WINTER - 19 EXAMINATION				
Subject Name:	Theory of Machines	Model Answer	Subject Code:	17412

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$	Sub Q. N.	Answer	Marking Scheme
Q. 1	(A)	Attempt any SIX of the following: (2×6)	12
	(a)	Define Mechanism. State any one example of Mechanism.	02
	Ans.	Mechanism: When one of the links of a kinematic chain is fixed, the chain is known as mechanism. It may be used for transmitting or transforming motion. Example of Mechanism: Engine Indicators, Typewriter, Screw Jack etc, Gear Pump, Slider Crank. (01 Mark for Definition, 01 Mark for any one appropriate example)	01 01
	(b)	Define machine and structure.	02
	Ans.	Machine: Machine is a device which receives energy and transforms it into some useful work. A machine consists of a number of parts or bodies. Structure: A 'structure' may be regarded as an assemblage of a number of resistant bodies called members, having no relative motion between them and meant for carrying loads having straining action. (01 Mark for each appropriate definition)	01

\qquad

	(c)	Define fluctuation of energy and coefficient of fluctuation of energy.	02
	Ans.	Fluctuation of Energy: The variations of energy above and below the mean resisting torque line are called fluctuations of energy. Coefficient of Fluctuation of Energy: It may be defined as the ratio of the maximum fluctuation of energy to the work done per cycle. (01 Mark for each appropriate definition)	01
	(d)	Define Slip and Creep in case of belt drive.	02
	Ans.	Slip of belt: The forward motion of the belt without carrying the driven pulley with it is called slip of the belt. Or When belt is transmitted power from driver to driven pulley, there is a loss of motion due to insufficient frictional grip and therefore the speed of driven pulley is less than driver pulley. This is known as Slip of the belt and generally expressed in percentage (\%) Creep of Belt: When the belt passes from the slack side to the tight side, a certain portion of the belt extends and it contracts again when the belt passes from the tight side to slack side. Due to these changes of length, there is a relative motion between the belt and the pulley surfaces. This relative motion is termed as creep. (01 Mark for each appropriate definition)	01
	(e)	State the function of flywheel in an I.C. Engine	02
	Ans.	Function of flywheel: A flywheel stores energy when the supply is in excess and releases energy when energy is in deficit. $\underline{\mathrm{Or}}$ Flywheel is a mechanical device which stores the excess energy and releases it whenever required by the crankshaft during non power strokes with following function. [1] To absorb energy. [2] To reduce fluctuation of speed. (02 Marks for appropriate functional statement)	02
Page No:___ N			

\qquad
(ISO/IEC - 27001-2013 Certified)

	(c)	State the advantages of V Belt drive over flat belt drive.	04
	Ans.	Advantages of V-belt drive over flat belt drive: 1. It gives compactness due to the small distance between the centres of pulleys. 2. The drive is positive, because the slip between the belt and the pulley groove is negligible. 3. Since the V-belts are made endless and there is no joint trouble, therefore the drive is smooth. 4. It provides longer life, 3 to 5 years. 5. It can be easily installed and removed. 6. The operation of the belt and pulley is quiet. 7. The belts have the ability to cushion the shock when machines are started. 8. The high velocity ratio (maximum 10) may be obtained. 9. The wedging action of the belt in the groove gives high value of limiting ratio of tensions. Therefore the power transmitted by V-belts is more than flat belts for the same coefficient of friction, arc of contact and allowable tension in the belts. 10. The V-belt may be operated in either direction with tight side of the belt at the top or bottom. The centre line may be horizontal, vertical or inclined. (Any four appropriate points, 01 Mark each)	04
Q. 2		Attempt any FOUR of the following: (4x4)	16
	(a)	Define Inversion. Explain the various inversions of double slider crank chain mechanism.	04
	Ans.	Inversion: When one of links is fixed in a kinematic chain, it is called a mechanism. So we can obtain as many mechanisms as the number of links in a kinematic chain by fixing, in turn, different links in a kinematic chain. This method of obtaining different mechanisms by fixing different links in a kinematic chain is known as inversion of the mechanism. Or A Mechanism is a Kinematic Chain with one Fixed Link. The Fixed Link is called as Frame. Different Mechanism is obtained by fixing different link in a kinematic chain. The process of choosing different link in a kinematic chain for the frame is known as Inversion. Thus by fixing one by one links of the mechanism, we can obtain the inversion. Various Inversions of Double Slider Crank Chain mechanisms: 1. Elliptical Trammel 2. Scotch Yoke Mechanism 3. Oldham's Coupling Brief Explanation of Various Double Slider Crank chain Mechanisms: Elliptical trammels:	01

\qquad

	It is an instrument used for drawing ellipses. This inversion is obtained by fixing the slotted plate (link 4). The fixed plate or link 4 has two straight grooves cut in it, at right angles to each other. The link 1 and link 3, are known as sliders and form sliding pairs with link 4. The link A B (link 2) is a bar which forms turning pair with links 1 and 3. Scotch yoke mechanism: This mechanism is used for converting rotary motion into a reciprocating motion. The inversion is obtained by fixing either the link 1 or link 3. In this, link 1 is fixed. When the link 2 (which corresponds to crank) rotates about B as centre, the link 4 (which corresponds to a frame) reciprocates. The fixed link 1 guides the frame. Oldham's coupling: An Oldham's coupling is used for connecting two parallel shafts whose axes are at a small distance apart. The shafts are coupled in such a way that if one shaft rotates, the other shaft also rotates at the same speed. This inversion is obtained by fixing the link 2 , the shafts to be connected have two flanges (link 1 and link 3) rigidly fastened at their ends by forging. (01 Mark for Definition, 01 Mark for various types of inversions, 02 Marks for Brief explanation of each)	02
(b)	Define kinematic pair. Explain the various types of constrained motions with the help of neat sketches.	04
Ans.	Kinematic Pair: The two links or elements of a machine, when in contact with each other, are said to form a pair. If the relative motion between them is completely or successfully constrained (i.e. in a definite direction), the pair is known as kinematic pair. The two kinematic links are grouped together, they form a Kinematic Pair. Different Types of Constrained Motions: 1. Completely Constrained Motion 2. Incompletely Constrained Motion 3. Successfully Constrained Motion	01

	Brief Explanation of Different Constrained Motion with Sketches: Completely constrained motion: When the motion between a pair is limited to a definite direction irrespective of the direction of force applied, then the motion is said to be a completely constrained motion. E.g. The piston and cylinder (in a steam engine) form a pair and the motion of the piston is limited to a definite direction (i.e. it will only reciprocate) relative to the cylinder irrespective of the direction of motion of the crank. The motion of a square bar in a square hole is an example of Completely constrained motion. Incompletely constrained motion: When the motion between a pair can take place in more than one direction, then the motion is called an incompletely constrained motion. The change in the direction of impressed force may alter the direction of relative motion between the pair. A circular bar or shaft in a circular hole, is an example of an incompletely constrained motion as it may either rotate or slide in a hole. These both motions have no relationship with the other. Successfully constrained motion: When the motion between the elements, forming a pair, is such that the constrained motion is not completed by itself, but by some other means, then the motion is said to be successfully constrained motion. Consider a shaft in a foot-step bearing as shown in Fig. The shaft may rotate in a bearing or it may move upwards. This is a case of incompletely constrained motion. But if the load is placed on the shaft to prevent axial upward movement of the shaft, then the motion of the pair is said to be successfully constrained motion ions have no relationship with the other Square bar in a square hole. Shaft in a circular hole. Shaft in a foot step bearing. Fig. Sketches of Completely, Incompletely and Successfully Constrained Motion Pairs (01 Mark for Definition, 01 Mark for Types of Constrained Motion, 01 Mark for Brief Explanation with example, 01 Mark for simple sketches)	01
(c)	Explain the procedure for construction of Klein's velocity and acceleration diagrams for a single slider crank mechanism. Use suitable data.	04
Ans.	Procedure for construction of Klein's velocity and acceleration diagrams for a single slider crank mechanism: Let $O C$ be the crank and $P C$ the connecting rod of a reciprocating steam engine, as shown in Fig. Let the crank makes an angle θ with the line of stroke $P O$ and rotates with uniform angular velocity $\omega \mathrm{rad} . / \mathrm{s}$ in a clockwise direction. The Klein's velocity and acceleration	

\qquad
diagrams are drawn as discussed below:

(c) Acceleration diagram.

Klein's velocity diagram:

First of all, draw $O M$ perpendicular to $O P$; such that it intersects the line $P C$ produced at M. The triangle OCM is known as Klein's velocity diagram. In this triangle OCM, OM may be regarded as a line perpendicular to $P O, C M$ may be regarded as a line parallel to $P C$, and ...(_It is the same line.) CO may be regarded as a line parallel to CO. The velocity diagram for given configuration is a triangle ocp
as shown in Fig. If this triangle is revolved through 90°, it will be a triangle $o c_{1} p_{1}$, in which $o c_{1}$ represents v_{CO} (i.e. velocity of C with respect to O or velocity of crank pin C) and is paralel to $O C$,
$o p_{1}$ represents v_{PO} (i.e. velocity of P with respect to O or velocity of cross-head or piston P) and is perpendicular to $O P$, and
$c_{1} p_{1}$ represents v_{PC} (i.e. velocity of P with respect to C) and is parallel to $C P$.
the triangles $o c_{1} p_{1}$ and $O C M$ are similar. Therefore,
or

$$
\begin{array}{ll}
& \frac{o c_{1}}{O C}=\frac{o p_{1}}{O M}=\frac{c_{1} p_{1}}{C M}=\omega(\text { a constant }) \\
& \frac{v_{\mathrm{CO}}}{O C}=\frac{v_{\mathrm{PO}}}{O M}=\frac{v_{\mathrm{PC}}}{C M}=\omega \\
\therefore \quad v_{\mathrm{CO}}=\omega \times O C ; v_{\mathrm{PO}}=\omega \times O M, \text { and } v_{\mathrm{PC}}=\omega \times C M
\end{array}
$$

Thus, we see that by drawing the Klien's velocity diagram, the velocities of various points may be obtained without drawing a separate velocity diagram.

Klien's acceleration diagram

The Klien's acceleration dia- gram is drawn as discussed below:

1. First of all, draw a circle with C as centre and $C M$ as radius.
2. Draw another circle with $P C$ as diameter. Let this circle intersect the previous circle at K and L.
3. Join $K L$ and produce it to intersect $P O$ at N. Let $K L$ intersect $P C$ at Q. This forms the quadrilateral CQNO, which is known as Klien's acceleration diagram.

Acceleration of piston, $\alpha_{p}=\omega^{2} \mathrm{ON}$
\qquad

(d)	In a four bar chain $A B C D, A D$ is fixed and is 150 mm long. The cranks $A B$ is 40 mm long $\boldsymbol{\&}$ rotates at $\mathbf{1 2 0} \mathbf{~ r p m}$ clockwise, while the link CD, $\mathbf{8 0} \mathbf{~ m m}$ long, oscillates about D. BC and $A D$ are of equal length. Find the angular velocity of link $C D$ when angle $B A D=60^{\circ}$.	04
Ans.	Given Data: $N_{B A}=120$ r.p.m. or $\omega_{B A}=2 \pi \times 120 / 60=12.568 \mathrm{rad} / \mathrm{s}$ Since the length of crank $A B=40 \mathrm{~mm}=0.04 \mathrm{~m}$, therefore velocity of B with respect to A or velocity of B, (because A is a fixed point), $v_{B A}=v_{B}=\omega_{B A} \times A B=12.568 \times 0.04=0.503$ m / s (a) Space diagram (All dimensions in mm). (b) Velocity diagram. Since the link AD is fixed, therefore points a and d are taken as one point in the velocity diagram. Draw vector ab perpendicular to $\mathrm{B} A$, to some suitable scale, to represent the velocity of B with respect to A or simply velocity of B (i.e. vBA or vB) such that $\text { vector } a b=v_{B A}=v_{B}=0.503 \mathrm{~m} / \mathrm{s}$ Now from point b, draw vector bc perpendicular to $C B$ to represent the velocity of C with respect to B (i.e. $v_{C B}$) and from point d, draw vector dc perpendicular to CD to represent the velocity of C with respect to D or simply velocity of C (i.e. $v_{C D}$ or v_{C}). The vectors bc and dc intersect at c. By measurement, we find that $\mathrm{v}_{\mathrm{cD}}=\mathrm{v}_{\mathrm{c}}=$ vector $\mathrm{dc}=0.385 \mathrm{~m} / \mathrm{s}$ We know that $C D=80 \mathrm{~mm}=0.08 \mathrm{~m}$ \therefore Angular velocity of link CD, $\omega C D=V C D / C D=0.385 / 0.08=4.8 \mathrm{rad} / \mathrm{s} \text { (clockwise about } \mathrm{D})$	01
(e)	State the four types of followers according to the surface in contact with the cam. Draw respective sketches.	04
Ans.	(02 Marks for Types, $1 / 2$ Mark for sketch of each type) Types of Followers according to Surface in Contact with the Cam: 1. Knife edge follower 2. Roller follower 3. Flat faced or mushroom follower 4. Spherical faced follower	02

\qquad

			½ Mark for sketch of each type
	(f)	An engine running at 150 rpm , drives a line shaft by means of a belt. The engine pulley is 750 mm diameter \& the pulley on the line shaft being 450 mm . A 900 mm diameter pulley on the line shaft drives a 150 mm diameter pulley keyed to a dynamo shaft. Find the speed of the dynamo shaft, when: (i) There is no slip (ii) There is a slip of $\mathbf{2 \%}$ at each drive.	04
	Ans.	Given Data: $\mathrm{N} 1=150 \mathrm{rpm}, \mathrm{d} 1=750 \mathrm{~mm}, \mathrm{~d} 3=900 \mathrm{~mm}, \mathrm{~d} 2=450 \mathrm{~mm}, \mathrm{~d} 4=150 \mathrm{~mm}$ 1. When there is no slip We know that $\quad \frac{N_{4}}{N_{1}}=\frac{d_{1} \times d_{3}}{d_{2} \times d_{4}} \quad$ or $\quad \frac{N_{4}}{150}=\frac{750 \times 900}{450 \times 150}=10$ $\therefore \quad N_{4}=150 \times 10=1500 \text { r.p.m. }$ 2. When there is a slip of 2% at each drive $\begin{array}{ll} \text { We know that } & \frac{N_{4}}{N_{1}}=\frac{d_{1} \times d_{3}}{d_{2} \times d_{4}}\left(1-\frac{s_{1}}{100}\right)\left(1-\frac{s_{2}}{100}\right) \\ & \frac{N_{4}}{150}=\frac{750 \times 900}{450 \times 150}\left(1-\frac{2}{100}\right)\left(1-\frac{2}{100}\right)=9.6 \\ \therefore & N_{4}=150 \times 9.6=1440 \text { r.p.m. } \end{array}$ We know that	01 01 02
Q. 3		Attempt any FOUR of the following: (4x4)	16
	(a)	The crank and connecting rod of a theoretical steam engine are 0.5 m and $\mathbf{2 m}$ long respectively. The crank makes 180 rpm in clockwise direction. When it has turned 45° from the inner dead centre position. Determine: (i) Velocity of piston (ii) Angular velocity of connecting rod (iii) Velocity of point E on the connecting rod 1.5 m from the gudgeon pin.	04
	Ans.	$N_{\mathrm{BO}}=180 \mathrm{r} . \mathrm{p} . \mathrm{m} . \text { or } \omega_{\mathrm{BO}}=2 \pi \times 180 / 60=18.852 \mathrm{rad} / \mathrm{s}$ Velocity of Crank $v_{\mathrm{BO}}=v_{\mathrm{B}}=\omega_{\mathrm{BO}} \times O B=18.852 \times 0.5=9.426 \mathrm{~m} / \mathrm{s}$	

\qquad

	(a) Space diagram. (b) Velocity diagram. 1. Velocity of piston P $v_{\mathrm{P}}=\text { vector } o p=8.15 \mathrm{~m} / \mathrm{s} \text { Ans. }$ 2. Angular velocity of connecting rod From the velocity diagram, we find that the velocity of P with respect to B, $v_{\mathrm{PB}}=\text { vector } b p=6.8 \mathrm{~m} / \mathrm{s}$ Since the length of connecting rod $P B$ is 2 m , therefore angular velocity of the connecting rod, $\omega_{\mathrm{PB}}=\frac{v_{\mathrm{PB}}}{P B}=\frac{6.8}{2}=3.4 \mathrm{rad} / \mathrm{s} \text { (Anticlockwise) Ans. }$ 3. Velocity of point E on the connecting rod The point e on the vector $b p$ may also be obtained as follows: $\frac{B E}{B P}=\frac{b e}{b p} \text { or } b e=\frac{B E \times b p}{B P}$ $v_{\mathrm{E}}=\text { vector } o e=8.5 \mathrm{~m} / \mathrm{s} \quad \text { Ans. }$	01 mark for Space diagram 02 Mark for Velocity Diagram on
(b)	In Fig. (a) the angular velocity of the crank OA is 600 rpm . Determine the linear velocity of the slider D and the angular velocity of the link $B D$, when the crank is inclined at an angle 75° to the vertical. The dimensions of various links are: $O A=\mathbf{2 8} \mathrm{mm}, A B=\mathbf{4 4} \mathbf{~ m m}$, $B C=49 \mathrm{~mm}$ and $B D=46 \mathrm{~mm}$. The center distance between the centres rotation $O \& C$ is 65 mm . The path of travel of the slider is 11 mm below the fixed point C . The slider moves along a horizontal path and OC is vertical.	04
Ans.	$\begin{aligned} & \text { Angular Velocity Of Crank OA } \\ & \omega_{\mathrm{AO}}=2 \pi \times 600 / 60=62.84 \mathrm{rad} / \mathrm{s} \\ & v_{\mathrm{AO}}=v_{\mathrm{A}}=\omega_{\mathrm{AO}} \times O A=62.84 \times 0.028=1.76 \mathrm{~m} / \mathrm{s} \end{aligned}$	01 mark for Space diagram 01 Mark for Velocity Diagram

\qquad

	(a) Space diagram. (b) Velocity diagram. Velocity of slider D $v_{\mathrm{D}}=$ vector $o d=1.6 \mathrm{~m} / \mathrm{s}$ Ans. Angular velocity of the link BD $v_{\mathrm{DB}}=$ vector $b d=1.7 \mathrm{~m} / \mathrm{s}$ $\omega_{\mathrm{BD}}=\frac{v_{\mathrm{DB}}}{B D}=\frac{1.7}{0.046}=36.96 \mathrm{rad} / \mathrm{s}($ Clockwise about $B)$ Ans.	01 Mark for Velocity of slider 01 Mark for Angular Velocity of BD
(c)	Discuss with sketch the working principle of reverted gear train.	04
Ans.	Working Principle of Reverted Gear Train: When the axes of the first gear (i.e. first driver) and the last gear (i.e. last driven or follower) are co-axial, then the gear train is known as reverted gear train. We see that gear 1 (i.e. first driver) drives the gear 2 (i.e. first driven or follower) in the opposite direction. Since the gears 2 and 3 are mounted on the same shaft, therefore they form a compound gear and the gear 3 will rotate in the same direction as that of gear 2. The gear 3 (which is now the second driver) drives the gear 4 (i.e. the last driven or follower) in the same direction as that of gear 1. Thus we see that in a reverted gear train, the motion of the first gear and the last gear is same. The reverted gear trains are used in automotive transmissions, lathe back gears, industrial speed reducers, and in clocks (where the minute and hour hand shafts are co-axial). (02 Marks for Working Principle, 02 Marks for neat sketch)	02 Mark for Working Principle 02 Mark for Sketch

\qquad

(d)	Explain with neat sketch the construction and working of Multiplate ciu	04
Ans.	Construction of Multiplate Clutch: [1] Multi plate clutch consists of a number of clutch plates, instead of only one clutch plate as in the case of single plate clutch. [2] As the number of clutch plates is increased, the friction surface also increases. The increased number of friction surfaces obviously increases the capacity of the clutch to transmit torque. [3] The plates are alternately fitted to the engine shaft and the gear box shaft. They are firmly pressed by strong coil spring and assembled in a drum. [4] Each of the alternate plate slides in grooves on the flywheel and the other slides on splines on the pressure plate. Thus, each alternate plate has inner and outer splines. Working of Multiplate Clutch: Clutch Engagement: During clutch engagement, spring pressure forces the pressure plate towards engine flywheel. This causes the friction plates and the steel driven plates to be held together. Friction locks them together tightly. Then the clutch basket, drive plates, driven plates, clutch hub and the gearbox input shaft all spin together as one unit. Now power flows from the clutch basket through the plates to the inner clutch hub and into the main shaft of the transmission. Clutch Disengagement: The clutch gets released or disengaged when the clutch pedal is pressed. This causes the clutch pressure plate to be moved away from the drive and driven plates, overcoming the clutch spring force. This movement of the pressure plate, relieves the spring pressure holding the drive and driven plates together. Then the plates float away from each other and slip axially. Thus, the clutch shaft speed reduces slowly. Finally, the clutch shaft stops rotating. Power is no longer transferred into the transmission gearbox. (01 Mark for Construction, 01 Mark for Working in brief, 02 Mark for simple labeled sketch)	01 Mark for Construc tion 01 Mark for Working 02 Mark for labeled sketch

\qquad

(e)	Explain the process of balancing a single rotating mass when balancing masses are on the opposite side of disturbing mass.	04
Ans.	Process of Balancing a Single Rotating mass when balancing masses are on the opposite side of disturbing mass: Consider a disturbing mass m_{1} attached to a shaft rotating at ω lrad/s. Let $r 1$ be the radius of rotation of the mass m_{1} (i.e. distance between the axis of rotation of the shaft and the centre of gravity of the mass m_{1}). We know that the centrifugal force exerted by the mass m_{1} on the shaft, $F C_{I}=m_{1} \cdot \omega^{2} \cdot r_{1} \ldots \text { (i) }$ This centrifugal force acts radially outwards and thus produces bending moment on the shaft. In order to counteract the effect of this force, a balancing mass $\left(m_{2}\right)$ may be attached in the same plane of rotation as that of disturbing mass (m_{1}) such that the centrifugal forces due to the two masses are equal and opposite. Let $r_{2}=$ Radius of rotation of the balancing mass m_{2} (i.e. distance between the axis of rotation of the shaft and the centre of gravity of mass m_{2}). Centrifugal force due to mass m_{2}, $F C_{2}=m_{2} \cdot \omega^{2} r_{2} \ldots(i i)$ Equating equations (i) and (ii), $m_{1} \cdot \omega^{2} \cdot r_{1}=m_{2} \cdot \omega^{2} \cdot r_{2} \quad \text { or } \quad m_{1} \cdot r_{1}=m_{2} \cdot r_{2}$ Magnitude and position of balancing mass can be found. (02 Marks for appropriate process, 02 Marks for appropriate sketch)	02 marks for Appropri ate Process for appropri ate sketch

\qquad

	(f)	State the four applications of Cam.	04
	Ans.	Applications of CAM: 1. It is used in internal combustion engine for opening and closing intake valve and outlet valve. 2. It is used in machine tools. 3. It is used in automated machines. 4. It is used in control mechanisms of printing, hydraulic system. 5. It is used in Shoe making machines. 6. It is used in Sawing machine 7. It is used in Paper cutting machine (Any 04 suitable applications, 01 Mark for each)	04
Q. 4		Attempt any FOUR of the following: (4 x 4)	16
	(a)	Find the power transmitted by a belt running over a pulley of $\mathbf{6 0 0} \mathbf{~ m m}$ diameter at $\mathbf{2 0 0}$ rpm. The coefficient of friction between the belt and the pulley is 0.25 , angle of lap 160° and maximum tension in the belt is $\mathbf{2 5 0 0} \mathbf{N}$.	04
	Ans.	Solution. Given : $d=600 \mathrm{~mm}=0.6 \mathrm{~m} ; N=200 \mathrm{r} . \mathrm{p} . \mathrm{m} . ; \mu=0.25 ; \theta=160^{\circ}=160 \times \pi / 180$ $=2.793 \mathrm{rad} ; T_{1}=2500 \mathrm{~N}$ We know that velocity of the belt, $v=\frac{\pi d . N}{60}=\frac{\pi \times 0.6 \times 200}{60}=6.284 \mathrm{~m} / \mathrm{s}$ Let $T_{2}=\text { Tension in the slack side of the belt. }$ We know that $\begin{gathered} 2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu . \theta=0.25 \times 2.793=0.6982 \\ \log \left(\frac{T_{1}}{T_{2}}\right)=\frac{0.6982}{2.3}=0.3036 \end{gathered}$ $\therefore \quad \frac{T_{1}}{T_{2}}=2.01$...(Taking antilog of 0.3036) and $T_{2}=\frac{T_{1}}{2.01}=\frac{2500}{2.01}=1244 \mathrm{~N}$ We know that power transmitted by the belt, $\begin{aligned} P & =\left(T_{1}-T_{2}\right) v=(2500-1244) 6.284=7890 \mathrm{~W} \\ & =7.89 \mathrm{~kW} \text { Ans. } \end{aligned}$	

(b)	Explain with neat sketch the construction and working of beam engine.	04
Ans.	Construction of Beam Engine: A part of the mechanism of a beam engine (also known as crank and lever mechanism) which consists of four links. Crank AB Connected to link 3. Link 3 is connected to Link 4 which is lever and centrally pivoted at point D. At the other end of lever Piston rod is connected. Working of Beam Engine: In this mechanism, when the crank rotates about the fixed centre A, the lever oscillates about a fixed centre D. The end E of the lever $C D E$ is connected to a piston rod which reciprocates due to the rotation of the crank. In other words, the purpose of this mechanism is to convert rotary motion into reciprocating motion. Fig.: Beam Engine (01 Mark for Construction, 01 Mark for Working, 02 Mark for Simple labeled Sketch)	01 Mark for Construc tion 01 Mark for Working 02 Mark for Sketch
(c)	Explain the construction and working of centrifugal governor with the help of neat sketch.	04
Ans.	Construction of Centrifugal Governor: The centrifugal governors are based on the balancing of centrifugal force on the rotating balls by an equal and opposite radial force, known as the controlling force. [1] It consists of two balls of equal mass, which are attached to the arms. [2] These balls are known as governor balls or fly balls. [3] The balls revolve with a spindle, which is driven by the engine through bevel gears. [4] The upper ends of the arms are pivoted to the spindle, so that the balls may rise up or fall down as they revolve about the vertical axis. [5] The arms are connected by the links to a sleeve, which is keyed to the spindle. This sleeve revolves with the spindle; but can slide up and down. [6] The balls and the sleeve rise when the spindle speed increases, and falls when the speed decreases. [7] In order to limit the travel of the sleeve in upward and downward directions, two stops S, S are provided on the spindle. [8] The sleeve is connected by a bell crank lever to a throttle valve. The supply of the working fluid decreases when the sleeve rises and increases when it falls.	01 Mark for Brief Construc tion

\qquad

	6 7 (An	Frictional resistance to stop the motion It offers frictional resistance to body, so as to bring the body to rest. Shoe brakes, drum \& disc brakes, Band brakes Automobiles, Locomotives, Lifts	Measurement of power by absorbing energy It is able to measure frictional resistance, which is measure of power. Absorption \& Transmission Testing Machines	
(e)	A single plate clutch, with both sides effective, has outer and inner diameters $\mathbf{3 0 0} \mathbf{~ m m}$ and $\mathbf{2 0 0} \mathbf{~ m m}$ respectively. The maximum intensity of pressure at any point in the contact surface is not to exceed $0.1 \mathrm{~N} / \mathrm{mm}^{2}$. If the coefficient of friction is 0.3 , Determine the power transmitted by clutch at a speed of 2500 rpm.			04
Ans.	Given Data: Solution. Given : $d_{1}=300 \mathrm{~mm}$ or $r_{1}=150 \mathrm{~mm} ; d_{2}=200 \mathrm{~mm}$ or $r_{2}=100 \mathrm{~mm} ; p=0.1 \mathrm{~N} / \mathrm{mm}^{2}$; $\mu=0.3 ; N=2500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. or $\omega=2 \pi \times 2500 / 60=261.8 \mathrm{rad} / \mathrm{s}$ Since the intensity of pressure (p) is maximum at the inner radius $\left(r_{2}\right)$, therefore for uniform wear, $p . r_{2}=C \text { or } C=0.1 \times 100=10 \mathrm{~N} / \mathrm{mm}$ We know that the axial thrust, $W=2 \pi C\left(r_{1}-r_{2}\right)=2 \pi \times 10(150-100)=3142 \mathrm{~N}$ and mean radius of the friction surfaces for uniform wear, $R=\frac{r_{1}+r_{2}}{2}=\frac{150+100}{2}=125 \mathrm{~mm}=0.125 \mathrm{~m}$ We know that torque transmitted, $\begin{aligned} T=n \cdot \mu \cdot W \cdot R=2 \times 0.3 \times 3142 \times 0.125 & =235.65 \mathrm{~N}-\mathrm{m} \\ \ldots(\because n & =2, \text { for both sides of plate effective }) \end{aligned}$ \therefore Power transmitted by a clutch, $P=T . \omega=235.65 \times 261.8=61693 \mathrm{~W}=61.693 \mathrm{~kW} \text { Ans. }$			1/2 Mark 1/2 Mark 01 Mark 01 Mark 01 Mark
(f)	Four masses are $200 \mathrm{~kg}, \mathbf{3 0 0} \mathbf{~ k g}, \mathbf{2 4 0} \mathbf{~ k g}$ and 260 kg . The corresponding radii of rotation are $0.2 \mathrm{~m}, 0.15 \mathrm{~m}, 0.25 \mathrm{~m}$ and 0.3 m respectively. The angles between successive masses are $45^{\circ}, 75^{\circ}$ and 135°. Find the position and magnitude of balance mass required, if its radius of rotation is 0.2 m . Use graphical method.			04
Ans.	Given Data:$\begin{aligned} & \mathrm{m}_{1} \cdot \mathrm{r}_{1}=200 \times 0.2=40 \mathrm{~kg}-\mathrm{m} \\ & \mathrm{~m}_{2} \cdot \mathrm{r}_{2}=300 \times 0.15=45 \mathrm{~kg}-\mathrm{m} \\ & \mathrm{~m}_{3} \cdot \mathrm{r}_{3}=240 \times 0.25=60 \mathrm{~kg}-\mathrm{m} \\ & \mathrm{~m} \cdot \mathrm{r}_{4}=260 \times 0.3=78 \mathrm{~kg}-\mathrm{m} \end{aligned}$			01 Mark

\qquad

		(a) Space diagram. (b) Vector diagram Fig. Graphical Representation $\mathrm{m} \times 0.2=$ vector ea $=23 \mathrm{~kg}-\mathrm{m}$ or $\mathrm{m}=23 / 0.2=115 \mathrm{~kg}$ Ans. O $=201^{\circ}$ Ans.	01 Mark for Space Diagram 01 Mark for Vector Diagram 01 Mark
Q. 5		Attempt any TWO of the following: (2×8)	16
	(a)	PQRS is a four bar chain with link PS fixed. The lengths of the links PQ, QR, RS \& PS are $62.5 \mathrm{~mm}, 175 \mathrm{~mm}, 112.5 \mathrm{~mm}$ and 200 mm respectively. The crank PQ rotates at $10 \mathrm{rad} / \mathrm{s}$ clockwise. Draw the velocity and acceleration diagram when angle QPS $=60^{\circ}$ and Q \& R lie on the same side of PS. Find the angular velocity and angular acceleration of links QR \& RS.	08
	Ans.	We know that velocity of Q with respect to P or velocity of Q, $v_{\mathrm{QP}}=v_{\mathrm{Q}}=\omega_{\mathrm{QP}} \times P Q=10 \times 0.0625=0.625 \mathrm{~m} / \mathrm{s}$ (a) Space diagram. (b) Velocity diagram. (c) Acceleration diagram. vector $p q=v_{\mathrm{QP}}=v_{\mathrm{Q}}=0.625 \mathrm{~m} / \mathrm{s}$ $v_{\mathrm{RQ}}=\text { vector } q r=0.333 \mathrm{~m} / \mathrm{s}, \text { and } v_{\mathrm{RS}}=v_{\mathrm{R}}=\text { vector } s r=0.426 \mathrm{~m} / \mathrm{s}$ 1.. Angular Velocity OF Link QR :- $\omega_{\mathrm{QR}}=\frac{v_{\mathrm{RQ}}}{R Q}=\frac{0.333}{0.175}=1.9 \mathrm{rad} / \mathrm{s} \text { (Anticlockwise) }$	02 Mark for Space Diagram 02 Mark for Velocity Diagram 02 Mark for Accelera tion Diagram $1 / 2$ Mark

\qquad

		2. Angular Velocity OF Link RS :- $\omega_{\mathrm{RS}}=\frac{v_{\mathrm{RS}}}{S R}=\frac{0.426}{0.1125}=3.78 \mathrm{rad} / \mathrm{s}(\text { Clockwise })$ 3. Angular Acceleration OF Link QR :- $\alpha_{\mathrm{QR}}=\frac{a_{\mathrm{RQ}}^{t}}{\mathrm{QR}}=\frac{4.1}{0.175}=23.43 \mathrm{rad} / \mathrm{s}^{2} \text { (Anticlockwise) }$ 4. Angular Acceleration OF Link RS :- $\alpha_{\mathrm{RS}}=\frac{a_{\mathrm{RS}}^{t}}{S R}=\frac{5.3}{0.1125}=47.1 \mathrm{rad} / \mathrm{s}^{2} \text { (Anticlockwise) }$	$\begin{aligned} & 1 / 2 \text { Mark } \\ & 1 / 2 \text { Mark } \\ & 1 / 2 \text { Mark } \end{aligned}$
Q. 5	(b)	A cam is to give the following motion to a knife-edge follower: (1) Outstroke during 60° of cam rotation; (2) Dwell for next 30° of cam rotation; (3) Return stroke during next 60° o cam rotation, and (4) Dwell for remaining 210° of cam rotation. The lift of follower is 40 mm and the minimum radius of cam is 50 mm . The follower moves with uniform velocity during outstroke and with uniform acceleration and retardation during return stroke. Draw the profile of cam when the axis of follower passes through the axis of cam shaft.	08
	Ans.	Displacement Diagram	03 Mark for Displace ment Diagram for Cam

\qquad

			Profile
2.5	(c)	Two pulleys of 450 mm and 200 mm diameter are mounted on parallel shafts 1.95 m apart and are connected by a crossed belt. Find the length of belt required and the angle of contact between belt and each pulley. What power can be transmitted by the belt when larger pulley rotates at 200 rpm , if maximum permissible tension in the belt is 1 KN and coefficient of friction between the belt \& pulley is 0.25 ?	08
	Ans.	Given Data: $\begin{aligned} & \mathrm{d} 1=450 \mathrm{~mm}=0.45 \mathrm{~m}, \mathrm{~d} 2=200 \mathrm{~mm}=0.20 \mathrm{~m}, \mathrm{~N} 1=200 \mathrm{rpm}, \mathrm{x}=1.95 \mathrm{~m}, \mathrm{Tmax}=1 \mathrm{KN}= \\ & 1000 \mathrm{~N}, \mu=0.25 \\ & \underline{\text { Velocity of Belt :- }} \\ & \qquad v=\frac{\pi d_{1} \cdot N_{1}}{60}=\frac{\pi \times 0.45 \times 200}{60}=4.714 \mathrm{~m} / \mathrm{s} \end{aligned}$ Length of Crossed Belt Drive: length of the crossed belt, $\begin{aligned} L & =\pi\left(r_{1}+r_{2}\right)+2 x+\frac{\left(r_{1}+r_{2}\right)^{2}}{x} \\ & =\pi(0.225+0.1)+2 \times 1.95+\frac{(0.225+0.1)^{2}}{1.95}=4.975 \mathrm{~m} \end{aligned}$ Angle of Contact between Belt \& Pulley:	01 Mark 01 Mark 02 Mark

\square

		Pow Pow		$\theta=$ Angle of contact betw for a crossed belt drive, $\begin{aligned} \sin \alpha & =\frac{r_{1}+r_{2}}{x}=\frac{0.225+0.1}{1.95} \\ \theta & =180^{\circ}+2 \alpha=180^{\circ}+ \\ & =199.2 \times \frac{\pi}{180}=3.477 \end{aligned}$ Transmitted by Belt: transmitted Let $T_{2}=\text { Tension in the }$ We know that $\begin{aligned} 2.3 \log \left(\frac{T_{1}}{T_{2}}\right) & =\mu . \theta=0.25 \times 3 . \\ \log \left(\frac{T_{1}}{T_{2}}\right) & =\frac{0.8692}{2.3}=0.378 \\ T_{2} & =\frac{T_{1}}{2.387}=\frac{1000}{2.387} \end{aligned}$ We know that power transmitted, $P=\left(T_{1}-T_{2}\right) v=(1$	een the belt and each pulley. $\begin{aligned} & =0.1667 \text { or } \alpha=9.6^{\circ} \\ & \times 9.6^{\circ}=199.2^{\circ} \end{aligned}$ rad Ans. ack side of the belt. $177=0.8692$ or $\frac{T_{1}}{T_{2}}=2.387 \quad$...(Taking antilog of 0.378) $=419 \mathrm{~N}$ $900-419) 4.714=2740 \mathrm{~W}=2.74 \mathrm{~kW} \text { Ans. }$	02 Mark 02 Mark
Q. 6		Att	mp	any TWO of the following: (2×8)		16
	(a)	(i) Dif (ii) Ex		rentiate between Flywheel \& Governo ain the turning moment diagram for sin	cylinder 4 Stroke IC Engine.	08
	Ans.	Diffe		nce between Flywheel \& Governor: Flywheel It is used to store available mechanical energy, when it is in excess of load requirement \& to give it away when the available energy is less than the load requirement. It takes care of fluctuation of speed during each revolution due to variation in output torque of engine. (Cyclic Revolution) Operation is continuous Flywheel may not be used if there is no undesirable cyclic fluctuation of energy output. (Desirable)	Governor It is used to regulate the supply of working fluid according to load requirement and to maintain a constant speed. It takes care of fluctuation of speed during no. of revolutions due to variation of load upon engine. (No. of Revolution) Operation is intermittent Governor is essential for all types of engine as it adjust the supply of fuel according to demand. (Essential)	Marks

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2013 Certified)

(b) A band brake acts on the $3 / 4^{\text {th }}$ of circumference of a drum of 450 mm diameter which is keyed to the shaft. The band brake provides a braking torque of $\mathbf{2 2 5} \mathbf{~ N m}$. One end of the band is attached to a fulcrum pin of the lever and the other end to a pin 100 mm from the fulcrum. If the operating force is applied at 500 mm from the fulcrum and the coefficient of friction is 0.25 , find the operating force when the drum rotates in the (a) anti clockwise direction (b) clockwise direction
Ans.

1. Operating force when drum rotates in anticlockwise direction:-

Angle of wrap :-

$$
\begin{align*}
\theta & =\frac{3}{4} \text { th of circumference }=\frac{3}{4} \times 360^{\circ}=270^{\circ} \\
& =270 \times \pi / 180=4.713 \mathrm{rad} \\
2.3 \log \left(\frac{T_{1}}{T_{1}}\right) & =\mu . \theta=0.25 \times 4.713=1.178 \\
\log \left(\frac{T_{1}}{T_{2}}\right) & =\frac{1.178}{2.3}=0.5123 \text { or } \frac{T_{1}}{T_{2}}=3.253 \tag{i}
\end{align*}
$$

We know that braking torque $\left(T_{\mathrm{B}}\right)$,

$$
\begin{array}{rlrl}
& 225 & =\left(T_{1}-T_{2}\right) r=\left(T_{1}-T_{2}\right) 0.225 \\
& \therefore & T_{1}-T_{2} & =225 / 0.225=1000 \mathrm{~N} \tag{ii}
\end{array}
$$

From equations (i) and (ii), we have

$$
T_{1}=1444 \mathrm{~N} ; \text { and } \quad T_{2}=444 \mathrm{~N}
$$

Now taking moments about the fulcrum O, we have

$$
\begin{array}{rlrl}
& & P \times l & =T_{2} \cdot b \quad \text { or } \quad P \times 0.5=444 \times 0.1=44.4 \\
\therefore & P & =44.4 / 0.5=88.8 \mathrm{~N} \text { Ans. }
\end{array}
$$

2. Operating force when drum rotates in clockwise direction:-
taking moments about the fulcrum O, we have
$P \times I=T 1 . b$ or $P \times 0.5=1444 \times 0.1=144.4$
\therefore 国 $P=144.4 / 0.5=288.8 \mathrm{~N}$ Ans.
\qquad

\qquad
