## Scheme - I

## Sample Question Paper

|  |  |  |
| :--- | :--- | ---: |
| Program Name | : Diploma in Chemical Engineering |  |
| Program Code | : CH | 22315 |
| Semester | : Third | 2 |
| Course Title | : Industrial Stoichiometry |  |

Marks :70

## Instructions:

(1) All questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Preferably, write the answers in sequential order.
Q.1) Attempt any FIVE of the following.

10 Marks
a) Define Power and writeits SI unit.
b) State Dalton's law and Amagat's law.
c) List out different unit operations used in the chemical industry (Any four).
d) Write the stoichiometric coefficients for the given reaction

$$
4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2} .
$$

e) Define calorific value.
f) Define heat of formation.
g) Convert a pressure of 800 mmHg to the following units:
(i) atm (ii) kPa

## Q.2) Attempt any THREE of the following.

a) An evaporator is concentrating $5 \%$ solution of NaCl to $25 \% \mathrm{NaCl}$ by weight. Calculate the quantity of water evaporated for evaporator fed with $5000 \mathrm{~kg} / \mathrm{hr}$ of feed solution.
b) Describe Distillation operation with the help of block diagram and overall material balance equation.
c) Carbon monoxide is reacted with hydrogen to produce methanol Calculate
(i) the stoichiometric ratio of $\mathrm{H}_{2}$ to CO
(ii) kg mole $\mathrm{CH}_{3} \mathrm{OH}$ produced per kg mole CO reacted
d) Calculate heat capacity at constant pressure at room temperature of oxygen if the oxygen is assumed to be an ideal gas.
Q.3) Attempt any THREE of the following.

12 Marks
a) Calculate the actual urea content in the urea sample if available nitrogen in given sample is found to be $45 \%$.
b) A dryer handle $1000 \mathrm{~kg} / \mathrm{hr}$ of wet solids containing $50 \%$ solid to be dried to $20 \%$ moisture calculate percentage of original moisture removed.
c) In production of sulfur trioxide 100 kmol of $\mathrm{SO}_{2}$ and 200 kmol of $\mathrm{O}_{2}$ are fed to reactor. The product stream is found to contain $80{\mathrm{kmol} \mathrm{SO}_{3} \text {. Calculate \% conversion }}_{\text {\% }}$ of $\mathrm{SO}_{2}$.
d) Calculate the heat needed to raise the temperature of 1 kmol of ammonia from 311 K o 422 K using following mean molal heat capacity data,

- $\mathrm{Cp}^{0}{ }_{\mathrm{m}}{ }^{0} \mathrm{NH}_{3}$ between 311and $298 \mathrm{~K}=35.86 \mathrm{~kJ} / \mathrm{mol} \mathrm{K}$
- $\mathrm{Cp}^{0}{ }_{\mathrm{m}}$ of $\mathrm{NH}_{3}$ between 422 and $298 \mathrm{~K}=3537.70 \mathrm{~kJ} / \mathrm{mol} \mathrm{K}$


## Q.4) Attempt any THREE of the following.

12 Marks
a) A force equal to 19.65 kgf is applied on a piston with a diameter of 5 cm . Calculate the pressure exerted on the piston in kPa.
b) Air contains $21 \%$ oxygen and $79 \%$ Nitrogen (by vol) calculate average molecular weight of air.
c) Describe Extraction operation with the help of block diagram and overall material balance equation.
d) In electrolytic manufacturing of chlorine gas from a sodium chloride solution suppose that 50 kg of NaCl reacts with 10 kg of $\mathrm{H}_{2} \mathrm{O}$ (i) Identify limiting and excess reactant (ii) List out components of product stream if the reaction is $60 \%$ complete. $2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}+\mathrm{Cl}_{2}$
e) State classification of fuels with four examples of each class used in the Chemical industry.

## Q.5) Attempt any TWO of the following.

12 Marks
a) In the manufacturing of Nitric Acid Initially ammonia and air are mixed at 7atmg and $650^{\circ}$ c the composition of the mixture (on vol basis) is as follows $\mathrm{N}_{2} 70.5 \%$, $\mathrm{O}_{2} 18.8 \%, \mathrm{H}_{2} \mathrm{O} 1.2 \%, \mathrm{NH}_{3} 9.5 \%$. Calculate the density of the gas mixture
using ideal gas law.
b) In a chemical fertilizer industry a mixed fertilizer having the NPK composition 10:26:26 as $\% \mathrm{~N}_{2}, \%_{2} \mathrm{O}_{5}$ and $\% \mathrm{~K}_{2} \mathrm{O}$ by weight respectively is to be formulated by mixing ammonia, phosphoric acid and potassium chloride. If anhydrous ammonia, anhydrous phosphoric acid and $100 \%$ pure potassium chloride is used for mixing. Calculate the amount of each of them required for formulating 100 Kg mixed fertilizer assume that the filler will make up the balance.
c) The burning of limestone, $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$, goes only $70 \%$ to completion in a certain kiln. (i) Determine the composition (wt \%) of the solid withdrawn from the kiln. (ii) Calculate kilogram of $\mathrm{CO}_{2}$ produced per kilogram of limestone fed assuming that the limestone is pure.

## Q.6) Attempt any TWO of the following.

12Marks
a) In a oxidation process during production of chlorine gas by oxidation of hydrochloric acid gas. Air is used $30 \%$ in excess of that theoretically required, based on 4 kmol HCl , if oxidation is $80 \%$ complete find the composition of product stream on mole basis.
b) A coke containing $90 \%$ carbon and $10 \%$ noncombustible ash (by weight), is burned in air. If $50 \%$ excess air is supplied, calculate kmol of air actually supplied.
c) Using following data , Calculate the change in enthalpy of reactant and product if both are at 298 K and if 5 moles of ethylene oxide is produced as per the following reaction

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}
$$

| Component | $\Delta \mathbf{H}_{\mathrm{f}}$, at 298K kJ/mol |
| :--- | :--- |
| $\mathrm{C}_{2} \mathrm{H}_{4}$ | 52.50 |
| $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ | -52.63 |

# Scheme - I <br> Sample test Paper - I 

| Program Name | : Diploma in Chemical Engineering |  |
| :--- | :--- | ---: |
| Program Code | : CH |  |
| Semester | : Third | 22315 |

Course Title : Industrial Stoichiometry
Marks
: 20
Time: 1 Hour.

## Instructions:

(1) All questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Preferably, write the answers in sequential order.
Q. 1 Attempt any FOUR.

08 Marks
a) List out any four fundamental quantities.
b) Make conversion of $1 \mathrm{~N} / \mathrm{m}^{2}$ Pressure to Dyne $/ \mathrm{cm}^{2}$.
c) Write mathematical equation of law that is obeyed by real gas.
d) State Raoult's law and give its mathematical expression.
e) Define steady state operation.
f) State law of conservation of mass.

## Q. 2 Attempt any THREE.

12 Marks
a) In a double effect evaporator plant, the second effect is maintained under vacuum of 475 mmHg . Find the absolute pressure in mmHg and kPa .
b) Calculate the weight of chlorine in a vessel having volume of $5 \mathrm{~m}^{3}$, the temperature and pressure being 400 K and 100 kPa .
c) Give the value of Universal gas constant in SI system and calculate value of volume occupied by 1 mol of gas at NTP.
d) Illustrate the importance of recycling operation in chemical industry. (Any four Points)
e) In a distillation unit $1000 \mathrm{~kg} / \mathrm{hr}$ of mixture of benzene and toluene containing $60 \%$ benzene by wt. is distilled to give a distillate containing $90 \%$ benzene and $90 \%$ toluene in residue by weight. Calculate $\mathrm{kg} / \mathrm{hr}$ of distillate.
f) An evaporator is concentrating $5 \%$ solution of NaCl to $25 \% \mathrm{NaCl}$ by weight. Calculate the quantity of water evaporated for evaporator fed with $5000 \mathrm{~kg} / \mathrm{hr}$ of feed solution.

# Scheme - I <br> Sample test Paper - I 

| Program Name | : Diploma in Chemical Engineering |  |
| :--- | :--- | ---: |
| Program Code | : CH |  |
| Semester | : Third | 22315 |

Course Title : Industrial Stoichiometry
Marks
: 20
Time: 1 Hour.

## Instructions:

(1) All questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Preferably, write the answers in sequential order.

## Q. 1 Attempt any FOUR.

08 Marks
a) Define the term 'Limiting Reactant'.
b) In the following reaction write stoichiometric ratio of $\mathrm{H}_{2}$ and $\mathrm{O}_{2} \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
c) Define GCV.
d) Choose the solid and liquid fuel from the following: saw dust, Producer gas, kerosene, Gasoline and coke.
e) State Law of Conservation of Energy.
f) Define Heat of Reaction.

## Q. 2 Attempt any THREE.

a) If 1 kg of benzene is oxidized with oxygen, how many kilograms of oxygen b) Calculate the NCV at $25^{\circ} \mathrm{C}$ of a sample of fuel oil having C/H ratio 9.33(by wt) and containing sulfur to the extent of $1.37 \%$ by wt using following data.
i) Gross calorific value of fuel oil at $25^{\circ} \mathrm{C}=9980 \mathrm{kcal} / \mathrm{kg}$
ii) Latent heat of water vapour at $25^{\circ} \mathrm{C}=538.2 \mathrm{kcal} / \mathrm{kg}$ Latent heat of water vapour at $25^{\circ} \mathrm{C}=538.2 \mathrm{kcal} / \mathrm{kg}$ are needed to convert all the benzene to $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$.
c) Prove that, for an ideal gas, $C_{p}-C_{v}=R$.
d) Write stepwise procedure to solve material balance with chemical reaction carried out in chemical industry.
e) Water at one atm pressure and $90^{\circ} \mathrm{C}$ is cooled to $60^{\circ} \mathrm{C}$ at constant pressure, calculate the enthalpy change.
f) The carbon monoxide is reacted with hydrogen to produce methanol calculate for the reaction a) the stoichiometric ratio of $\mathrm{H}_{2}$ to CO b) kg mole $\mathrm{CH}_{3} \mathrm{OH}$ produced per kgmole CO reacted

