MAHARASHTF (Autonomous) (ISO/IEC - 2700

WINTER – 19EXAMINATION

Subject Name: Digital Communication Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub		Answ	ver	Marking
No.	Q. N.				Scheme
Q.1		Attempt	t any THREE of the following:		12M
	(i)	Compar	e between analog and digital modula	tion technique(any four points)	4 M
	Ans:	Sr. No	Analog Modulation	Digital Modulation	Any
		1	Less bandwidth required	Large bandwidth required	nointa
		2	More accurate	Less accurate due to quantization error that cannot be avoided or corrected to some extent.	1M each
		3	Poor noise immunity	High noise immunity as the amplitude of digital signal has two levels only and channel coding (error correcting code) can be used.	
		4	No signal conditioning and processing are used.	Support complex signal conditioning and processing techniques such as source coding, encryption and equalization.	
	(ii)	Explain	Quantization processes with neat W/	F.	4 M
	Ans:	QUANT	TIZATION PROCESS:		Wavefo
		• Defin	nition :It is the process of assigning to	each one of the sample value of the message	rm 2M;
		signa calle	al a discrete value from a prescribed se d the 'quantized values'.	et of a finite number of such discrete values	Expln 2M
		• Sam	pling discretizes the continuous time sig	gnal only in time but not in amplitude.	
		not r	estricted to any finite set of prescribed	values	
		The ample	next step in the digitization of an litudes of these samples obtained through	analog signal is the discretization of the gh sampling process.	
		• We segm	divide the dynamic range of the ana nents and then round off the sample val	log signal in to a finite number of equal ue falling with in a particular segment to the	

Subject Code: 17

17535

MAHARASHTF (Autonomous)

MAHARASHTF

(Autonomous)

(Autonomous) (ISO/IEC - 2700

MAHARASHTF

(Autonomous) (ISO/IEC - 2700

> noise may be thermal noise originating from electronic circuits or atmospheric noise, or manmade noise, or as is generally the case, a combination of most or all of them.

THE DIGITAL DEMODULATOR:

• The digital demodulator of the receiver receives the noise corrupted sequence of waveforms from the channel and by inverse mapping tries to give at its output, an estimate of the sequence of the binary digits that were available at the input of the digital modulator at the transmitting end.

THE CHANNEL DECODER:

• The output sequences of digits from the digital demodulator are fed to the channel decoder. Using its knowledge of the type of coding performed by the channel encoder at the transmitting end and using the redundancy introduced by the channel encoder, it produces as its output, the output of the source coder of the transmitter with as few errors as possible.

THE SOURCE DECODER:

- Using its knowledge of the type of encoding performed by the source encoder of the transmitter, the source decoder of the receiver tries to reproduce at its output, a replica of the output of the digital source at the transmitting end.
- It may not be an exact replica of the source output. There may be some errors in the sense that some of the binary 1's produced by the source might be received by the user at the destination as 0's and vice versa.
- In a long sequence of binary digits transmitted, the fractional number of times such errors occur on the average is referred to as the 'probability of error'. A typical value of the probability of error may be say 1 in a hundred million, i.e., 10⁻⁸.

Advantages of Digital Communication : (any 2)

- **1.** High noise interference tolerance due to digital nature of the signal.
- 2. With channel coding, error detection and correction at receiver is possible.
- **3.** It provides us added security to our information signal i.e. Data encryption is possible for greater security.
- 4. Cheaper due to advances in digital VLSI technology.
- **5.** Digital information can be saved and retrieved when necessary.
- 6. Large data storage is possible.

Disadvantages of Digital Communication : (any 2)

- **1.** Large System Bandwidth: Digital transmission requires a large system bandwidth to communicate the same information in a digital format as compared to analog format.
- 2. High power consumption (Due to various stages of conversion).
- **3**. Needs synchronization
- **4.**Sampling Error.

(ii) Encode the following Binary data stream into unipolar RZ,unipolar NRZ,polar RZ,polar NRZ,AMI and split phase manchestar code.Data stream is 1011010010101 6M

Block diagram of 8 QAM transmitter :-

tified)

MAHARASHTI (Autonomous) (ISO/IEC - 2700

Explanation of 8 QAM transmitter:-

- Figure shows the block diagram of an 8-QAM transmitter only difference between the 8-QAM transmitter and the 8-PSK transmitter shown in figure is the omission of the inverter between the C channel and the Q product modulator.
- As with 8-PSK, the incoming data are divided into groups of three bits (tri bits): the I, Q and C bit streams, each with a bit rate equal to one-third of the incoming data rate.
- The 'I' and 'Q' bits determine the polarity of the PAM signal at the output of the 2-to-4-• level converters, and the C channel determine the magnitude.
- Because the C bit is fed uninverted to both the 'I' and the 'Q' channel 2-to-4-level • converters, the magnitude of the 'I' and 'Q' PAM signals are always equal. Their polarities depend on the logic condition of the 'I' and 'Q' bits and therefore may be different the truth table for the 'I 'and 'Q' channel 2-to-4-level converters; they are identical.

Block diagram of 8 QAM receiver:-

MAHARASHTI (Autonomous)

 VERTICAL REDUNDANCY CHECKING (VRC): Vertical Redundancy Checking (VRC) is the simplest error detection scheme and is 							4 M				
generally referred to	as Chara	cter n	arity	v or s	imnly	/ Parit	v.				
• With character par	rity, each	char	acte	r has	its o	wn en	ror de	etecti	on bit call	ed the parity bit	
Since the parity bit is not actually a part of the character, it is considered as a redundant bit.											
• An n- character message would have n redundant parity bits. Therefore, the number of											
error detection bits is directly proportional to the length of the message.											
• Parity can be of two types:											
1. Odd parity) p										
2. Even parity											
In odd parity, the total number of 1's in the entire message should be odd whereas in even											
parity, the total number	per of 1's	in the	e me	essag	e sho	uld be	even				
• With character na	rity (VR	C). a	sing	gle pa	aritv	bit is	addeo	d to (each chara	acter to force the	
total number of log	ic 1's in	the o	char	acter	, inc	luding	the	parit	y bit, to 1	be either an odd	
number (odd parity)	or an eve	n nun	ıber	· (eve	n par	ity).		1			
• For example, the	ASCII co	de foi	r the	e lette	er C i	is 43H	or P	P1000	011, when	the P bit is the	
parity bit There are three logic 1's in this code not counting the parity bit											
• If odd parity is used, the P bit is made logic 0, keeping the total number of logic 1's at											
three, This is an odd number.											
• If even parity is used, the P bit is made logic 1, making the total number of logic 1's four,											
which is an even number.											
• The main advantag Example: Determin Use odd parity for t Solution:	ge of parit e the VR he VRC	ty is if C for	ts si • the	mplio e foll н	eity. owin	g ASC	CII er	ncode	ed messag	e: THE CAT.	4N
		positio n									
	ASCII Code	B ₁	0	0	1	0	1	1	0		
		B ₂	0	0	0	0	1	0	0		
		03		1	0	0	0	0	0		
		B_4									
		B ₄ B ₅	1	0	0	0	0	0	1		
		B ₄ B ₅ B ₆	1	0	0	0	0	0	1		
		B ₄ B ₅ B ₆ B ₇	1 0 1	0	0	0	0	0 0 1	1 0 1		

		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		CRC decoded (binary division)	
		• CRC can detect all the burst errors that affect an odd number of bits.	
		• The probability of error detection and the types of detectable errors depends on the choice	
		of divisor.	
		• Thus two major requirement of CRC are:	
		(a) CRC should have exactly one bit less than divisor.	
		(b) Appending the CRC to the end of the data unit should result in the bit sequence which is	
		exactly divisible by the divisor.	
Q.3		Attempt any FOUR of the following :	16M
	a)	Explain slope overload error and granular noise in delta modulation with neat diagram. Describe how it can be reduced.	4 M
	Ans:	SLOPE-OVERLOAD DISTORTION:	1.5 M
		• If the slope of the analog signal x(t) is much higher (steep) than that of the approximated	FOR
		signal $xq(t)$ over a long duration then $xq(t)$ will not follow $x(t)$ at all as shown in Figure	EACH
		• The difference between x(t) and xq(t) is called the slope-overload distortion or the slope-	NOISE
		overload error. Thus, slope-overload error occurs when the slope of $x(t)$ is much higher than	
		$\mathbf{x}\mathbf{q}(\mathbf{t}).$	
		Illustrating the phenomenon of slope overload in linear delta modulation	
		• When the input signal $\mathbf{x}(t)$ is relatively constant in amplitude, the approximated signal	
		xq(t) will hunt above and below $x(t)$ as shown in Figure. This leads to a noise called	
		granular noise.	
		• It increases with increase in step size δ . To reduce granular noise, the step size should be	
		as small as possible. However, this will increase slope-overload distortion.	
			¹∕2 M
		Fig. Granular noise	FOR

	REDUCTION OF NOISE	Each
	The slope overload error can be reduced by increasing slope of the approximated signal	reduct-
	xq(t). If slope of $xq(t)$ can be increased and hence the slope overload error can be reduced by	-on of
	either increasing the step size δ or by increasing sampling frequency fs.	noise
	Granular noise can be reduced by keeping the step size δ should be as small as possible.	
b)	List types of errors and their causes.	4M
Ans:	Types of error:	Types
	1. Single bit error: Single-bit error occurs when only one bit of a given data string is in error	of error
	(changed from 0 to 1 or from 1 to 0).	2M
	2. Burst error: A burst error or multiple-bit error occurs when two or more bits within a	
	given data string is in error.	Causes
	Causes of errors:	of
	Due to addition of noise in transmission & reception of data following errors occur. 1. If	errors
	data block is lost in the network as it has been delivered to wrong destination. 2. If two or	2M
	more bits from data unit such as a byte change from 1 to 0 or 0 to 1.	
c)	Draw and explain PSK receiver.	4M
Ans:		Block
	Coherent sin (w _c t) Coherent sin (w _c t) Clock recovery Regenerated recovery Clock receiver	
	i) The coherent carrier recovery circuit detects and regenerates a carrier signal sin oct. This	2M expl
	regenerated carrier has the same frequency and phase as the carrier used at the transmitter.	
	ii) So the regenerated carrier is known as coherent carrier.	
	iii) The filtered BPSK signal along with the regenerated carrier is applied to a balanced	
	modulator which acts as a product detector.	
	= $(\pm \sin \omega_c t \times \sin \omega_c t = \pm \sin^2 \omega_c t)$	
	But $\sin^2 \theta = \frac{1}{2} - \frac{1}{2} \cos 2 \theta$	
	\therefore B. M. output = $\pm \frac{1}{2} \mp \frac{1}{2} \cos 2 \omega_{e} t$	
	iv) The BM output consists of a dc term and a term having frequency twice the carrier frequency.v) The BM output is passed through LPF which allows only the second term to pass through	
	$\therefore \text{ LPF output} = \mp \frac{1}{2} \cos 2 \omega_{e} t$	
	vi) The LPF is applied to the level detector and clock recovery circuit at the output of level	
	detector we get the following output.	

(Autonomous) (ISO/IEC - 2700

	$= b(t) \sqrt{2P_{s}} \left[\frac{1}{2} + \frac{1}{2} \cos 2(\omega_{c} t) \right]$	
	 This signal is applied to an integrator. The bit synchronizer device is able to recognize precisely the moment which corresponds to the end of the time interval allocated to one bit and the beginning of the next. The bit synchronizer closes the switch S₁momentarily to discharge (dump) the integrator capacitor at the beginning of every bit interval and leaves the switch S₁ open for the entire bit duration so that the integrator can produce an output proportional to its input voltage. The switch S₁ is closed again very briefly at the end of the bit interval. Thus, this circuit is called an "integrate-and-dump" circuit. The output of the integrator is the output of the BPSK receiver. This output signal is made available by closing the switch S₁. The switch S₂ is called the sampling switch and is operated by the bit synchronizer. The output of the integrator is given by, 	
	$v_{o}(kT_{b}) = b(t) \sqrt{2P_{s}} \int \frac{1}{2} dt + b(t) \sqrt{2P_{s}} \int \frac{1}{2} \cos 2(\omega_{c}t) dt$	
	$= b(t)\sqrt{2P_s}(T_b/2)$	
	$=(\pm 1)\sqrt{2P_{s}}(T_{b}/2)$	
	• Since the integral of sinusoid over a whole number of cycles has the value zero. In	
	the above equation, T_b is the bit interval of each bit. Thus, we see that the	
	demodulator output is the transmitted bit stream b(t).	
d)	With the help of OFDM block diagram, explain its working.	4M
Ans:	Figure below shows the conceptual diagram highlighting the orthogonal (OFDM) multiple	Block
	carrier modulation scheme.	diagra
	The $ai - s$ in the diagram indicates the modulating signal in the I – path and the $bi - s$ are	m
	the modulating signals in the Q - path.	
	significance at the moment	And
	All the cosine modulated signals are added algebraically and similarly are the sine	working
	modulated signals.	:
	The overall I – phase and Q – phase signals together form a complex baseband OFDM	2M
	signal.	Aach
	At this point, one may interpret the scheme consisting of a bank of N parallel QPSK	Cault
	modulators driven by N orthogonal sub carriers.	

tified)

(Autonomous) (ISO/IEC - 2700

(ii)	With example explain how hamming code is used for single bit error connection implications.	4M
Ans:	Hamming codes are basically linear block codes. It is an error correcting code. The paritybits are inserted in between the data bits as shown below.D7D6D5P4D3P2P17bit6bit5bit4bit3bit2bit1bit7-bit hamming code	Hamn ng Code Expla
	Where D-data bits and P- parity bits. The hamming coded data is then transmitter. At the receiver it is coded to get the data back. The bits (1, 3, 5, 7), (2, 3, 6, 7) and (4, 5, 6, 7) are checked for even parity or odd parity, if all the 4-bit groups mentioned above possess the even parity (or odd parity) then the received code word is correct but if the parity is not matching then error exist. Such error can be located by forming a three bit number out of three parity checks. This process can be well explained by following example, For example: Suppose a 7-bit hamming code is received as 1110101 (for transmitter data 1111) and parity used is assumed to be even .hence we can detect and correct the code as Step1: Received 7bit hamming code is applied to hamming code format as	- -tion 2M
	D7 D6 D5 P4 D3 P2 P1 1 1 1 0 1 0 1 Step2: Check bits for P4 bit i.e. P4 D5 D6 D7 0 1 1	Exam e with Steps 2M
(***)	$\begin{array}{c} code \ \text{word will be,} \\ \hline D7 D6 D5 P4 D3 P2 P1 \\ \hline 1 0 1 0 1 0 1 \\ \hline \end{array}$ Hence the single bit error can be corrected using hamming code.	43.4
(III)	Draw block diagram of SDM multiplexing and explain each block.	4111
Ans:	SDM is space division multiplexing. Figure shows block diagram of SDM .When we want to transmit multiple message with maximum reuse of the given resources like time and frequency.it can be done by grouping many separate wires in to a common cable enclosure. SDM system does not require any multiplexing equipment. It is usually combined with other multiplexing techniques to be better utilizing the physical channels.	Block diagra m And worki :

Q.5 Attempt any TWO of the f	following:	16M	
Quia P ou	deel eration httput AM entized AM CO 10 11 11 11 10 101 01 01 01 01		
 which has a cut-off frequency second potent higher than "We passes only low frequency second circuit acts as modulator adequately high sampling rate a flat topped PAM signal. These samples are subject a process of approximation reduce data bits. The combe PAM' at the quantizer outpute. The Quantized PAM of communication system the basically A to D convertor. D converter. The communication system serial communication. But through serial communication signals for signals for parallel to converter. 	hcy fc=W Hz. This will ensure x (t) will not have any frequency /". In other words, suppresses high frequency components and signal to avoid 'aliasing error'. ; signal is then applied to sampled and hold circuit where this and both modulating input signal and sampling signal with ate are inputs to this circuit. Output of sampled and hold block is red to operation "quantization" in the "quantizer". Quantization is of the value of respective sample into a finite number that will bined effect of sample and quantization produces is 'Quantized ut. utput is analog in nature. So to transmit it through digital e quantized PAM pulses are applied to an encoder which is Each quantized level is converted into N bit digital word by A to em is normally connected to each other using a single cable i.e. the output of ADC is parallel which cannot be transmitted ing links. So this block will convert the parallel data into serial es train of rectangular pulses of duration "t" seconds. This signals or the sample and hold block. The same signal acts as "clock" rter the frequency "f" is adjusted to satisfy the criteria.		

(Autonomous) (ISO/IEC - 2700

MAHARASHTF

(Autonomous) (ISO/IEC - 2700

MAHARASHTF

telephone central office, the subscriber analog line is passed through an anti-aliasing filter.

		The band limited signal is app	plied to a codec, which conver	rt it into DS0 signal.24 DS0 lines				
		are multiplexed into a DS1.The telephone companies implement TDM through the hierarchy of digital signals. This is called as digital signal service. Multiplexed signal is converted into a frame at the DS1 or T1 level.						
	2)	State importance of spread spectrum modulation. List out application of spread						
	C)	spectrum modulation.(any t	wo)		01/1			
	Ans:	 Following are the Importan Cross-talk elimination Better output with data Reduced effect of mul Better security Reduction in noise Co-existence with othe Longer operative dista Hard to detect Not easy to demodulat Difficult to jam the sig Applications: Military application-resista Secure Communication CDMA in satellite commun 4.Police radar can employ spr drives Low density power spectration CAN GPS Multipath rejection in ground 	a integrity tipath fading er systems inces te/decode gnals nce to jamming. ication ead spectrum to avoid detection for signal hiding	on by detectors employed by	4M (1M Each point) 4M(2M each point)_			
Q.6		Attempt any FOUR of the fo	ollowing :		16M			
	a)	Compare OPSK and OAM(four points)		4 M			
	Ans:	parameter	QAM	OPSK	1M			
		1.Information is	Amplitude and phase	phase	each for			
		transmitted by change in		1	correct			
		2.Number of bits/symbol	N=3 Or 4 Or 5 & so on	N=2	compari			
		3.Number of possible	M=2 ^N	Four	son			
		symbols			point			
		4.Detection method	coherent	coherent	(Any 4			
		5.minimum bandwidth	2fb/N	fb	correct			
		6.symbol duration	NTb	2Tb	points)			
		7.Type of modulation	Quadrature amplitude and	Quadrature phase				
			phase modulation	modulation				
		8 Location of signal points	Equally spaced and placed	On the circumference of				
		0.Location of signal points						
			symmetrically about origin	the circle				
		9.Noise immunity	symmetrically about origin Better than QPSK	the circle Comparatively less than				

		10.System complexity	More complex than QPSK	Less complex than QAM				
		11.Probability of error	Less than QPSK	More than QAM				
		12.Performance of system	Better than QPSK	Less than QAM				
	b)	Explain specification of T ca	arrier system.	· · · · · · · · · · · · · · · · · · ·	4M			
Ī	Ans:	: 1. Leased lines come in two configurations T1 and T3. A T1 line offers a data transfer rate						
		of 1.54 million bits per second.						
		2. A T1 line is a dedicated	connection meaning that it i	s permanently connected to the	specific			
		internet.			ations			
		3. This is useful for web serv	er or other computers that nee	ed to be connected to the				
		4. It is possible to lease only	ly a portion of a T1 line usi	ing one of two systems				
		fractional T1 or Frame relay.						
		5. You can lease them in bloc	ks ranging from 128 kbps to 1.	.5 Mbps.				
		6. The differences are not we expensive at the slower ava	orth going into in detail but fra ilable speeds and frame relation	x will be slightly more				
		expensive at the slower uva	e full T1 speed of 1.5 Mbps.	y will be slightly more				
		7. AT3 line is significantly fas	ster at 45million bits per secon	ıd.				
		8. Leased lines are expensive and are generally used only by companies whose business is						
-		built around the internet or need to transfer massive amounts of data.						
	c)	Explain Direct Sequence Spread Spectrum techniques with the help of block						
-		diagram.(DSSS)	- 1 (2NA 6			
	Ans:	• Each bit is represent	ad Spectrum): red by multiple bits using s	preading code Spreading code	2NI IOr			
		spreads signal across v	wider frequency band and in pr	roportion to number of bits used,	m and			
		• e.g., 10 bit spreading c	code spreads signal across 10 t	imes bandwidth of 1 bit code	2M for			
		• One method: Combine	e input with spreading code usi	ing XOR	explana			
		a. Input bit 1 inverts sp b. Input zero bit doesn	preading code bit		tion			
		 Data rate is equal to or 	riginal spreading code and perf	formance is similar to FHSS				
		1	6 I 6 I .					
			DS Spreader	Oursed assessment				
		binar	y data Modulator sd(t)	signal				
			- <u></u> " i					
			Pseudonoise					
			DSSS Transmitter					
			DSSS Transmitter OR					

(Autonomous) (ISO/IEC - 2700

Shanno	n Haritay theorem -	
	- the white stories	
	-0 +8 f	
where.	N= (No df = No B	
	- B - Cas long(1+ 5)	
To Calcu	late rone Possible capering No.B	
Line B > do	C = Um B logz (1+ 0 S)	
	$C_{R} = \lim_{B \to \infty} \frac{B}{3} \frac{N_0}{N_0} \frac{S}{S} \frac{\log_2\left(1 + S\right)}{N_0 B}$	
1.20	= lim 5 log. (1+ 5) Mut B	
	B->>> No d (1+ S)	
I CO	Let x - 5	
1	$a = 8 \rightarrow \infty x \rightarrow 0 x \rightarrow 0$	
-	$\lim_{X \to 0} \frac{S}{N_0} \log \left(1 + \frac{X}{2} \right)^{-\chi}$	
-	5 log. 1100 (1+x)*	
-	s log-e	
C	$ \sum_{w=1.44}^{2 \text{ sim}} \frac{(1+x)}{x \to 0} = e \frac{1}{2} $	
Same 1	No.	