Instructions : (1) All Questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.

## Marks

## 1. Attempt any FIVE of the following :

(a) State:
(i) Duality Theorem
(ii) De-Morgan's Theorem
(b) Draw symbol and truth table of Universal Gates.
(c) State race arround condition in J-K flip flop.
(d) Draw symbol and truth table of T-type flip flop.
(e) Explain assemble directives
(i) DB
(ii) EQU
(f) Explain PUSH instruction with one example.
(g) State the function of LCD display pins.
(i) $\mathrm{R} / \mathrm{W}$
(ii) RS
2. Attempt any THREE of the following :
(a) Compare between TTL and CMOS. (Any four points)
(b) Draw OR gate and AND gate using Universal Gates.
(c) Design 8:1 MUX using 4:1 \& 2:1 MUX. Draw Truth table.
(d) Minimise the following Boolean expression using K-map and realize it using the basic logic gates.
3. Attempt any THREE of the following :
(a) Explain any four addressing modes of 8051 microcontroller with one example each.
(b) Interface stepper motor to 8051 microcontroller and write an ALP to rotate stepper motor in Anti-clockwise direction continuously.
(c) Compare between combinational and sequential circuit (Any four points)
(d) Draw memory organization for $E \bar{A}=0$ and $E \bar{A}=1$ and explain the same.
4. Attempt any THREE of the following :
(a) Explain the following instruction :
(i) DAA
(ii) DIV AB
(iii) CJNE A, data, rel
(iv) SWAP A
(b) Compare between Harvard and Von-Neuman architecture (Any four points).
(c) Design Half-adder using K-map and implement using basic logic gates.
(d) Realize the following equations using NAND Gates only:
(i) $\mathrm{Y}=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{B}+\mathrm{C})$
(ii) $\mathrm{Y}=\mathrm{AB}+\mathrm{C}$
(e) What are the alternate function of port 3 of 8051 micro-controller?
5. Attempt any TWO of the following :
(a) Interface 8 LED's with port 1 of 8051 micro-controller. Write ALP to make LED's ON and OFF after 10 msec . delays. Assume suitable data.
(b) Develop an ALP to arrange ten numbers stored in internal memory locations starting from 40 H location in descending order.
(c) Draw Architecture of 8051 micro-controller.
6. Attempt any TWO of the following : 12
(a) Explain power saving options
(i) Idle mode
(ii) Power down mode
(b) Draw interfacing diagram of $8 \mathrm{~K} \times 8$ program ROM with 8051 and also write memory map for the same.
(c) Construct 3 bit asynchronous up-counter using flip-flop. Draw its timing diagram.

