MAHARASHTF (Autonomous) (ISO/IEC - 2700

WINTER - 19EXAMINATION

Subject Name: Control system & PLC

Model Answer

Subject Code

17536

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figures. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
0.4			12-Total
Q.1	(A)	Attempt any THREE:	Marks
	i)	State need of PLC in automation. List any four benefits of PLC in automation.	4M
	Ans:	Need of automation in Industries :	2M
		1. To Increase productivity	
		2. To Increase product quality	
		3. To Increase flexibility and convertibility	
		4. Reduces manpower	
		5. Reduction of personal accident	
		6. Reduces cost of product	
		7. Better inventory control	
		8. Increases profit	
		Benefits of PLC:	2M
		1 Reduce human efforts	
		2 Maximum afficiency through machine and logic is controlled by human	
		3 Higher productivity	
		4 Superior quality of end products	
		5 Efficient uses of energy and raw material	
		6. Eliminate the high costs associated with inflexible, relay-controlled systems	
		7. Improved safety in working conditions.	
		8. Easily programmed and have an easily understood programming language.	
	ii)	Draw the Block diagram of DC output module and explain threshold detector block in	4M

	it.	
Ans:	Block diagram of DC output module:	2M
	From CPU Latch Logic Circuit Circu	
	OR Any other relevant diagram shall be considered	
	Threshold detection:	
	Threshold detection circuitry detects if the incoming signal has reached or exceeded a predetermined value for a predetermine time, and whether it should be classified as valid ON or OFF signal.	2M
iii)	List the timer instruction of PLC. Explain any of them in detail.	4M
Ans:	Depending on the time delay and operation there are two types of timers PLC timer-	1M
	 OFF delay timer 	21/1
	ON delay timer :	3111
	1) This instruction counts time interval when conditions preceding it in the rung are true. Produces an output when accumulated value reaches the preset value.	
	2) Use TON instruction to turn an output on or off after the timer has been on for a	
	preset time interval. The Ton instruction begins to count time base intervals when the	
	rung conditions become true. 3) The accumulated value is reset when the rung condition go false regardless of	
	whether the timer has timed out.	
	Instruction parameter- Timer TON is 3 word element.	
	15 14 13 12 11 10 9 8 7 6 5 4 3	
	word 16	
	0 TT\EN TT\EN DN bit word 16	
	1 preset value bit	
	2 r value 16	
	Status bit explanation:	
	i) Timer done bit (bit13)-DN is set when the accumulated value is equal to or	
	greater than the preset value. It is reset when rung condition become false.	
1	1) There enable bit (bit 14)-EN is set when rung condition are true. It is reset when	
	rung condition become faise.	

	accumulated value is less than the preset	value. It is reset when the rung	
	conditions go false or when the done bit i	s set.	
	<u>OR</u>		
	OFF delay timer		
	1) This instruction counts time interval when co	nditions preceding it in the rung are	
	false. Produces low output when accumulated	value reaches the preset value.	
	2) Use Toff instruction to turn an output on or o	If after the timer has been off for a	
	preset timer has been off for a preset time into	ervals. The Toff instruction begins to	
	count time base intervals when the rung make	es a true to false to transition.	
	3) As long as rung conditions remains false the f	imer increments its accumulated value	
	each scan until it reaches the preset value. In	the times has timed out	
	rung conditions go true regardless of whether	the timer has timed out.	
	Instruction parameter- Timer TOFF is 5 word	element.	
		1 10 9 8 7 6 5 4	
	word	16	
	0 TT\EN TT\EN DN	bit	
	word	16	
	1 preset value	bit	
	word Accumulat	16 bit	
		on	
	Status bit explanation:		
	1) Timer done bit (bit13)-DN is reset when the	le accumulated value is equal to or	
	ii) Timer enable bit (bit 14) EN is set when	rung condition are true. It is react when	
	rung condition become false	ing condition are true. It is reset when	
	iii) Timer timing bit (bit15)-TT is set when ru	ng conditions are false & the	
	accumulated value is less than the preset v	alue. It is reset when the rung	
	conditions go true or when the done bit is	eset.	
iv)	Write the expression of proportional controller ar	nd define :	
	(1) Proportional Band		м
	$(1) 1 1 1 1 0 \mathbf{p} 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0$		
A 70 70	(1) Droportional Dand	21	M
Ans:	(1) Proportional Band	21	NI
	The proportional band is the band of controller output	t over which the final control element	
	will move from one extreme to another. Mathematica	ally, it can be expressed as:	
	100		
	$PB = \frac{100}{10}$		
	K_p		
	So if the proportional gain, is very high, the proportion	onal band is very small.	
	D enote the set \mathbf{D} is the set \mathbf{OR}		
	controller output	for which results in 100% change in	
	Offset in proportional controller		
	1. Proportional controller produces a permanent	residual error in the operating point of 2	Μ
	the controlled variable when a change is occu	rring.	
	2. This error is referred as Offset.	č	
	3. It can be minimized by a larger constant, Kp,	which also reduces the proportional	
	band.	· ·	

B)		Attempt any <u>ONE</u> :	6-Total
_,	•	Derive the energiest for steady state energy (as) State two fortages on which it depends	Marks
	1)	Derive the expression for steady state error (ess). State two factors on which it depends.	OIVI
	Ans:	$\begin{array}{c c} R(s) & E(s) \\ \hline \\ B(s) \\ \hline \\ H(s) \\ \hline \end{array} \begin{array}{c} C(s) \\ C(s) \\ \hline C(s) \\ \hline \\ C(s) \\ $	1M(Diag ram)
		E(s) = R(s) - B(s) But B(s) = C(s) * H(s) And C(s) = E(s) * G(s) E(s) = R(s) - E(s) G(s) H(s) E(s) = R(s) - E(s) G(s) H(s) = R(s) E(s) = R(s)/1+G(s) H(s) for non unity feedback E(s) = R(s)/1+G(s) for unity feedback Steady State error, ess = Lim e(t) t $\Rightarrow \infty$ By using final value theorem of Laplace transform, ess = Lim S*E(s) S $\Rightarrow 0$ Substituting E(S) from the expression derived, ess = Lim SR(s)/1+G(s)H(s) where G(s)H(s) is the open loop transfer function. S $\Rightarrow 0$ ess for step input: $-02marks$ for st	3M (Derivati on)
		The steady-state error will depend on the type of input (step, ramp, etc.) as well as the system type (0, I, or II).	
			2M
			(Factors)

11)	Compare fr	xed and modular PLC. (an	y six points)	61/1
Ans:	Sr. no	Fixed PLC	Modular PLC	
	1	Elements are fixed on main board of PLC	Elements are modular form, mounted on chasis(rack)	
	2	I/O count is 32 or less than 32	I/O count is more than 32	
	3	Small in size	Size is more	
	4	Easy to install	Complex installation process	
	5	Memory capacity is less	Memory capacity is more	
	б	It can not be repaired	It can repaired as modules are in modular form	
	7	Generally digital devices are connected to it.	Analog & digital devices are connected to it.	1M Each (Any 6 points)
	8	Cost is less	Cost is more	
	9	Less input output devices are connected	More input output devices are connected	
	10	Application-Tea- coffee vending m/c, Washing m/c	Application-Cement, rubber, Chemical fertilizer industries.	

Q.2		Attempt any <u>TWO</u> :	16-Total Marks
	a)	Derive an expression for unit step response of fist order system. Draw its response curve.	8M
	Ans:	Consider a simple first order system be excited by a unit step input. The T.F. of first order system is given by, $\frac{Vo(s)}{Vi(s)} = \frac{1}{1+sRC}$	5M (Derivati on)
		For unit step input, $v_i(t) = 1$, fort ≥ 0 = 0, for t < 0. The Laplace equivalent is $Vi(s) = \frac{1}{s}$	
		$\therefore Vo(s) = \frac{1}{s(1+sRC)} = \frac{A^1}{s} + \frac{B^1}{1+sRC}$ Using Partial fraction method we get: $A^1 = 1$ & $B^1 = -BC$	
		Substituting the values of A ¹ and B ¹ , we get $\therefore Vo(s) = \frac{1}{s} - \frac{RC}{1+sRC}$	
		Taking Laplace inverse, we get $v_o(t) = 1 - e^{-\frac{t}{RC}} \Rightarrow C_{ss} + c_t(t)$	
		The steady state response $C_{ss} = 1$ and transient term $c_t(t) = -e^{-\frac{t}{RC}}$	

MAHARASHTF (Autonomous) (ISO/IEC - 2700

The output waveform is as shown.	3M
$v_{o}(t)$ $1 - e^{-t/RC}$	(Respons e)
Four given differential equation.	
$\frac{d^2 y}{dt^{2t}} + 4\frac{d y}{dt} + 8y(t) = 8x(t)$	
Where y = output and x = Input Find :	8M
(i) Settling time (ii) Rise time	
(III) Peak time (IV) Peak oversnoot	2M Each
i) Rise time is given by tr $=\frac{n-\beta}{Wd}$,	
Where $\beta = \frac{\sqrt{1-\zeta^2}}{\zeta}$	
ii) Peak Time is given by $t_p = \frac{\pi}{Wd}$	
iii) Max overshoot is given by Mp%= 100 x $e^{\sqrt{1-\zeta^2}}$	
iv) Settling time is given by ts = $\frac{4}{\zeta Wn}$	
	The output waveform is as shown. $ \begin{bmatrix} v_0(0) \\ 1 \\ 1 \\ - v_{RC} \\ - v_{RC} \\ 1 \\ - v_{RC} \\ -$

BOARD OF TECHNICAL EDUCATION

MAHARASHTF (Autonomous) (ISO/IEC - 2700

tified)

ر کار

 $\frac{dy}{dt^2} + 4 \cdot \frac{dy}{dt} + 8 y(t) = 8 \times (t)$ 2 5 1(5) + A 5 1(5) + 8 1(5) = 8 × 15) 1(5) (S2 + 45+8] = 8 × (5) 2 $\frac{y_{15}}{x_{(5)}} = \frac{8}{s^2 + 4518} = \frac{\omega_0}{s^2 + 2\xi_5 + \omega_0^2}$ $\omega_{n}^{2} = 8 \qquad \omega_{n} = \sqrt{8} = 2.83$ 2500 = 4 2× 5× 58 = 4 $\omega_{d} = \omega_{0} \sqrt{1 - \varepsilon_{1}^{2}}$ No JI-E 2.83 J1 - 10-71)2 setting Time (Ta) = 4 -Rise Time (T.) = [p = 1 = 5 = 1 = - 10 = 10 = 0 = 90 = 0 Decashoot (Mp%) Draw ladder diagram for 3 motor for following conditions: State push button motor M₁,M₂ and M₃. **(i) 8M c**) **(ii)** Stop push button, M₁ first, after 10 seconds motor M₂ and after 20 seconds motor M₃. List of inputs and their addresses 2MAns: Start button – I: 0/0 List Stop button -I: 0/1List of outputs and their addresses Motor M1 – O : 0/0 **Motor M2 – O : 0/1** Motor M3- O: 0/2 OFF delay timer -T4.0 OFF delay timer -T4.1

		Start 1 1 1 0:0/0 1 1 0:0/0 1 1 1 0:0/0 1 1 1 0:0/0 1 1 1 1 1 1 1 1 0:0/0 1 1 1 1 0:0/0 1 1 1 1 0:0/0 1 1 1 1 1 0:0/0 1 1 1 1 1 1 1 1 1 1 1 1 1	Stop N Tioli Tore Tume Bas Preset: Value Tori Ta: Tori Ta: Tori Ta: Tori Ta: Tori	Motor C) O:010 E C E C DN N C E N C N Motor	M_1 N_1 N_2	6M Ladder Program
Q.3		Attempt any <u>FOUR</u> :				16Marks
	a)	Explain any two logical instruction	on in PLC.			4 M
	Ans:	1) AND instruction				Any two
						instructi
			Source A	B3:0		ons : 2N
				?		cach
			Source B	B3:1		
			Dest	B3:2		
				?		
		In the above picture, there are total SOURCE A – Address of First Bin SOURCE B – Address of Second E DESTINATION –AND operation 1 2) OR instruction	ly three paramete ary Value Binary Value result of Source A	ers, A & B stored	in this address.	
			OR -			
			Bitwise Inc	lusive OR	—	
			Source A	B3:0 ?		
			Source B	B3:1		
			3.	?		
			Dest	B3:2		
				?		
		In the above picture, there are totall SOURCE A –Address of First Bina SOURCE B –Address of Second B	ly three paramete ary Value inary Value	ers,		

- 3) Error detector Error detector is summing point whose output is an error signal i.e. e(t) = r(t) b(t) to controller for comparison & for the corrective action. Error detector compares between actual signal & reference i/p i.e. set point.
 4) Automatic controller- Controller detects the actuating error signal, which is usually at a very low power level, and amplifies it to a sufficiently high level .i.e. means automatic controller comprises an error detector and amplifier.
 - 5) Actuator or control element Actuator is nothing but pneumatic motor or valve, a hydraulic motor or an electric motor, which produces an input to the plant according to the control signal getting from controller.

	P	Control element
		u
r	Controller	Process
Summing		le le

Explanation :

The block diagram of process control system consists of the following blocks:-

1) Measuring element: It measures or senses the actual value of controlled variable "c" and converts it into proportional feedback variable b.

2) Error detector: It receives two inputs: set point "r" and controlled variable "p". The output of the error detector is given by e= r-b. "e" is applied to the controller.

3) Controller: It generates the correct signal which is then applied to the final control element. Controller output is denoted by "p".

4) Final control element: It accepts the input from the controller which is then transformed into some proportional action performed by the process. Output of control element is denoted by "u".

5) Process: Output of control element is given to the process which changes the process variable. Output of this block is denoted by "u".

MAHARASHTI (Autonomous) (ISO/IEC - 2700

	K(1+T1s) + (1+T2s)	coefficien
	$G(s)H(s) = \frac{1}{S^{j}(1+Ta s)(1+Tb s)}$	ts : 1M
	Where j is type of system(2)	
	Comparing equation (1) with equation (2) we get $j = 1$.Here H (s) = 1	
	This indicates that the given system is type 1 system.	
	(ii) Static error coefficients	
	a)	
	$K_{p} = \lim_{s \to 0} G(s) \cdot H(s)$	
	lim 20	
	$=\frac{20}{s(1+4s)(1+s)}$	
	Here $H(s) = 1$	
	Therefore, $Kp = \infty$	
	b)	
	$K_v = \lim_{s \to 0} s. G(s). H(s)$	
	line	
	s→020.s	
	- s.(1+4s)(1+s)	
	Therefore, $Kv = 20$	
	c)	
	$K = \lim_{s \to \infty} S^2 G(s) H(s)$	
	$R_a = \lim_{s \to 0} 5 \cdot 0 (3) \cdot 11 (3)$	
	$\lim_{s \to 0} 20.s.s$	
	$= \frac{1}{s.(1+4s)(1+s)}$	
-	Therefore, $Ka = 0$	
d)	For close loop system with positive feedback	4M
	$\frac{C(S)}{R(S)} = \frac{C(S)}{1 - G(S) H(S)}$	4111
Ans:		Block
	Block diagram of closed loop system with positive feedback,	diagram
		: 1M
	$\xrightarrow{\mathbf{A}(\mathbf{s})} \xrightarrow{+} \underbrace{\mathbf{E}(\mathbf{s})}_{+} \underbrace{\mathbf{G}(\mathbf{s})}_{+} \underbrace{\mathbf{G}($	
	H(s)	
	E(s) = Actuating or Error Signal	Derivatio
	R(s) = Reterence Input Signal.	n : 3M
	O(s) = Forward Paul Hauster Function. O(s) = Output Signal	
	H(s) = Feedback Transfer Function.	
	B(s) = Feedback Signal	

	Γ		
		So, the transfer function of the closed loop system is $Y(s)/X(s)$.	
		From the block diagram,	
		$C(s) = G(s).E(s) \dots 1$	
		$B(s) = H(s).C(s) \dots 2$	
		$E(s) = R(s) + B(s) \dots 3$ (For positive feedback)	
		Put the value of E(s) from eq.3 in eq.1	
		C(s) = G(s).[R(s) + B(s)]	
		$C(s) = G(s).R(s) + G(s).B(s) \dots 4$	
		Put the value of B(s) from eq.2 in eq.4	
		C(s) = G(s).R(s) + G(s).H(s).C(s)	
		C(s) - G(s).H(s).C(s) = G(s).R(s)	
		$C(s){1 - G(s).H(s)} = G(s).R(s)$	
		C(s) = G(s)	
		$R(s) = 1 - G(s) \cdot H(s)$	
		Identify given devices as input and output devices of PLC. State their	
	-)	Use:	43.4
	e)	(i) Solenoid valve (ii) Proximity switch	4111
		(ii) Leven sensors (iv) Heater coil	
	Ans:	1) Solenoid valve : Output device	Each
		Use: Solenoid valve is used to control i.e. ON/OFF the instrument air supply to	device :
		the valve actuator.	1/2 M
		2) Proximity switch: Input device	Fach use
		Use: Proximity switches are used to detect the presence of an item without making	
		contact with it.	: -/2 IVI
		3) Level sensors : Input device	
		Use: Used to monitor the depth of a liquid in a tank. It gives a signal when the level in	
		some container reaches a particular level.	
		4) Heater coil: Output device	
		Use: It is used to detect the temperature.	
Q.4	(A)	Attempt any THREE:	12
			Total
			Marks
	(i)	Explain scan cycle of PLC with neat diagram.	4M

Ans:	Read / Sense the logic	Diagram : 2M
	Execute the logic	
	Write / update the output	
	Scan Cycle of PLC	
	Stop 1. Road / Sonso the input	Explanat
	Firstly PLC reads the on/off status of the external input signals. After scanning the input it	ion:2M
	gets stored in the input memory. This input included switches, pushbuttons, proximity sensors	
	limit switches, pressure switches, etc.	
	Step 2: Execute the logic by the processor	
	This scanned input gets transferred to the CPU for processing from input memory. The	
	processor executes the programming instructions based on the input. After the execution, the	
	result (on/off) will be stored in the device memory.	
	Step 3: Update / write the output:	
	When the program executes the last instruction, it will send the on/off status to the output	
	when the program executes the last instruction, it will send the on/on status to the output	
	device memory. The outputs include solenoids, valves, motors, actuators, and pumps.	
(ii)	device memory. The outputs include solenoids, valves, motors, actuators, and pumps. Give the principle of derivative action. Write its standard equation.	4M
(ii) Ans	 device memory. The outputs include solenoids, valves, motors, actuators, and pumps. Give the principle of derivative action. Write its standard equation. Principle of derivative control action: 	4M Principle
(ii) Ans	 device memory. The outputs include solenoids, valves, motors, actuators, and pumps. Give the principle of derivative action. Write its standard equation. Principle of derivative control action: The controlled output is proportional to the rate of change of error signal OR The output of the 	4M Principle : 2M
(ii) Ans	 When the program executes the last instruction, it will send the on/off status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps. Give the principle of derivative action. Write its standard equation. Principle of derivative control action: The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal. 	4M Principle : 2M
(ii) Ans	 When the program executes the last instruction, it will send the on on status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps. Give the principle of derivative action. Write its standard equation. Principle of derivative control action: The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal. Mathematical expression: 	4M Principle : 2M
(ii) Ans	when the program executes the last instruction, it will send the on/off status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps. Give the principle of derivative action. Write its standard equation. Principle of derivative control action: The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal. Mathematical expression: $P = K_D * [de_p / dt]$	4M Principle : 2M Expressi
(ii) Ans	When the program executes the last instruction, it will send the on/off status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps.Give the principle of derivative action. Write its standard equation.Principle of derivative control action:The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal.Mathematical expression: $P = K_D * [de_p / dt]$ OR	4M Principle : 2M Expressi on : 2M
(ii) Ans	when the program executes the last instruction, it will send the on/off status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps. Give the principle of derivative action. Write its standard equation. Principle of derivative control action: The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal. Mathematical expression: $P = K_D * [de_p / dt]$ DR $P(t) = K_D * [de(t) / dt]$	4M Principle : 2M Expressi on : 2M
(ii) Ans	When the program executes the last instruction, it will send the on-on status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps.Give the principle of derivative action. Write its standard equation.Principle of derivative control action:The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal.Mathematical expression: $P = K_D * [de_p / dt]$ ORP(t) = $K_D * [de(t) / dt]$ Where K_D = Derivative gain constant and	4M Principle : 2M Expressi on : 2M
(ii) Ans	When the program executes the last instruction, it will send the on/off status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps. Give the principle of derivative action. Write its standard equation. Principle of derivative control action: The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal. Mathematical expression: $P = K_D * [de_p / dt]$ OR P(t) = $K_D * [de(t) / dt]$ Where K_D = Derivative gain constant and $[de_p / dt]$ = rate of change of error signal	4M Principle : 2M Expressi on : 2M
(ii) Ans	When the program exceededs the last instruction, it will send the on/oil status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps.Give the principle of derivative action. Write its standard equation.Principle of derivative control action:The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal.Mathematical expression: $P = K_D * [de_p / dt]$ ORP(t) = $K_D * [de(t) / dt]$ Where K_D = Derivative gain constant and $[de_p / dt]$ = rate of change of error signal(i)Determine the stability of given system by Routh's array method having characteristic equation as	4M Principle : 2M Expressi on : 2M
(ii) Ans (iii)	when the program executes the last instruction, it will solid the onion status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps. Give the principle of derivative action. Write its standard equation. Principle of derivative control action: The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal. Mathematical expression: $P = K_D * [de_p / dt]$ OR $P(t) = K_D * [de(t) / dt]$ Where $K_D = Derivative gain constant and [de_p / dt] = rate of change of error signal (i) Determine the stability of given system by Routh's array method having characteristic equation as S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$	4M Principle : 2M Expressi on : 2M
(ii) Ans (iii)	When the program executes the last instruction, it will send the onlong status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps.Give the principle of derivative action. Write its standard equation.Principle of derivative control action:The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal.Mathematical expression:P = K _D * [de _p / dt]ORP(t) = K _D * [de(t) / dt]Where K _D = Derivative gain constant and [de _p / dt] = rate of change of error signal(i) Determine the stability of given system by Routh's array method having characteristic equation as S ⁶ + 2S ⁵ + 8S ⁴ + 12S ³ + 20S ² + 16S + 16 = 0	4M Principle : 2M Expressi on : 2M
(ii) Ans (iii)	When the program exceedes the last instruction, it will send the on-on status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps.Give the principle of derivative action. Write its standard equation.Principle of derivative control action:The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal.Mathematical expression:P = K _D * [de _p / dt]ORP(t) = K _D * [de(t) / dt]Where K _D = Derivative gain constant and [de _p / dt] = rate of change of error signal(i) Determine the stability of given system by Routh's array method having characteristic equation as S ⁶ + 2S ⁵ + 8S ⁴ + 12S ³ + 20S ² + 16S + 16 = 0Civen	4M Principle : 2M Expressi on : 2M 4M
(ii) Ans (iii) Ans	When the program executes the last instruction, it will solid the onion status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps.Give the principle of derivative action. Write its standard equation.Principle of derivative control action:The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal.Mathematical expression:P = K _D * [de _p / dt]ORP(t) = K _D * [de(t) / dt]Where K _D = Derivative gain constant and [de _p / dt] = rate of change of error signal(i) Determine the stability of given system by Routh's array method having characteristic equation as S ⁶ + 2S ⁵ + 8S ⁴ + 12S ³ + 20S ² + 16S + 16 = 0Given, S ⁶ + 2S ⁵ + 8S ⁴ + 12S ³ + 20S ² + 16S + 16 = 0	4M Principle : 2M Expressi on : 2M 4M Each
(ii) Ans (iii) Ans	Give the prior take program exceedes the fast instruction, it will send the on-on-status to the output device memory. The outputs include solenoids, valves, motors, actuators, and pumps. Give the principle of derivative action. Write its standard equation. Principle of derivative control action: The controlled output is proportional to the rate of change of error signal OR The output of the controller is proportional to derivative of the input signal. Mathematical expression: $P = K_D * [de_p / dt]$ $P(t) = K_D * [de(t) / dt]$ Where $K_D = Derivative gain constant and [de_p / dt] = rate of change of error signal(i) Determine the stability of given system by Routh's array method having characteristic equation as S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0Given, S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0Step 1 : Routh's array$	4M Principle : 2M Expressi on : 2M 4M Each step : 1M

MAHARASHTI	
(Autonomous)	11 11
(ISO/IEC - 2700	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	s ⁶	1	1	8	20	16	
s^4 2 12 16 0 s^3 0 0 0 -sp.case 2 s^2 s^1 . Step 2: Make auxiliary equation of the row which is just above row of zero. $A(s) = 2s^4 + 12s^2 + 16$ Take $\frac{d^4 A(s)}{ds^2} = 8s^3 + 24s$ Step 3: Make Routh's array with new coefficients s^6 1 8 20 16 s^5 2 12 16 0 s^4 2 12 16 0 s^4 2 12 16 0 s^2 6 16 0 s^2 Step 4: As there is no sign change system may be marginally stable or unstable To examine this, solve $A(s) = 0$ s^4 12.66 0 $s^2 + 12s^2 + 16 = 0$ $2s^4 + 12s^2 + 16 = 0$ 0 $2s^4 + 12s^2 + 16 = 0$ $2s^4 + 12s^2 + 16 = 0$ 0 0 $2s^2 + 12 t + 16 = 0$ 0 0 $(2t + 4) (t + 4) = 0$ 0 0 $t = -2$ and $t = -4$ 4 4 $bt s^2 = t$ $s^2 = -4$ 16 $bt s^$	s ⁵		2	12	16	0	
$s^{3} = 0 = 0 = 0 = 0 = -sp.case 2$ s^{2} s^{1} $s^{0} = 0$ Step 2: Make auxiliary equation of the row which is just above row of zero. $A(s) = 2s^{4} + 12s^{2} + 16$ Take $\frac{d \cdot d(s)}{ds} = 8s^{3} + 24s$ Step 3: Make Routh's array with new coefficients $s^{4} = 2 = 12 = 16 = 0$ $s^{4} = 2 = 12 = 16 = 0$ $s^{2} = 6 = 16 = 0$ $s^{2} = 6 = 16 = 0$ $s^{2} = 6 = 16 = 0$ $s^{2} = 16$ Step 4: As there is no sign change system may be marginally stable or unstable To examine this, solve $A(s) = 0$ $2s^{4} + 12s^{2} + 16 = 0$ Put $s^{2} = t$ Therefore, $2t^{2} + 12t + 16 = 0$ $2t^{2} - 2 \text{ and } s^{2} = -4$ therefore $s = \pm 1.41$ j and $s = \pm 2j$ (It shows that four poles are on imaginary axis.) Hence system is marginally stable. (0) Define some section. Draw explain block diamem of some system.	s ⁴		2	12	16	0	
s^{2} s^{1} s^{0} $Step 2: Make auxiliary equation of the row which is just above row of zero. A(s) = 2s^{4} + 12s^{2} + 16 Take \frac{dA(s)}{ds} = 8s^{3} + 24s Step 3: Make Routh's array with new coefficients s^{4} 1 8 20 16 s^{5} 2 12 16 0 s^{4} 2 12 16 0 s^{2} 6 16 0 s^{1} 2.66 0 s^{0} 16 Step 4: As there is no sign change system may be marginally stable or unstableTo examine this, solve A(s) = 0 2s^{6} + 12s^{2} + 16 = 0 Put s^{2} = 1 Therefore,2t^{2} + 12t + 16 = 0 2t^{2} + 2t + 16 = 0$	s ³	. (0	0	0	0 – sp.case 2	
s^{1} s^{0} Step 2: Make auxiliary equation of the row which is just above row of zero. $A(s) = 2s^{4} + 12s^{2} + 16$ Take $\frac{dA(s)}{ds} = 8s^{3} + 24s$ Step 3: Make Routh's array with new coefficients s^{5} $1 8 20 16$ s^{5} $2 12 16 0$ s^{4} $2 12 16 0$ s^{2} $6 16 0$ s^{2} $6 16 0$ s^{1} $2.66 0$ s^{0} 16 Step 4: As there is no sign change system may be marginally stable or unstable To examine this, solve $A(s) = 0$ $2s^{4} + 12s^{2} + 16 = 0$ Put $s^{2} = t$ Therefore, $2t^{2} + 12t + 16 = 0$ $2t^{2} - 2t \text{ and } t^{2} = 4$ Herefore $s = \pm 1.41$ j and $s = \pm 2j$ (It shows that four poles are on imaginary axis.) Hence system is marginally stable.	s ²						
s^0 .Step 2 : Make auxiliary equation of the row which is just above row of zero. $A(s) = 2s^4 + 12s^2 + 16$. $Take \frac{dA(s)}{ds} = 8s^3 + 24s$.Step 3 : Make Routh's array with new coefficients s^6 18 s^6 212 s^7 212 s^7 212 s^7 824 s^7 824 s^7 824 s^7 616 s^2 616 s^1 2.660 s^0 16Step 4 :As there is no sign change system may be marginally stable or unstable To examine this, solve $A(s) = 0$ $2s^4 + 12s^2 + 16 = 0$ $2s^4 + 12s^2 + 16 = 0$ $2t^4 + 12t + 16 = 0$ $2t^2 + 12t + 16 = 0$ $2t^2 + 12t + 16 = 0$ $2t + 12t + 16 = 0$ $2t + 2$ and $t = -4$ But $s^2 = t$ Therefore, $s^2 = -2$ and $s^2 = -4$ therefore $s = \pm 1.41$ j and $s = \pm 2j$ (It shows that four poles are on imaginary axis.)Hence system is marginally stable.	<i>s</i> ¹						
Step 2 : Make auxiliary equation of the row which is just above row of zero. $A(s) = 2s^{4} + 12s^{2} + 16$ Take $\frac{dA(s)}{ds} = 8s^{3} + 24s$ Step 3 : Make Routh's array with new coefficients $s^{6} 1 8 20 16$ $s^{5} 2 12 16 0$ $s^{4} 2 12 16 0$ $s^{3} 8 24 0 0$ $s^{2} 6 16 0$ $s^{4} 2.66 0$ $s^{6} 16$ Step 4 : As there is no sign change system may be marginally stable or unstable To examine this, solve $A(s) = 0$ $2s^{4} + 12s^{2} + 16 = 0$ Put $s^{2} = t$ Therefore, $2t^{2} + 12s + 16 = 0$ Put $s^{2} = t$ Therefore, $2t^{2} + 12t + 16 = 0$ (2t + 4) (t + 4) = 0 t = -2 and $t = -4But s^{2} = tTherefore s = \pm 1.41 j and s = \pm 2j (It shows that four poles are on imaginary axis.)Hence system is marginally stable.$	s ⁰						
$s^{6} 1 8 20 16$ $s^{5} 2 12 16 0$ $s^{4} 2 12 16 0$ $s^{3} 8 24 0 0$ $s^{2} 6 16 0$ $s^{1} 2.66 0$ $s^{0} 16$ Step 4: As there is no sign change system may be marginally stable or unstable To examine this, solve A(s) = 0 2s^{4} + 12s^{2} + 16 = 0 Put s ² = t Therefore, 2t ² + 12 t + 16 = 0 (2t + 4) (t + 4) = 0 t = -2 and t = -4 But s ² = t s ² = -2 and s ² = -4 therefore s = \pm 1.41 j and s = \pm 2j (It shows that four poles are on imaginary axis.) Hence system is marginally stable.	Step A(s) Take Step	$p 2 : N$ $p = 2s^{4}$ $e \frac{d A(s)}{ds}$ $p 3 : M$	fake aux + 12s2 + 8s3 + ake Rou	tiliary equa - 16 24s ath's array	ation of th with new	he row which is just above row of zero.	
$s^{5} = 2 = 12 = 16 = 0$ $s^{4} = 2 = 12 = 16 = 0$ $s^{3} = 8 = 24 = 0 = 0$ $s^{2} = 6 = 16 = 0$ $s^{1} = 2.66 = 0$ $s^{0} = 16$ Step 4: As there is no sign change system may be marginally stable or unstable To examine this, solve A(s) = 0 $2s^{4} + 12s^{2} + 16 = 0$ Put s ² = t Therefore, 2t ² + 12 t + 16 = 0 (2t + 4) (t + 4) = 0 t = -2 and t = -4 But s ² = t s ² = -2 and s ² = -4 therefore s = ± 1.41 j and s= ± 2j (It shows that four poles are on imaginary axis.) Hence system is marginally stable.		s ⁶	1	8	20	16	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		s ⁵	2	12	16	0	
$s^{3} = 8 = 24 = 0 = 0$ $s^{2} = 6 = 16 = 0$ $s^{1} = 2.66 = 0$ $s^{0} = 16$ Step 4: As there is no sign change system may be marginally stable or unstable To examine this, solve A(s) = 0 $2s^{4} + 12s^{2} + 16 = 0$ Put s ² = t Therefore, $2t^{2} + 12 + 16 = 0$ $(2t + 4) (t + 4) = 0$ $t = -2 \text{ and } t = -4$ But s ² = t s ² = -2 and s ² = -4 therefore s = \pm 1.41 j and s = \pm 2j (It shows that four poles are on imaginary axis.) Hence system is marginally stable.		s ⁴	2	12	16	0	
s^2 616 s^1 2.660 s^0 16Step 4 :As there is no sign change system may be marginally stable or unstableTo examine this, solve $A(s) = 0$ $2s^4 + 12s^2 + 16 = 0$ Put $s^2 = t$ Therefore, $2t^2 + 12t + 16 = 0$ $(2t + 4) (t + 4) = 0$ $t = -2$ and $t = -4$ But $s^2 = t$ $s^2 = -2$ and $s^2 = -4$ therefore $s = \pm 1.41$ j and $s = \pm 2j$ (It shows that four poles are on imaginary axis.)Hence system is marginally stable.		s ³	8	24	0	0	
s^1 2.660 s^0 16Step 4 :As there is no sign change system may be marginally stable or unstableTo examine this, solve $A(s) = 0$ $2s^4 + 12s^2 + 16 = 0$ Put $s^2 = t$ Therefore, $2t^2 + 12t + 16 = 0$ $(2t + 4) (t + 4) = 0$ $t = -2$ and $t = -4$ But $s^2 = t$ $s^2 = -2$ and $s^2 = -4$ therefore $s = \pm 1.41$ j and $s = \pm 2j$ (It shows that four poles are on imaginary axis.)Hence system is marginally stable.		s ²	6	16	0		
s^0 16Step 4 :As there is no sign change system may be marginally stable or unstable To examine this, solve $A(s) = 0$ $2s^4 + 12s^2 + 16 = 0$ $2s^4 + 12s^2 + 16 = 0$ Put $s^2 = t$ Therefore, $2t^2 + 12t + 16 = 0$ $(2t + 4) (t + 4) = 0$ $t = -2$ and $t = -4$ But $s^2 = t$ $s^2 = -2$ and $s^2 = -4$ therefore $s = \pm 1.41$ j and $s = \pm 2j$ (It shows that four poles are on imaginary axis.) Hence system is marginally stable.		s ¹	2.66	0			
Step 4: As there is no sign change system may be marginally stable or unstable To examine this, solve $A(s) = 0$ $2s^4 + 12s^2 + 16 = 0$ Put $s^2 = t$ Therefore, $2t^2 + 12t + 16 = 0$ (2t + 4)(t + 4) = 0 t = -2 and $t = -4But s^2 = ts^2 = -2 and s^2 = -4therefore s = \pm 1.41 j and s = \pm 2j (It shows that four poles are on imaginary axis.)Hence system is marginally stable.$		s ⁰	16				
(i) Define serve system Draw explain block diagram of serve system	Step As t To e $2s^4$ - Put = $2t^2$ - (2t + t) t = - But s^2 = there	b 4: here is examin $+ 12s^2$ $s^2 = t$ refore, + 12 t + 4 + 4) (t - 2 and t) $s^2 = t$ -2 and e efore s	no sign e this, so + 16 = 0 + 4) = 0 t = -4 $s^{2} = -4$ = ± 1.4	change sy olve A(s) =	$\pm 2j$ (It s	y be marginally stable or unstable shows that four poles are on imaginary axis.)	
1 (1) Define set vo system, Di aw explain block ulagrani ol set vo system.	Hen	<u>ce syst</u> (i)	em is m Define	arginally s servo svst	stable. t em. Dra	w explain block diagram of servo system.	41.4

Ans	Definition of Servo system:-	Definitio
	Servo systems are automatic feedback control systems which work on error signals with o/p in	n: 1M
	the form of mechanical position, velocity or acceleration.	
	block diagram of servo system.	
		Block
	Fror Servo Servo Servo Scad	diagram
	Detector amplificer motor	: 1M
	feedback.	
	Error detector : It may potentiometer (in DC servo system) or synchro (in AC servo system)	
	One of the i/p of error detector is reference i/p and other is connected to load. The difference	Explanat
	between these two i/ps is error signal.	ion:2M
	Servo amplifier: The error is amplified by amplifier.	
	Servo motor: it may be AC, DC or stepper. Servo motor is connected to load mechanically.	
	Thus motor can adjust the load position according to error. Thus this system automatically	
(D)	tries to connect any deviation to the error detector changes according to the error.	6M
(D)	Attempt any ONE.	UIVI
	Define transfer function. Derive the transfer of the following block diagram.	
	G ₃	
(i)	$\mathbb{R}(S) \longrightarrow \mathbb{C}(S) \longrightarrow \mathbb{C}(S)$	6M
Ans	Transfer function:	Definitio
	It is defined as the ratio of Laplace transform of output of the system to Laplace transform of	n : 1M
	input of the system.	
	Step 1) Redeau the diagram. [G3]	
	$R(5)^+$ G_1 G_2 K^+ $C(5)$	1M each
	T- LITHIT	step
	2	
	step 2) Blocks G2 and G3 are in particulat	
	$R(5) \rightarrow \bigotimes \qquad G_1 \qquad G_2 + G_3 \rightarrow C (S)$	
	step 3) Eliminate Jeedback 200P.	
	$\frac{G_1}{G_2+G_3} > c(s)$	
	T- Litain	
	Gaves	
	step 4) Blocks in sours,	
	$\frac{R(5)}{7} \xrightarrow{(-1)} (\frac{G_{11}}{1+G_{11}+H_{1}}) (G_{2}+G_{3}) \xrightarrow{(-1)} C(S)$	

BOARD OF TECHNICAL EDUCATION

MAHARASHTI (Autonomous) (ISO/IEC - 2700 BOAR) :tified)

	gtop 5) Elimin	are feedback	, good	
	RES) J (GI	(m) (a2+ 613)	> c(s)	
	1+ (+ GI, HI) (GIZ + GIZ)) ,	
	step () Find	wanster Jum	etten,	
	<u>c (5)</u> =	G. (G2+ G3	2	
	· 07	+ 64 1 + 64 ()	62+63)	
		1 + B11 + H 1		
	-	(1+ G, H) + G	(az+ 613)	
	<u>(6)</u>	G. G2 + G1. G3	3	
	P. (5)	1+ G1. H1 + G1. 612	+ 61, 613	
			the second second	
	Find the range of K stability of	a unity foodbook ayotom y	with abaractoristic equation	
(ii)	$G(S) = \frac{K}{S(S+2) (S+4) (S+6)}$	a unity recuback system v	with that acteristic equation.	6M
Ans	Characteristic equation: $= (S^2)^2$	1 + G(S)H(S) = S(S + 2) + 2S)(S2 + 10S + 24) +	S(S+4)(S+6) + K = 0 K = 0	Characte ristic equation : 1M
	$= S^4 + 12S^3 + 44S^2 +$	48S + K = 0		Routh's
	Routh's array:			array :
	<i>S</i> ⁴	1 44	K	4M
	S^3	12 48	0	
	<u>S</u> (1920-	$\frac{40}{(12K)/40}$ K	0	Range :
	S^0	K 0	0	1M
	For	the system to be stable, K	> 0	
		K > 0		
		$\frac{1920 - 12K}{40} > 0$		
		1000 1075 0		
		1920 - 12K > 0		
		160 > K		

		Therefore the range of K for the system to be stable is	
		$100 > \Lambda > 0$	
05		Attempt ony FOUD.	16Total
Q.3		Auchipi any FOUR:	Marks
	(a)	Define stable and unstable with its response and locations of roots in S – plane.	4M
	Ans:	Stable systems are those which give bounded output for bounded input.	2M
		Response of the system is as shown below (note: optional)	
		▲	
		Time (seconds)	
		For stable systems root location should be on left side of S plane	
		Unstable systems are those which give unbounded output for bounded input	2M
		Response of the system is as shown below(note: ontional)	
		response of the system is as shown below (note, optional)	
		€ 1 / / / / / / / / / / / / / / / /	
		0 0 0 0 15 0 0 30	
		Time (seconds)	
		For unstable systems root location should be on right side of S-plane.	

MAHARASHTF (Autonomous) (ISO/IEC - 2700

List different standard test signals. Draw them and give their Laplace representation. **(b) 4M** Waveforms Standard test input Laplace **1M Each** Ans: Representation input(position L.T of r(t) = R(s) = A/sStep function) r(t) Ramp input(Velocity L.T of $r(t) = R(s) = A/s^2$ r(t) function) r(t) Parabolic L.T of $r(t) = R(s)=A/s^3$ r(t) input(Acceleration Slope r(t) function) Impulse input r(t) L.T of r(t) = R(s) = 1 if A=1 **(c)** Explain in brief ON – OFF control action. **4M** It has only two fixed positions such as on (1) and off (0). The output signal P remains **4M** Ans: either 0% or 100% depending upon whether the error is negative or positive. P = 100% (on) for positive error P = 0% (off) for negative error. Consider a practical example of temperature control system with Set Point "x". When the temperature is more than "x" the on - off controller will be and when it is less than "x", on - off controller will be on. Example:-Relays, Thermostat

MAHARASHTF

(Autonomous)

MAHARASHTI (Autonomous) (ISO/IEC - 2700 BOAR) :tified)

	Ans:	$A \rightarrow b + c = c = c = c = c = c = c = c = c = c$	2M Each
Q6.		Attempt any FOUR:	16M
	(a)	Describe sinking and sourcing concept in DC input module with neat diagram.	4 M
	Ans:	 In fig. nol current flows from positive terminal of 24 volt DC supply to input module then through switch to negative terminal of 24 volt DC supply to switch then input module to negative terminal of 24 volt DC supply to switch then input module to negative terminal of supply, as far as input module is concern it act as sinking device for DC supply 	2M- Diagram 2M- Explanat ion
	(b)	Draw the block diagram of PLC and explain each block in it.	4M
	Ans:	 A simplified block diagram of a PLC shown in Fig. It has three major units. I/O (Input/Output) Modules. CPU (Central Processing Units). Programmer/Monitor. 	2M- Diagram 2M- Descripti on

1) I/O Section:-

The I/O section establish the interfacing between physical devices in the real world outside the PLC and the digital arena inside the PLC. The input module has bank of terminals for physically connecting input devices, like push buttons, limit switches etc. to a PLC. the role of an input module is to translate signals from input devices into a form that the PLC's CPU can understand. The Output module also has bank of terminals that physically connect output devices like solenoids, motor starters, indicating lamps etc. to a PLC. The role of an output module is to translate signals from the PLC's CPU into a form that the output device can use.

The tasks of the I/O section can be classified as:

- Conditioning
- Isolation
- Termination
- Indication

An electronic system for connecting I/O modules to remotely located I/O devices can be added if needed. The actual operating process under PLC Control can be thousands of feet from the CPU and its I/O modules.

An electronic system for connecting I/O modules to remotely located I/O devices can be added if needed. The actual operating process under PLC Control can be thousands of feet from the CPU and its I/O modules.

MAHARA (Autonomo	ASHTI	BOARD OF TECHNICAL EDUCATION	
(ISO/IEC	- 2700	tified)	
		I/O Image Memory	
		Data Memory	
		User Memory	
		Executive Memory	
		 Processor:- The processor, the heart of CPU is the computerized part of the CPU in the form of Microprocessor / Micro controller chip. It supervises all operation in the system and performs all tasks necessary to fulfill the PLC function. Power Supply:- The power supply provides power to memory system, processor and I/O Modules. It converts the higher level AC line Voltage to various operational DC values. 	
		3) Programmer/Monitor:- The Programmer/Monitor (PM) is a device used to communicate with the circuits of the PLC. The programming unit allows the engineer/technicians to enter the edit the program to be executed. With the help of proprietary software, it allows programmer to write, view and edit the program and download it into the PLC. It also allows user to monitor the PLC as it is running the program. With this monitoring systems, such things as internal coils, registers, timers and other items not visible externally can be monitored to determine proper operation. Also, internal register data can be altered, if required.	
	(c)	Explain PI control action. State its equation. State limitations of PI controller.	4M
	Ans:	It is the combination of Proportional and Integral controller. The output equation is	2M-
		$P_{out} = K_p E_p + K_p K_1 \int_0^t E_n dt + P_0$	Explanat
		where Po is the controller output when time t=0	1011 1 M
		If the error is not zero, the proportional controller gives correction and integral begins to	
		change the accumulated value of the error which is initially.Integral controller is rarely used	Expressi
		alone because of its slow response to disturbances. When it is combined with proportional	on
		controller, its slow response can be eliminated. Here, one to one correspondence of the	1M-
		proportional controller is available and integral controller eliminates offset.	Limitatio
		PI mode ensures that when a deviation takes place, prop mode reacts immediately to change	n
		the controller output since there is not a time integral of deviation. Offset error occurs with a	
		load change but mode provides a new controller output which in turn changes the error to be	
		zero after a load change.	
		Characteristics:	
		i) When error=0 controller output is Po (output when $t=0$)	
		When error is not zero, the proportional controllar gives correction and integral begins to	
		when error is not zero, the proportional controller gives confection and integral degins to	
		change the accumulated value of the error which is initially	
		Limitations of P1 controller: It is slow.	

	Define with example:	
(d)	(i) Linear and Non – linear system.	4M
	(ii) Time varying and Time in varying system.	
Ans:	Linear and systems: Systems which obey superposition theorem.	M Each
	example: Potentiometer	ZIVI Each

"" tified)

	Non – linear system: Systems which do not obey superposition theorem.	
	Time verying system: Systems in which peremeters very with time	
	Example: Rocket launching in which as the spacecraft moves, fuel burns and mass of the	
	spacecraft decreases with time	
	Time in varying system: Systems in which parameters do not vary with time	
	Example: Electrical circuits.	
(e)	Explain Routh's stability criterion for two different cases.	4 M
Ans:	The necessary & sufficient condition for system to be stable is all the terms in the first	2M Each
	column of routh's array must have same sign. There should not be any sign change in the	
	first column of Routh's array.	
	If there are any sign changes existing then,	
	(1) System is unstable	
	(2) The number of sign changes equals the number of roots lying in the right half of the S-	
	plane.	
	Case 1:	
	If first element of any row in the Routh's array is zero, while the rest of row has at least one	
	non zero term then due to this the next row element becomes infinite and Routh's test fails.	
	E.g. characteristics equation	
	$F(S) = S^{5} + +S^{4} + +2S^{3} + 2S^{2} + 3S + 5 = 0.$	
	For this equation Routh's array is,	
	5^{5} 2 3	
	s ⁴ 1 2 5	
	3	
	5 0 -2 0	
	$s^2 \propto$	
	As third row element is zero the next row element becomes (infinity) and Routh's array fails The procedure is to replace 0 with a small positive number \notin and continuing with Routh's	
	array.	
	<u>Case 2:</u>	
	If all the element of a row are zero then due to this the elements of the next row cannot be	
	determined and Routh's test fails.	
	E.g. characteristics equation $\mathbf{E}(\mathbf{S}) = \mathbf{S}^5 + \mathbf{S}^4 + \mathbf{S}^3 + \mathbf{S}^2 + \mathbf{S} + \mathbf{S} = 0$	
	For this equation Routh's array is.	
	5133	
	3 2 2 4 20.2 1 20 -	
	5 0 0 Energ zero	

	Here, a row S ^{\circ} has all zero element, Routh's array test break down. To overcome a problem an auxiliary equation with polynomials is formed from the co- efficient of the S ⁴ - row which is given by	
	$A(S) = S^4 + 3S^2 + 3.$	
	Differentiate this equation w.r.t S	
	$\frac{dA(s)}{ds} = 4s^3 + 6s + 0 = 4s^3 + 6s$	
(f)	Draw block diagram of DC input module. Draw typical wiring diagram of it.	4N
Ans:	Block Diagram:	2N
	AC I/P rectifier Noise & Thresh debounce debounce detector Optical section CPU status detector Logic section Lebu Lebu Lebu	
	Wiring:	2N
	Screw	