Scheme - I

Sample Question Paper

Programme name	$:$ Diploma in Medical Electronics	
Programme code	$:$ MU	
Semester	$:$ Third	
Course Title	$:$ Electronic Devices and Circuits	
Marks	$: 70$	Time: 3 Hrs.

Instructions:
(1) All questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data if necessary.
(5) Preferably, write the answers in sequential order.
Q.1) Attempt any FIVE of the following.

10 Marks
a) Draw symbol of PNP and NPN bipolar junction transistor.
b) Write the function of emitter bypass capacitor and input coupling capacitor in single stage CE amplifier.
c) State the Barkhausen's Criteria for sustained oscillations.
d) Identify following feedback connection and convert it into current series feedback connection.

e) List four applications of wave-shaping circuits
f) Write the functions of rectifier and filter circuit in regulated power supply.
g) Calculate load regulation if a voltage regulator produces 10.2 V and 10 V output at noload and full-load conditions respectively.

Q.2) Attempt any THREE of the following.

12 Marks
a) Draw output characteristics of BJT in CE configuration and label the operating regions. Write the status of BC and BE junctions in each region.
b) Define the terms with respect to JFET.
i) Pinch-off voltage.
ii) DC drain resistance.
iii) Transconductance.
iv) Amplification factor
c) Explain the cross over distortion. How it is overcome, show with circuit diagram.
d) Describe the construction of EMOSFET with diagram.
Q.3) Attempt any THREE of the following.
a) Explain the working principle of NPN transistor with suitable diagram.
b) Draw equivalent circuit of UJT and explain its operating principle.
c) Draw the circuit diagram of RC phase shift oscillator and explain how 360° phase shift occurs in it.
d) The Positive half cycles are to be clipped from the given input signal ($\mathrm{v}_{\mathrm{i}}=5$ Sinwt $)$, name and draw the circuit with input-output waveform.
Q.4) Attempt any THREE of the following.

12 Marks
a) Derive the relation between current amplification factor in CE and CB transistor configuration.
b) Find the value of V_{DS} and V_{GS} for the given values of $\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}$ $=1 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{S}}=500 \Omega$
c) Single transistor is operating as an ideal class B amplifier with $1 \mathrm{~K} \Omega$ load. A dc meter in the collector reads 10 mA . How much signal power is delivered to the load.
d) Name the power amplifier circuit used for audio signal amplification and explain with circuit diagram.
e) Design regulated dual power supply for $\pm 5 \mathrm{~V}$ using regulator ICs.

Q.5) Attempt any TWO of the following.

12 Marks
a) State the need of biasing of the transistor. Draw circuit diagram of voltage divider bias and write the function of each component. $(2+2+2)$
b) Draw circuit diagram and frequency response of direct coupled amplifier. Write its drawbacks. $(2+2+2)$
c) Draw circuit diagram of RC integrator for a sinusoidal input. Derive the expression for output voltage. In case if the same circuit is connected to a square wave signal generator, draw the output waveform.
Q.6) Attempt any TWO of the following.

12 Marks
a) Calculate voltage gain A_{F} and input resistance $R_{i F}$ in voltage series negative feedback amplifier. The voltage gain without feedback $\mathrm{A}=500$, input resistance without feedback $\mathrm{R}_{\mathrm{i}}=3 \mathrm{~K} \Omega$ and feedback factor $\beta=0.01$. Draw the block diagram of voltage series feedback connection.
b) The dc level of +5 V is to be added to the given input signal ($\mathrm{v}_{\mathrm{i}}=5$ Sinwt). Explain the working principle of this application along with the circuit diagram and input-output waveforms.
c) Design a complete regulated power supply to drive an amplifier to give +12 V regulated output using IC 78XX. Write the function of rectifier and filter circuit used in the circuit.

Scheme - I
 Sample Test Paper - I

Programme name	$:$ Diploma in Medical Electronics	
Programme code	$:$ MU	2.346
Semester	: Third	
Course Title	$:$ Electronic Devices and Circuits	
Marks	$: 20$	Time: 1 Hour

Instructions:

(1) All questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data if necessary.
(5) Preferably, write the answers in sequential order.
Q. 1 Attempt any FOUR.
a) State the formula of current amplification factor in CE and CC configurations
b) List the types of transistor biasing circuits.
c) Draw frequency response of single stage CE amplifier. Write the formula of bandwidth.
d) Write the conduction angle in class-A, class-B class-AB and class-C power amplifier.
e) List four applications of JFET.
f) Draw circuit diagram of self bias of FET.
Q. 2 Attempt any THREE.

12 Marks
a) Compare FET and BJT on the basis of input resistance, output current controlling parameter, power dissipation and current carriers.
b) Explain the concept of dc load line for CE configuration of BJT.
c) Draw circuit diagram and frequency response of RC coupled amplifier
d) Describe the construction of E-MOSFET with diagram.

Scheme - I
 Sample Test Paper - I

Programme name	$:$ Diploma in Medical Electronics	
Programme code	$:$ MU	23.6
Semester	$:$ Third	
Course Title	$:$ Electronic Devices and Circuits	
Marks	$: 20$	Time: 1 Hour

Instructions:
(1) All questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data if necessary.
(5) Preferably, write the answers in sequential order.
Q. 1 Attempt any FOUR.

08 Marks
a) Write difference between positive and negative feedback.(any four points)
b) Write two example of linear and non linear wave-shaping circuit.
c) In UJT relaxation oscillator resistance and capacitance are $100 \mathrm{~K} \Omega$ and $0.4 \mu \mathrm{~F}$ respectively. Find the frequency of oscillation.
d) Define the term i) Line regulation ii)Load regulation.
e) Draw pin diagram of regulator IC 78 XX and 79 XX .
f) Draw circuit diagram of RC differentiator and write the expression of output voltage.

Q. 2 Attempt any THREE.

12 Marks
a) Draw block diagram of regulated power supply and write the function of each block
b) Explain the zener diode as voltage regulator with circuit diagram.
c) Explain the operation of negative clamper with circuit diagram and its input output waveforms.
d) In RC phase shift oscillator, if $\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=200 \mathrm{~K} \Omega$ and $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=100 \mathrm{pF}$. Find the frequency of oscillation. Draw its circuit diagram.

