvantages of well irrigation (Two each).
b) Enlist the components of a drip irrigation scheme stating the purpose of each.
c) Draw a neat sketch of diversion headworks showing all component parts.
d) Differentiate between weir and barrage.
e) Draw neat sketch of diversion head work.
5. Attempt any TWO of the following:
a) The analysis of a storm yielded the following information regarding Isohyets. Calculate the average depth of rainfall.

Isohyet Interval in mm	$70-80$	$80-90$	$90-100$	$100-110$	$110-120$	$120-130$
Area in Km^{2}	12	80	110	95	135	65

b) The base period, intensity of irrigation and duty of various crops under a canal are given in the table below. Find the reservoir capacity, if the canal has 20% losses and reservoir has 12\% losses.

Crop	Base Period (days)	Duty at the Field (ha/cumec)	Area under the Crop (ha)
Wheat	120	1800	4500
Sugar Cane	360	800	5400
Cotton	200	1400	2200
Rice	120	900	3500
Vegetables	120	700	1200

c) Fix the LSL of a reservoir having $400 \mathrm{~km}^{2}$ catchment area. Expected silting rate is $250 \mathrm{~m}^{3} / \mathrm{km}^{2} /$ year and Life of 75 years. The crop water storing requirement is $82 \mathrm{~mm}^{3}$. The Canal has 42 km length, bed slope of $1 / 1500$, Full supply depth at the head 1.0 m and tail bed level at RL 186.500.

Contour RL (m)	212	214	216
Capacity Mm^{3}	7.5	9.2	11.7

6. Attempt any TWO of the following: $\mathbf{1 2}$
a) Draw standard layout of Lift irrigation scheme showing all major components
b) Describe in brief with neat sketch
i) Aqueduct
ii) Super passage
iii) Level crossing
c) Design a most economical section of a canal having design discharge of $4 \mathrm{~m}^{3} / \mathrm{s}$, bed grade $1 / 2500$ and the canal is lined with concrete $\mathrm{N}=0.012$ and side slope is $1: 1$
