21222
3 Hours / 70 Marks
Seat No. \square I
15 minutes extra for each hour
Instructions - (1) All Questions are Compulsory.
(2) Answer each next main question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Use of Steam tables, logarithmic, Mollier's chart is permitted.
(8) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following 10
a) List the factors making the process irreversible.
b) List any two assumptions for ideal gas.
c) State the function of
i) Superheater
ii) Blow off cock
d) Recite the significance of Mach number.
e) Define critical pressure in nozzle.
f) State the functions of condenser.
g) Define thermal conductivity and State its unit.
2. Attempt any THREE of the following
a) Write steady flow energy equation and apply it to turbine and condenser.
b) Differentiate between adiabatic and isothermal process. (Four points)
c) Draw P-V and T-S diagram of Rankine cycle and list the processes involved in it.
d) Determine if the steam is wet or superheated and calculate the dryness fraction or the superheated steam temperature for $\mathrm{P}=8$ bar and $\mathrm{V}=0.28 \mathrm{~m}^{3} / \mathrm{kg}$.
3. Attempt any THREE of the following
a) Describe with neat sketch nozzle control governing.
b) Classify turbines in details.
c) One Kg of air initially at 1 bar and $156^{\circ} \mathrm{C}$ is compressed isothermally till the volume is reduced to $0.28 \mathrm{~m}^{3}$. Determine the work done and change in internal energy.
d) Recite the steps involved in energy conservation of boilers.
4. Attempt any THREE of the following 12
a) The partial absolute pressure in the condenser is 11.56 KPa when the barometer reads 1 bar. The condenser temperature is $40^{\circ} \mathrm{C}$. Calculate partial pressure of air and vacuum efficiency.
b) 0.44 Kg of gas having a volume $0.28 \mathrm{~m}^{3}$ and a pressure of 1.4 bar is compressed to a pressure of 14 bar according to $\mathrm{pv}^{1.3}=\mathrm{C}$. Find the change of internal energy.
$\mathrm{C}_{\mathrm{p}}=1.041 \mathrm{KJ} / \mathrm{Kg}-\mathrm{k}$
$\mathrm{C}_{\mathrm{v}}=0.743 \mathrm{KJ} / \mathrm{Kg}-\mathrm{k}$
c) A quantity of gas occupying $0.14 \mathrm{~m}^{3}$ at a pressure of 1400 KPa and $300^{\circ} \mathrm{C}$ is expanded isentropically to 280 KPa calculate
i) Final temperature and
ii) Work transfer
d) Define natural and forced convection and give two examples of each.
e) Classify condensers in details.
5. Attempt any TWO of the following
a) Explain with neat sketch bleeding of steam. State its advantages.
b) Explain with neat sketch automotive heat exchanger.
c) Draw a schematic diagram of Mollier chart and list its features.
6. Attempt any TWO of the following 12
a) A refrigerator is loaded with fresh food and door is closed. After some period, machine consumes 1.25 KWh of electrical energy and internal energy of food items decreases by 4500 KJ . Calculate the magnitude and direction of heat transfer for the steam.
b) State the purpose of cooling tower and describe with neat sketch natural draught cooling tower.
c) Sheets of brass and steel each 10 mm thick are placed in contact. The outer surface of brass is kept at $100^{\circ} \mathrm{C}$ and outer surface of steel is kept at $0^{\circ} \mathrm{C}$. Estimate the temperature of common interface if thermal conductivities of brass and steel are in the ratio of $2: 1$.
