MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)

Model Answer: Winter- 2019

Important Instructions to Examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Winter- 2019

| Que.
 No. | Sub.
 Que. | Model Answer | Marks | Total
 Marks |
| :---: | :---: | :--- | :--- | :--- | :--- |
| Q.1 | (h) | State the significance of C_{d} and C_{v} in flow through orifice.
 C_{d} is used to find the actual discharge from theoretical discharge
 which is calculated by formula
 $\mathrm{Q}_{\mathrm{th}}=\mathrm{a} \sqrt{2 \mathrm{gh}}$
 $\mathrm{Q}_{\mathrm{act}}=\mathrm{C}_{\mathrm{d}} \times \mathrm{a} \sqrt{2 \mathrm{gh}}$
 Once we find $\quad \mathrm{C}_{\mathrm{d}}$ or C_{v} for particular orifice we can find actual
 discharge and actual velocity of any flow with the help of that orifice
 $\mathrm{V}_{\mathrm{th}}=\sqrt{2 \mathrm{gh}}$
 $\mathrm{V}_{\mathrm{act}}=\mathrm{C}_{\mathrm{v}} \sqrt{2 \mathrm{gh}}$ | | |

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1 (B)	(c) Ans.	State Pascal's law and its practical applications. Pascal's Law: It states that the pressure intensity or pressure at a point in a static fluid is equal in all directions. Applications: Pascal's Law is applied in the construction of machines and used for multiple purposes. i. Hydraulic Jacks ii. Hydraulic Press iii. Hydraulic Lifts iv. Hydraulic Crane v. Braking system of motor vi. Artesian well vii. Dam		4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Winter- 2019

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(b) Ans.	Define total hydrostatic pressure and centre of pressure. Draw diagram to describe it. Total hydrostatic pressure: It is the force exerted by a static fluid on a surface plane or curved. This force is always perpendicular to the surface. Centre of pressure: It is the point at which total pressure acts on the surface. Diagram-	1 1	
		Total pressure $\mathrm{P}=\frac{1}{2} \gamma \mathrm{H}^{2} \quad \mathrm{~N} / \mathrm{m}$	1	
		Centre of pressure $=\mathrm{H} / 3$ from bottom Pressure intensity at top of wall = zero Pressure intensity at bottom of wall $=\gamma \mathrm{H} \quad \mathrm{N} / \mathrm{m}^{2}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(d) Ans.	A differential manometer connected at the two points A and B on a horizontal pipe. Calculate difference in pressure at point in M of oil and $\mathrm{N} / \mathrm{m}^{2}$, if pipe carries oil of Sp . gravity 0.8 and it shows difference in mercury levels as 15 cm . $\begin{aligned} & \mathrm{h}_{\mathrm{A}}+\mathrm{h}_{1} \mathrm{~s}_{1}=\mathrm{h}_{2} \mathrm{~s}_{2}+\mathrm{h}_{3} \mathrm{~s}_{3}+\mathrm{h}_{\mathrm{B}} \\ & \mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=\mathrm{h}_{2} \mathrm{~s}_{2}+\mathrm{h}_{3} \mathrm{~s}_{3}-\mathrm{h}_{1} \mathrm{~s}_{1} \\ & \mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=(0.15 \times 13.6)+(\mathrm{x}-0.15) 0.8-\mathrm{x} \times 0.8 \\ & \mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=2.04+0.8 \mathrm{x}-0.12-0.8 \mathrm{x} \\ & \mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=1.92 \\ & \frac{\mathrm{P}_{\mathrm{A}}}{\gamma_{\mathrm{L}}}-\frac{\mathrm{P}_{\mathrm{B}}}{\gamma_{\mathrm{L}}}=\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}} \\ & \mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=\gamma_{\mathrm{L}}\left(\mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}\right) \\ & \mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=9810 \times 1.92 \\ & \mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=18835.2 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{~h}=\frac{\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{A}}}{\gamma} \\ & \mathrm{~h}=\frac{18835.2}{0.8 \times 9810}=2.4 \mathrm{~m} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(d)			
		$\begin{aligned} & \mathrm{h}_{\mathrm{A}}+\mathrm{x} \times 0.8+0.15 \times 0.8=0.15 \times 13.6+\mathrm{x} \times 0.8+\mathrm{h}_{\mathrm{B}} \\ & \mathrm{~h}_{\mathrm{A}}+0.12=2.04+\mathrm{h}_{\mathrm{B}} \\ & \mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=2.04-0.12 \\ & \mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=1.92 \mathrm{~m} \text { of water } \\ & \mathrm{P}=\gamma_{\mathrm{L}} \times \mathrm{h}_{\mathrm{L}} \\ & \gamma_{\mathrm{w}} \mathrm{~h}_{\mathrm{w}}=\gamma_{\text {oil }} \mathrm{h}_{\text {oil }} \\ & 9810 \times 1.92=\mathrm{h}_{\text {oil }} \\ & \mathrm{h}_{\text {oil }}=2.4 \mathrm{~m} \end{aligned}$	1 1 1 1	4

$\begin{gathered} \text { Que. } \\ \text { No. } \end{gathered}$	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(f) Ans.	Define and draw flow net. State properties and application of flow net. It is a graphical representation of stream lines \& equipotential lines. OR A set of stream lines and equipotential lines constitutes flow net. Fig. Flow Net Properties of flow net- i. The stream lines and equipotential lines are mutually perpendicular to each other ii. The rate of flow is same between each successive pair of stream line iii. Stream lines in flow net shows the direction of flow iv. The equipotential line joins the points the equal velocity potential Application of flow net - i. To check the problems of flow under hydrostatic structure like dams etc. ii. To determine of seepage pressure. iii. To find exit gradient. iv. A flow net analysis assists in the design of an efficient boundary shapes.	1 1 $1 / 2$ each (any two) $1 / 2$ each (any two)	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3		Solve any FOUR of the following:		(16)
	(a)	A pipeline gradually varies from 15 cm diameter at ' A ' to 7.5 cm diameter at ' B '. The point ' A ' is 6 above, while point ' B ' is $\mathbf{3 ~ m}$ above datum. The velocity at ' A ' is $3.6 \mathrm{~m} / \mathrm{sec}$. Determine pressure at ' B ' if pressure at ' A ' is $9.81 \mathrm{~N} / \mathrm{cm}^{2}$		
		Given: $\begin{aligned} d_{A} & =15 \mathrm{~cm}, Z_{A}=6 \mathrm{~m}, V_{A}=3.6 \mathrm{~m} / \mathrm{s}, P_{A}=9.81 \mathrm{~N} / \mathrm{cm}^{2} \\ d_{B} & =7.5 \mathrm{~cm}, Z_{B}=3 \mathrm{~m} \end{aligned}$ Calculate : P_{B} $\begin{aligned} & A_{A} V_{A}=A_{B} V_{B} \\ & V_{B}=\frac{A_{A} V_{A}}{A_{B}}=\frac{\frac{\pi}{4}\left(d_{A}\right)^{2} \times V_{A}}{\frac{\pi}{4}\left(d_{B}\right)^{2}}=\frac{\left(d_{A}\right)^{2} \times V_{A}}{\left(d_{B}\right)^{2}}=\frac{(0.15)^{2} \times 3.6}{(0.075)^{2}}=14.40 \mathrm{~m} / \mathrm{s} \end{aligned}$	1	
			1	
		Using Bernoullie's Equation $\begin{aligned} & \mathrm{Z}_{\mathrm{A}}+\frac{\left(\mathrm{V}_{\mathrm{A}}\right)^{2}}{2 \mathrm{~g}}+\frac{\mathrm{P}_{\mathrm{A}}}{\gamma_{\mathrm{L}}}=\mathrm{Z}_{\mathrm{B}}+\frac{\left(\mathrm{V}_{\mathrm{B}}\right)^{2}}{2 \mathrm{~g}}+\frac{\mathrm{P}_{\mathrm{B}}}{\gamma_{\mathrm{L}}} \\ & 6+\frac{(3.6)^{2}}{2 \times 9.81}+\frac{98100}{9810}=3+\frac{(14.40)^{2}}{2 \times 9.81}+\frac{\mathrm{P}_{\mathrm{B}}}{9810} \end{aligned}$	1	
		$\mathrm{P}_{\mathrm{B}}=30324.60 \mathrm{~N} / \mathrm{m}^{2}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	(b)	Velocity of flow of water in pipe line of 300 mm diameter is $2 \mathrm{~m} / \mathrm{s}$ from which 40 mm diameter pipe branches out. Velocity measured in the branch pipe is $\mathbf{3 ~ m} / \mathrm{s}$. What is the velocity of water in main pipe beyond the branch line?		
	Ans.		1/2	
		Given: $d=d_{1}=300 \mathrm{~mm}, d_{2}=40 \mathrm{~mm}, V=2 \mathrm{~m} / \mathrm{s}, V_{2}=3 \mathrm{~m} / \mathrm{s}$ Calculate: V_{1} $a=a_{1}=\frac{\pi}{4} d_{1}^{2}=\frac{\pi}{4} \times(0.3)^{2}=0.071 \mathrm{~m}^{2}$	$1 / 2$ $1 / 2$	
		$\begin{aligned} & a_{2}=\frac{\pi}{4} d_{2}^{2}=\frac{\pi}{4} \times(0.04)^{2}=1.256 \times 10^{-3} \mathrm{~m}^{2} \\ & a v=a_{1} v_{1}+a_{2} v_{2} \\ & 0.071 \times 2=0.071 \times V_{1}+1.26 \times 10^{-3} \times 3 \\ & V_{1}=1.947 \mathrm{~m} / \mathrm{s} \end{aligned}$	$1 / 2$ 1 1	4
	(c)	What do you mean by water hammer? State its causes.		
	Ans.	Water Hammer: When the water flowing in a long pipe is suddenly brought to rest by closing the valve, there will be a sudden rise in pressure due to the momentum of the moving water being destroyed. This causes a wave of high pressure to be transmitted along the pipe which creates noise known as water hammer. Causes :	2	
		i. Sudden increasing velocity of flow ii. Sudden closure of valve with high speed. iii. Sudden increase in pressure in pipe	2	4

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answer \& Marks \& \begin{tabular}{l}
Total \\
Marks
\end{tabular} \\
\hline Q. 3 \& \begin{tabular}{l}
(d) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
At a sudden enlargement of water line a \(\mathbf{2 5 0} \mathbf{~ m m}\) diameter to \(\mathbf{5 0 0}\) mm diameter pipe, the hydraulic gradient rises by 12 mm . Calculate the discharge through pipe. \\
Let, \(\mathrm{v}_{1}=\) velocity of water at section 1 , \(v_{2}=\) velocity of water at section 2 , \\
From the equation of continuity
\[
\begin{aligned}
\& \mathrm{a}_{1} \mathrm{v}_{1}=\mathrm{a}_{2} \mathrm{v}_{2} \\
\& \frac{\pi}{4} \times(250)^{2} \times V_{1}=\frac{\pi}{4} \times(500)^{2} \times V_{2} \\
\& \therefore V_{1}=4 V_{2}
\end{aligned}
\] \\
Now from the geometry of figure above \\
Ad=ab+bc+cd
\[
\begin{aligned}
\& \left(\mathrm{v}_{1}\right)^{2} / 2 \mathrm{~g}=\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)^{2} / 2 \mathrm{~g}+\left(\mathrm{v}_{2}\right)^{2} / 2 \mathrm{~g}+12 \mathrm{~mm} \\
\& \left(4 \mathrm{v}_{2}\right)^{2} / 2 \mathrm{~g}=\left(4 \mathrm{v}_{2}-\mathrm{v}_{2}\right)^{2} / 2 \mathrm{~g}+\left(\mathrm{v}_{2}\right)^{2} / 2 \mathrm{~g}+12 \mathrm{~mm} \\
\& \left(16\left(\mathrm{v}_{2}\right)^{2}\right) / 2 \mathrm{~g}=\left(9\left(\mathrm{v}_{2}\right)^{2}\right) / 2 \mathrm{~g}+\left(\mathrm{v}_{2}\right)^{2} / 2 \mathrm{~g}+12 \mathrm{~mm} \\
\& \left(\mathrm{v}_{2}\right)^{2}=(12 \times 9.81 \times 1000) / 3 \\
\& \left(\mathrm{v}_{2}\right)=198.09 \mathrm{~mm} / \mathrm{Sec}
\end{aligned}
\] \\
Therefore
\[
\begin{aligned}
\& \mathrm{Q}=\mathrm{a}_{2} \times \mathrm{v}_{2} \\
\& =\frac{\pi}{4} \times(500)^{2} \times 198.09 \\
\& =38894880.55 \mathrm{~mm}^{3} / \mathrm{Sec} \\
\& =\frac{38894880.55}{10^{6}} \\
\& =38.895 \mathrm{lit} / \mathrm{Sec}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(11 / 2\)

1
1
1
1
1 \& 4

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Winter- 2019

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.3	(e)	Explain the terms i) Pipes in parallel, ii) Equivalent pipe. Pipes in parallel: When a pipeline divides into two or more parallel pipes which again join together at downstream then that pipe is said to be in parallel. The discharge in the main pipe is equal to sum of the discharge in each of the parallel pipes. Loss of head in each parallel pipes is same. Equivalent pipe : A compound pipe which is consist of several pipes of different lengths and diameters to be replaced by a pipe of uniform diameter and same length as that of the compound pipe, is called as equivalent pipe. OR Equivalent pipe is a pipe of uniform diameter whose discharge and loss of head are same as that of the compound pipe.	$\mathbf{2}$	

$\begin{aligned} & \hline \text { Que. } \\ & \text { No. } \end{aligned}$	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	(f) Ans.	Explain with neat sketch different types of open channel. 1. Rectangular channel: This is used in case of hard rock strata. $b=$ width of the channel, $d=$ depth of the flow $\mathrm{R}=$ hydraulic mean depth Area= bxd Perimeter $=\mathrm{b}+2 \mathrm{~d}$ The condition of most economical section is that for a given area the perimeter should be minimum $\mathrm{b}=2 \mathrm{~d}, \mathrm{R}=\mathrm{d} / 2$ 2. Trapezoidal channel: this is most commonly used shape because of stability. $\mathrm{b}=$ width of the channel at bottom, $\mathrm{d}=$ depth of the flow the side slope is given as 1 vertical to n horizontal most economical conditions arehalf of top width= sloping side 3. Circular section: $\mathrm{d}=$ depth of the flow $\mathrm{R}=$ radius of channel Though it is closed the pressure on water surface is atmospheric 4. V shaped channel: $\mathrm{d}=$ depth of the flow, $\theta=$ angle The pressure on water surface is atmospheric.	2 each (any two)	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Winter- 2019

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(a) Ans.	Solve any FOUR of the following:		(16)
		Define Hydraulic jump and state its applications.		
		Hydraulic jump- It is the phenomenon in which supercritical flow is converted to subcritical flow.	2	
		OR		
		It is a phenomenon occurring in an open channel when rapidly flowing stream abruptly changes to slowly flowing stream causing a distinct rise or jump in level of liquid surface		
		Applications: i. To minimize the energy of flowing water ii. To mix the chemicals in the flow of water iii. To increase the depth of water	2	4
	(b)	Define steady, unsteady, uniform and non-uniform flow in open channel.		
	Ans.	Steady flow: If the depth of flow, the discharge and mean velocity of the flow at any section does not change with respect to time, the flow is called as steady flow.	1	
		Unsteady flow: If the depth of flow, the discharge and mean velocity of the flow at any section changes with respect to time, the flow is called as unsteady flow.	1	
		Uniform flow: If the depth of flow, the discharge and mean velocity flow at a given instant do not change along the length of channel, the flow is called as Uniform flow.	1	
		Non-uniform flow: If the depth of flow, the discharge and mean velocity flow at a given instant changes along the length of channel, the flow is called as Non-uniform flow.	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(f) Ans.	A 100 mm diameter orifice discharge 40 lit/ sec liquid under constant head of 2 m . the diameter of jet at vena- contracta is $\mathbf{9 0 m m}$. Calculate $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{v}}, \mathrm{C}_{\mathrm{c}}$. Given, Discharge $=40 \mathrm{lit} / \mathrm{sec}$ Discharge $=\frac{40}{1000} \mathrm{~m}^{3} / \mathrm{sec}$ Discharge $=0.040 \mathrm{~m}^{3} / \mathrm{sec}$ Head $=H=2 m$ Diameter $=D=100 \mathrm{~mm}=0.1 \mathrm{~m}$ diameter of vena- contracta $=90 \mathrm{~mm}=0.09 \mathrm{~m}$ therotical velocity $=\mathrm{V}_{\mathrm{th}}=\sqrt{2 g H}$ $\begin{aligned} & \mathrm{V}_{\mathrm{th}}=\sqrt{2 \times 9.81 \times 2} \\ & \mathrm{~V}_{\mathrm{th}}=6.26 \mathrm{~m} / \mathrm{sec} \end{aligned}$ therotical discharge $=\mathrm{Q}_{\mathrm{th}}=\mathrm{V}_{\mathrm{th}} \times$ Area of orifice $\begin{gathered} \mathrm{Q}_{\mathrm{th}}=6.26 \times \frac{\pi}{4} \times 0.1^{2} \\ \mathrm{Q}_{\mathrm{th}}=0.049 \mathrm{~m}^{3} / \mathrm{sec} \end{gathered}$ $C_{d}=\frac{\text { actual discharge }}{\text { theoretical discharge }}$ $C_{d}=\frac{0.04}{0.04914}$ $C_{d}=0.81$ $C_{c}=\frac{\text { area at vena-c ontracta }}{\text { area of orifice }}$ $C_{c}=\frac{\frac{\pi}{4} \times 0.09^{2}}{\frac{\pi}{4} \times 0.1^{2}}$ $C_{c}=0.81$ $C_{d}=C_{c} \times C_{v}$ $C_{v}=\frac{C_{d}}{C_{c}}$ $C_{v}=\frac{0.81}{0.81}=1$	$1 / 2$ $1 / 2$ $1 / 2$ 1 1 1 1	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Winter- 2019
Subject: Hydraulics

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(f) Ans.	A centrifugal pump is required to pump 10lit/second against a head of 40 m . find the power required by the pump taking overall efficiency as 70%. Given: Discharge $(\mathrm{Q})=10 \mathrm{lit} / \mathrm{sec}=10 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}, \operatorname{Head}(\mathrm{H})=40 \mathrm{~m}$ Efficiency $(\eta)=70 \%=0.70, \omega=9810 \mathrm{~N} / \mathrm{m}^{3}$ $\begin{aligned} & \mathrm{P}=\frac{\omega \mathrm{QH}}{\eta} \\ & \mathrm{P}=\frac{9810 \times 10 \times 10^{-3} \times 40}{0.70} \\ & \mathrm{P}=5605.71 \mathrm{watt} \\ & \mathrm{P}=5.605 \mathrm{~kW} \end{aligned}$	1 2 1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	b) Ans.	A siphon of diameter 20 cm connects two reservoirs having a difference in elevation of 20 m . The length of the siphon is 500 m and the summit is 3.0 m above the water level in the upper reservoir. The length of the pipe from upper reservoir to the summit is 100 m . Determine the discharge through the siphon and also pressure at summit. Neglect minor losses. Take coefficient of friction $f=0.005$. Given: $\mathrm{d}=0.2 \mathrm{~m}, \mathrm{H}=20 \mathrm{~m}, \mathrm{~L}=500 \mathrm{~m}, \mathrm{Z}_{\mathrm{c}}=3 \mathrm{~m} \mathrm{~L}=100 \mathrm{~m}$ as the coeficient of friction is given use $\mathrm{f}=0.005$ $\begin{aligned} & \mathrm{h}_{\mathrm{f}}=\frac{(4 \mathrm{f}) \mathrm{LV}^{2}}{2 \mathrm{gd}} \\ & 20=\frac{(4 \times 0.005) 500 \mathrm{~V}^{2}}{2 \times 9.81 \times 0.2} \\ & 20=0.637 \times 4 \times \mathrm{V}^{2} \\ & \mathrm{~V}^{2}=7.848 \\ & \mathrm{~V}=2.801 \mathrm{~m} / \mathrm{s} \\ & \mathrm{Q}=\mathrm{av} \\ & \mathrm{Q}=\frac{\pi}{4}(0.2)^{2} \times 8.801 \\ & \mathrm{Q}=0.0879 \mathrm{~m}^{3} / \mathrm{sec} \end{aligned}$ Pressure at summit (P_{c}) Applying Bernoulli's Equation between A and C $\begin{aligned} & \frac{\mathrm{P}_{\mathrm{A}}}{\omega_{\mathrm{c}}}+\frac{\mathrm{V}_{\mathrm{A}}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{\mathrm{A}}=\frac{\mathrm{P}_{\mathrm{c}}}{\omega_{\mathrm{c}}}+\frac{\mathrm{Vc}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{\mathrm{c}}+\text { losses } \\ & 0=\frac{\mathrm{P}_{\mathrm{c}}}{\omega_{\mathrm{c}}}+\frac{2.801^{2}}{2 \times 9.81}+3+\left[\frac{4 \times 0.005 \times 100 \times 2.801^{2}}{2 \times 9.81 \times 0.2}\right] \\ & 0=\frac{\mathrm{P}_{\mathrm{c}}}{9810}+2.39+4 \\ & \mathrm{P}_{\mathrm{c}}=-72.49 \mathrm{kN} / \mathrm{m}^{2} \\ & \mathrm{P}_{\mathrm{c}}=72.49 \mathrm{kN} / \mathrm{m}^{2}(\text { Vaccume }) \end{aligned}$	2 2 1 2 1	8

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	c)	A trapezoidal channel section has side slope 2 vertical 3 horizontal. It is discharging water at a rate of 20 cumecs with bed slope 1 in 2000. Design the channel for its best form. Take Manning's constant $\mathrm{N}=\mathbf{0 . 0 1}$.		
	Ans.			
		Given: side slope $\frac{1}{\mathrm{n}}=\frac{2}{3}$		
		$\mathrm{n}=\frac{3}{2}=1.5, \text { Discharge, } \mathrm{Q}=20 \mathrm{~m}^{3} / \mathrm{sec}$		
		$\text { Bedslope, } \mathrm{S}=\frac{1}{2000}=0.0005, \text { Manning'sconstant, } \mathrm{N}=0.01$		
		Let, $\mathrm{b}=$ breadth at bottom, $\mathrm{d}=$ depth of flow for most economical trapezoidal section		
		half of the top side $=$ sloping side		
		$\left(\frac{b+2 n d}{2}\right)=d \sqrt{n^{2}+1}$	1	
		$\begin{aligned} & \left(\frac{b+2 \times 1.5 \mathrm{~d}}{2}\right)=\mathrm{d} \sqrt{1.5^{2}+1} \\ & b+3 \mathrm{~d}=2 \mathrm{~d} \times 1.8 \end{aligned}$		
		$\mathrm{b}=0.6 \mathrm{~d}$	1	
		AreaA=d (b+nd)		
		AreaA= $\left.{ }^{\text {(}} 0.6 \mathrm{~d}+1.5 \mathrm{~d}\right)$		
		$\mathrm{A}=2.1 \mathrm{~d}^{2}$		
		$\text { HydraulicmeandepthR }=\frac{\mathrm{d}}{2}$	1	
		$\mathrm{Q}=\mathrm{AV}$	1	
		$\mathrm{Q}=\mathrm{A} \frac{1}{\mathrm{~N}} \mathrm{R}^{2 / 3} \mathrm{~S}^{1 / 2}$		
		N	1	
		$20=2.1 \mathrm{~d}^{2} \times \frac{1}{0.01}\left(\frac{\mathrm{~d}}{2}\right)^{2 / 3} 0.0005^{1 / 2}$	1	
		$20=2.958 \mathrm{~d}^{8 / 3}$		
		$\mathrm{d}^{8 / 3}=6.76$	1	
		$\mathrm{d}=2.05 \mathrm{~m}$		
		$\mathrm{b}=1.23 \mathrm{~m}$		
			1	8

