17349

16172

3 Hours / 100 Marks
Seat No. \square
Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any TEN of the following: 20
a) Evaluate $\int x /(x+1)(x-2) d x$
b) Evaluate $\int x \cdot \sin x d x$
c) Evaluate $\int 1 /[1+\cos (2 x)] d x$
d) Evaluate $\int_{4}^{9} \frac{1}{x^{3 / 2}} d x$
e) Find order and degree of differential equation $\frac{d^{2} y}{d x^{2}}=\left[y+\frac{d y}{d x}\right]^{3 / 2}$
f) Find area under the curve $y=\sin x$ from $x=0$ to $x=2 \pi$. with x axis.
g) Evaluate : $\int_{1}^{5} \frac{x}{4+x^{2}} d x$
h) Find ' k ' if $\int^{1}\left(3 x^{2}+2 x+k\right) d x=0$
i) Find slope of tangent to the curve $x^{2}+y^{2}=25$ at point $(-3,4)$.
j) Form the differential equation if $x^{2}+c y^{2}=4$
k) Two fair dice are rolled. Determine the probability of getting two sixes.
1) A card is taken out at random from pack of well shuffled 52 cards. What is the probability that it is a heart?
2. Attempt any FOUR of the following:
a) Evaluate : $\int_{0}^{1} x^{3} \cdot \tan ^{-1} x d x$
b) Evaluate : $\int_{0}^{\pi / 2} \frac{\tan x}{1+\tan x} d x$
c) Evaluate : $\int(2 x+1) /(x+1)(x+2)(x+3) d x$
d) Evaluate : $\int \frac{d x}{9 \cos ^{2} x+4 \sin ^{2} x}$
e) Evaluate $: \int \frac{d x}{x \log x \cdot \log (\log x)}$
f) Find radius of curvatures of curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at $(a / 4, a / 4)$
3. Attempt any FOUR of the following:
a) Evaluate : $\int_{1}^{5} \frac{\sqrt[3]{9-x}}{\sqrt[3]{9-x}+\sqrt[3]{x+3}} d x$
b) Evaluate : $\int \sec ^{3} x d x$
c) Find area of circle $x^{2}+y^{2}=4$
d) Find maximum and minimum values of $x^{3}-9 x^{2}+24 x$
e) Find equation of normal and tangent to the curve $x=\frac{1}{t}, y=t-\frac{1}{t}$ when $t=2$ 。
f) Evaluate $\int \frac{e^{x}}{\left(e^{x}-1\right)\left(e^{x}+1\right)} d x$
4. Attempt any FOUR of the following:
a) Determine a and b such that slope of curve $2 y^{3}=a x^{2}+b$ at $(1,-1)$ is same as the slope of $x+y=0$.
b) A beam is bent to form the curve $y=2 \sin x-\sin 2 x$. Find the radius of curvatures of the beam at this point $x=\frac{\pi}{2}$.
c) Evaluate $\int \sin ^{-1}\left(3 x-4 x^{3}\right) d x$
d) Evaluate $\int_{0}^{\pi / 4} \log (1+\tan x) d x$
e) Solve $\frac{d y}{d x}=e^{x-y} \cdot x^{2}$
f) Solve $x \frac{d y}{d x}-y=x^{2} \cdot \cos ^{2} x$.
5. Attempt any FOUR of the following:
a) Solve $\left(2 x y+y^{2}\right) d x+\left(x^{2}+2 x y+\sin y\right) d y=0$
b) Solve $(x+y+1)^{2} \frac{d y}{d x}=1$
c) Solve $\sec ^{2} x \cdot \tan y d x+\sec ^{2} y \tan x . d y=0$ for $y=\pi / 4$ when $x=\pi / 4$
d) Solve $x y d y=\left(x^{2}+y^{2}\right) d x$
e) The probability of getting an item defective is 0.005 . What is the probability that exactly 3 items in a sample of 200 are defective? (give $e^{-1}=0.3679$)
f) A problem is given to the three students A, B and C whose chances of solving it are $1 / 2,1 / 3,1 / 4$ respectively. If they attempt to solve a problem independently, find probability that the problem is solved by at least one of them.
6. Attempt any FOUR of the following:
a) Solve $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
b) Find area bounded between curves $y=x^{2}+1$ and line $y=2 x+1$
c) A room has 3 electric lamps. From a collection of 15 electric bulbs of which only 10 are good, 3 bulbs are selected at random and put in the lamps. Find the probability. That the room is lighted by at least one of the bulbs.
d) In a test of 2000 electric bulbs, it was found that the life of particular make was normally distributed with average life of 2040 Hr and standard deviation of 60 Hr . Estimate the no.s of bulbs likely to burn for:
(i) between 1920 Hr and 2160 Hr .
(ii) More than 2150 Hr .

Given area at $z=2$ is 0.4772 and area at $z=1.83$ is 0.4664
e) If 20% of the bolts produced by a machine are defective, determine the probability that out of 4 bolts drawn:
(i) one is defective
(ii) at the most two are defective.
f) If $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}\left(\mathrm{B}^{\prime}\right)=\frac{2}{3}$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{2}{3}$ Find $\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$ and $\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)$

