312301

23242 3 Hours /	70	Marks Seat No.
Instructions –	(1)	All Questions are Compulsory.
	(2)	Answer each next main Question on a new page.
	(3)	Illustrate your answers with neat sketches wherever necessary.
	(4)	Figures to the right indicate full marks.
	(5)	Assume suitable data, if necessary.
	(6)	Use of Non-programmable Electronic Pocket Calculator is permissible.
	(7)	Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
		Marks

1. Solve any \underline{FIVE} of the following:

- a) Evaluate : $\int \left(\frac{1}{1+x^2}+5^x\right) dx$
- b) Evaluate : $\int \tan^2 x \, dx$
- c) Evaluate : $\int_{1}^{2} \frac{dx}{2x+11}$
- d) Find the order and degree of the following differential equation.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3}$$

e) Show that there exist a root of the equation $x^2 - 2x - 1 = 0$ in (-1,0) 10

Marks

12

12

- f) Find the approximate value of $\sqrt{26}$ by using Bakhshali iteratative method.
- g) If ten fair coins are tossed. What is the probability that there are exactly 3 heads?

a) Evaluate :
$$\int \frac{\mathrm{d}x}{2x + x \log x}$$

b) Evaluate :
$$\int \frac{\sec^2 x}{(1 + \tan x)(2 + \tan x)}$$

c) Evaluate :
$$\int x \cdot \tan^{-1}x \, dx$$

d) Evaluate :
$$\int \frac{\mathrm{d}x}{2x^2 + 3x + 1}$$

3. Solve any THREE of the following:

a) Evaluate :
$$\int \frac{\mathrm{d}x}{4\mathrm{cos}^2 x + 9\mathrm{sin}^2 x}$$

b) Evaluate :
$$\int_{0}^{5} \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x+4}} dx$$

- c) Solve : $(3x^2 + 6xy^2)dx + (6x^2y + 4y^2)dy = 0$
- d) Find real root of the equation $x^3 2x 5 = 0$ by bisection method (Three iterations only).

4. Solve any <u>THREE</u> of the following:

- a) Using Newton Raphson Method, find the approximate value of $\sqrt[3]{100}$ (3 iterations)
- b) Find the root of equation $x^3 9x + 1 = 0$ which lies between 2 and 3 using Regular Falsi Method.
- c) Solve the following equations by Gauss Seidal method. 10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14
- d) The probability that a pen manufactured by a company will be defective is $\frac{1}{10}$. If 12 such pens are manufactured. Find the probability that.
 - i) Exactly two will be defective
 - ii) At least two will be defective
- e) If 5% of the electric bulbs manufactured by a company are defective. Use Poisson's distribution to find the probability that in a sample of 100 bulbs.
 - i) None is defective.
 - ii) Five bulbs are defective. (Given $e^{-5} = 0.007$)

5. Solve any <u>TWO</u> of the following:

- a) i) Evaluate : $\int \frac{dx}{5+4\cos x}$
 - ii) Evaluate : $\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$

b) i) Evaluate :
$$\int_{0}^{\pi/2} \frac{\sin x}{(1 + \cos x)^2} dx$$

ii) Evaluate :
$$\int_{0}^{z} \frac{dx}{\sqrt{4x-x^{2}}}$$

P.T.O.

12

312301

Marks

12

c) i) Evaluate :
$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

ii) Evaluate :
$$\int_{4}^{5} \frac{\sqrt{5-x}}{\sqrt{x-4} + \sqrt{5-x}} dx$$

6. Solve any <u>TWO</u> of the following:

- a) i) Form a differential equation $y = Ae^{x} + Be^{-x}$
 - ii) Solve : $\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$

b) i) Solve :
$$\frac{dy}{dx} + y \cot x = \csc x$$

- ii) Find particular solution of D.E $\frac{dy}{dx} = 6 - 3x$, given at x = 0, y = 0
- c) In a certain examination 500 students appeared. Mean score is 68 and S.D. is 8 Assuming data are normally distributed find the number of student scoring.
 - i) less than 50
 - ii) more than 60

[Given : A (2.25) = 0.4878

A (1) = 0.3413]