16172 2 Hours / 50 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any NINE of the following:

18

- (a) Define deforming force and restoring force.
- (b) Distinguish between tensile stress and tensile strain.
- (c) State pressure depth relation of fluid with the meaning of each term in it.
- (d) Obtain the expression for viscous force by Newton's law of viscosity.
- (e) Name the types of intermolecular force in liquid.
- (f) Define Kelvin scale of temperature.
- (g) State general gas equation with the meaning of each term in it.
- (h) What is the value of temperature at which ideally the pressure of the gas become zero?
- (i) Give the relation between velocity, wavelength and frequency of wave.
- (j) Calculate the velocity of wave, if time period and wavelength of wave are 2 ms and 68 cm respectively.
- (k) State two examples of stationary wave.
- (1) Define Resonance.

[1 of 2] P.T.O.

17102 [2 of 2]

2. Attempt any FOUR of the following:

- (a) Calculate the Young's modulus of wire, if the wire of length 3.14 m, radius 2 mm, extends by 5 mm when a force of 10 N is applied to it.
- (b) Obtain the relation between stress and strain for a wire under continuously increasing load with the help of neat labelled diagram.
- (c) Describe stream line flow and turbulent flow with an example.
- (d) Derive the expression for coefficient of viscosity by Stoke's method.
- (e) Derive the expression for surface tension by capillary rise method.
- (f) Calculate the coefficient of thermal conductivity, if the temperature difference between the faces of aluminium plate is 12 °C when 100 Kcal of heat is absorbed by the plate in 30 minutes. (Given: thickness of plate is 3 mm and area of plate is 10 cm²)

3. Attempt any FOUR of the following:

16

16

- (a) Explain conduction, convention and radiation. Give one example of each.
- (b) Distinguish between isothermal process and adiabatic process.
- (c) (i) State prism formula with meaning of symbol used.
 - (ii) Define total internal reflection and critical angle.
- (d) With neat labelled diagram, explain the principle and propagation of light wave through optical fibre.
- (e) Describe transverse wave and longitudinal wave. Give one example of each.
- (f) (i) State the formula to calculate velocity of sound by resonance tube method.
 - (ii) Define free vibrations and forced vibrations.