Subject Name: Digital Communication
 Model Answer
 Subject Code:
 17535

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
Q. 1		Attempt any THREE of the following:	12M
	(i)	Compare between analog and digital modulation technique(any four points)	4M
	Ans:	Sr. No Analog Modulation Digital Modulation $\mathbf{1}$ Less bandwidth required Large bandwidth required $\mathbf{2}$ More accurate Less accurate due to quantization error that cannot be avoided or corrected to some extent. $\mathbf{3}$ Poor noise immunity High noise immunity as the amplitude of digital signal has two levels only and channel coding (error correcting code) can be used. $\mathbf{4}$ No signal conditioning and processing are used. Support complex signal conditioning and processing techniques such as source coding, encryption and equalization.	Any four points 1M each
	(ii)	Explain Quantization processes with neat W/F. QUANTIZATION PROCESS: - Definition :It is the process of assigning to each one of the sample value of the message signal a discrete value from a prescribed set of a finite number of such discrete values called the 'quantized values'. - Sampling discretizes the continuous time signal only in time but not in amplitude. - The samples obtained by the sampling process can have a continuum of values they are not restricted to any finite set of prescribed values. - The next step in the digitization of an analog signal is the discretization of the amplitudes of these samples obtained through sampling process. - We divide the dynamic range of the analog signal in to a finite number of equal segments and then round off the sample value falling with in a particular segment to the	4M
	Ans:		Wavefo rm 2M; Expln 2M

MAHARASHTF
:tified)

BOARD OF TECHNICAL EDUCATION
tified)

DISCRETE INFORMATION SOURCE:

- The information to be transmitted originates here. These information/messages may be available in digital form, as for instance, in the case of the output of a teletype system, or it may be available in an analog form.
- If it is analog it is sampled and digitized using an A/D converter to make the final source output to be digital in form.

SOURCE ENCODER :

- Generally, the bit stream at the source output will have considerable redundancy and so will not be efficient representation of the message or information given by the source, from the point of view of the number of digits used.
- A fewer number of digits might be sufficient to convey the information. The source encoder therefore reduces the redundancy by performing a one to one mapping of its input bit stream in to another bit stream at its output, but with fewer digits.
- Thus in a way it performs data compression.

CHANNEL ENCODER:

- The channel encoder is intended to introduce controlled redundancy into the bit stream at its input in order to provide some amount of error- correction capability to the data being transmitted.
- The data gets corrupted by the additive noise on the channel and this gives rise to the possibility of the channel decoder committing mistakes in the decoding of the data received from the channel.
- Redundancy helps in detecting erroneously decoded bits and makes it possible to correct the errors before passing on the data to the source decoder.

DIGITAL MODULATOR:

- The physical channels are basically analog in nature; the digital modulator takes each digital binary digit at its input and maps it, in a one -to - one fashion, into a continuous waveform.
- Binary 'zero' at its input is mapped into a continuous signal $\mathrm{s}_{\mathrm{o}}(\mathrm{t})$ and binary 'one' is mapped into another continuous signal $\mathrm{s}_{1}(\mathrm{t})$.
- This is called binary modulation.

PHYSICAL CHANNEL:

- The digitally modulated signal is passed on to the physical channel, which is nothing but the physical medium through which the signals are transmitted.
- It may take a variety of forms- a pair of twisted wires, coaxial cable, a wave guide, a microwave radio, or an optical fiber.
- A long distance telephone call for instance may go through each one of these different forms of physical channels at different stages of its passage from the place of origin to the final destination.
- During its passage through the channel, the signal gets corrupted by noise. This
noise may be thermal noise originating from electronic circuits or atmospheric noise, or manmade noise, or as is generally the case, a combination of most or all of them.

THE DIGITAL DEMODULATOR:

- The digital demodulator of the receiver receives the noise corrupted sequence of waveforms from the channel and by inverse mapping tries to give at its output, an estimate of the sequence of the binary digits that were available at the input of the digital modulator at the transmitting end.

THE CHANNEL DECODER:

- The output sequences of digits from the digital demodulator are fed to the channel decoder. Using its knowledge of the type of coding performed by the channel encoder at the transmitting end and using the redundancy introduced by the channel encoder, it produces as its output, the output of the source coder of the transmitter with as few errors as possible.

THE SOURCE DECODER:

- Using its knowledge of the type of encoding performed by the source encoder of the transmitter, the source decoder of the receiver tries to reproduce at its output, a replica of the output of the digital source at the transmitting end.
- It may not be an exact replica of the source output. There may be some errors in the sense that some of the binary 1's produced by the source might be received by the user at the destination as 0 's and vice versa.
- In a long sequence of binary digits transmitted, the fractional number of times such errors occur on the average is referred to as the 'probability of error'. A typical value of the probability of error may be say 1 in a hundred million, i.e., 10^{-8}.
Advantages of Digital Communication : (any 2)

1. High noise interference tolerance due to digital nature of the signal.
2. With channel coding, error detection and correction at receiver is possible.
3. It provides us added security to our information signal i.e. Data encryption is possible for greater security.
4. Cheaper due to advances in digital VLSI technology.
5. Digital information can be saved and retrieved when necessary.
6. Large data storage is possible.

Disadvantages of Digital Communication : (any 2)

1. Large System Bandwidth: - Digital transmission requires a large system bandwidth to communicate the same information in a digital format as compared to analog format.
2. High power consumption (Due to various stages of conversion).
3. Needs synchronization
4. Sampling Error.
(ii)

Encode the following Binary data stream into unipolar RZ, unipolar NRZ,polar RZ,polar NRZ,AMI and split phase manchestar code.Data stream is 1011010010101

	Ans:		1M each
Q. 2		Attempt any TWO of the following:	16M
	a) $\begin{aligned} & \text { Ans: }\end{aligned}$	Draw block diagram of 4 QAM and 8 QAM and explain its and also draw the phasor diagram of 8 QAM and 16 QAM. (Note: 2M each for Transmitter diagram and explanation 2M ; phasor diagram 1M each) Basic block diagram of QAM transmitter: Explanation:- - The bit stream $b(t)$ is applied to the serial to parallel converter, operating on a clock which has a period of Ts, which is the symbol duration. The bits $b(t)$ are stored by the converter and then presented in the parallel form. The four bit symbols are $\mathrm{bk}+3$, $\mathrm{bk}+$ $2, \mathrm{bk}+1, \mathrm{bk}$. - Out of these four bits, the first two bits are applied to a D/A converter and the other two bits are applied to the second D/A converter. - The output of the first converter is $\mathrm{Ae}(\mathrm{t})$, which is modulated by the carrier $\sqrt{ } 2 \mathrm{Ps} \cos \omega c t$ whereas the output of the second D / A converter, $\mathrm{Ao}(\mathrm{t})$ is modulated by the carrier $\sqrt{ }$ 2Pssin$\omega c t$ in the balanced modulators.	8M

- $\operatorname{Ae}(\mathrm{t}), \mathrm{Ao}(\mathrm{t})$ arevoltage levels generated by the convertor $-3,-1,+1,+3$ volts.
- The balanced modulator outputs are added together to get the QASK output signal which is expressed as,
$V_{\text {QASK } / \text { QAM }}(t)=\operatorname{Ae}(t) \sqrt{ } 2 \operatorname{Pscos} \omega c t+\operatorname{Ao}(t) \sqrt{2 P s s i n} \omega c t$
Block diagram of 4 QAM transmitter:-
NOTE:- 4 QAM is equivalent to QPSK

QPSK Transmitter (offset)

Explanation:-

- The input data sequence is first converted into a bipolar NRZ signal $b(t)$. The value of $b(t)=$ +1 for logic 1 input and $b(t)=-1$ when the binary input is equal to 0 .
- The De-multiplexer (DEMUX) will divide $b(t)$ into two separate bit streams bo(t) and be(t).
- The bit stream be(t) consists of only the even numbered bits $2,4,6,8, \ldots$ whereas bo(t) bitstream consists of only the odd numbered bits i.e., $1,3,5, \ldots \ldots$ as shown in above Figure.
- Each bit in the even and odd stream will be held for a period of 2 Tb . This duration is called assymbol duration Ts. Thus, every symbol contains two bits.
- The bit stream be (t) is superimposed on a carrier $\sqrt{ } 2 P \operatorname{scos} \omega c t$ and the bit stream bo(t) is superimposed on a carrier $\sqrt{ } 2$ Pssin$\omega c t$ by using two balanced modulators (or multipliers) to generate se(t) and so(t). These two signals are basically BPSK signals.
- These signals are then added to generate the QPSK output signal VQPSK(t) given by, $\mathbf{V}_{\text {QPSK }}(t)=\operatorname{bo}(t) \sqrt{ } 2$ Pssin$\omega c t+b e(t) \sqrt{ } 2$ Pscos $\omega c t$

Explanation of 8 QAM transmitter:-

- Figure shows the block diagram of an 8-QAM transmitter only difference between the 8QAM transmitter and the 8 -PSK transmitter shown in figure is the omission of the inverter between the C channel and the Q product modulator.
- As with 8-PSK, the incoming data are divided into groups of three bits (tri bits): the I, Q and C bit streams, each with a bit rate equal to one-third of the incoming data rate.
- The 'I' and 'Q' bits determine the polarity of the PAM signal at the output of the 2-to-4level converters, and the C channel determine the magnitude.
- Because the C bit is fed uninverted to both the 'I' and the 'Q' channel 2-to-4-level converters, the magnitude of the ' I ' and ' Q ' PAM signals are always equal. Their polarities depend on the logic condition of the ' I ' and ' Q ' bits and therefore may be different the truth table for the ' I 'and ' Q ' channel 2-to-4-level converters; they are identical.

Block diagram of 8 QAM receiver:-

Phasor diagram of 8-QAM:-

	Phasor diagram of 16-QAM:-	
b)	Describe synchronous Time Division Multiplexing with neat diagram. State any two advantages, disadvantages and applications of TDM	8M
Ans:	SYNCHRONOUS TDM: Explanation: - In synchronous TDM the term synchronous means that the multiplexer allocates exactly the same time slot to each device at all times whether or not a device has anything to transmit. - For example, time slot 1 is assigned to device 1 alone and cannot be used by any other device. Each time its allocated time slot comes up, a device has the opportunity to send a portion of its data. If a device is unable to transmit or does not have data to send, its time slot remains empty. - Time slots are grouped into frames. In a system with " n " input lines (devices), each frame has at least " n " time slots, with each slot allocated to carrying data from a specific device. Thus, the time slots dedicated to a given device occupy the same location in each frame and constitute that device's channel. ADVANTAGES(Any two) 1. Full channel bandwidth is available to each sending device. 2. Intermediation distortion is absent. 3. TDM circuitry is not very complex. 4. The problem of crosstalk is not very serious. DISADVANTAGES (Any two) 1. Synchronization is essential between sending and receiving end. 2. Complex to implement APPLICATIONS (Any two) 1. ISDN telephone lines and wire line telephone system 2. Radio broadcasting 3. Telemetry 4. Data processing	Diagra m 3M 2M 1M(1/2 each) $1 \mathrm{M}(1 / 2$ each) 1M(1/2 each)
c)	Explain generation and detection procedure of VRC and CRC with neat diagram and give one example of each.	8M

Ans: VERTICAL REDUNDANCY CHECKING (VRC):

- Vertical Redundancy Checking (VRC) is the simplest error detection scheme and is generally referred to as Character parity or simply Parity.
- With character parity, each character has its own error detection bit called the parity bit. Since the parity bit is not actually a part of the character, it is considered as a redundant bit.
- An n - character message would have n redundant parity bits. Therefore, the number of error detection bits is directly proportional to the length of the message.
- Parity can be of two types:

1. Odd parity

2. Even parity

In odd parity, the total number of 1 's in the entire message should be odd whereas in even parity, the total number of 1's in the message should be even.

- With character parity (VRC), a single parity bit is added to each character to force the total number of logic 1's in the character, including the parity bit, to be either an odd number (odd parity) or an even number (even parity).
- For example, the ASCII code for the letter C is 43 H or P1000011, where the P bit is the parity bit. There are three logic 1's in this code, not counting the parity bit.
- If odd parity is used, the P bit is made logic 0 , keeping the total number of logic 1 's at three, This is an odd number.
- If even parity is used, the P bit is made logic 1 , making the total number of logic 1 's four, which is an even number.
- The main advantage of parity is its simplicity.

Example: Determine the VRC for the following ASCII encoded message: THE CAT.
Use odd parity for the VRC

Solution:

Character	Bit positio n	T	H	E	space	C	A	T
ASCII Code	B_{1}	0	0	1	0	1	1	0
	$\mathrm{~B}_{2}$	0	0	0	0	1	0	0
	$\mathrm{~B}_{3}$	1	0	1	0	0	0	1
	$\mathrm{~B}_{4}$	0	1	0	0	0	0	0
	$\mathrm{~B}_{5}$	1	0	0	0	0	0	1
	$\mathrm{~B}_{6}$	0	0	0	1	0	0	0
	$\mathrm{~B}_{7}$	1	1	1	0	1	1	1
Parity Bit	B_{5}	0	1	0	0	0	1	0
(VRC)								

The various steps followed in the CRC method are

1. A string of n as is appended to the data unit. The length of predetermined divisor is $\mathrm{n}+1$.
2. The newly formed data unit i.e. original data + string of n as are divided by the divisor using binary division and remainder is obtained. This remainder is called CRC.

3. Now, string of n 0 's appended to data unit is replaced by the CRC remainder (which is also of n bit).
4. The data unit +CRC is then transmitted to receiver.
5. The receiver on receiving it divides data unit + CRC by the same divisor $\&$ checks the remainder.
6. If the remainder of division is zero, receiver assumes that there is no error in data and it accepts it.
7. If remainder is non-zero then there is an error in data and receiver rejects it.

- For example, if data to be transmitted is 1001 and predetermined divisor is $\mathbf{1 0 1 1}$. The procedure given below is used:

1. String of 3 zeroes is appended to 1011 as divisor is of 4 bits. Now newly formed data is 1011000.

2. Data unit 1011000 is divided by 1011.

3. During this process of division, whenever the leftmost bit of dividend or remainder is 0 , we use a string of 0 's of same length as divisor. Thus in this case divisor 1011 is replaced by 0000.
4. At the receiver side, data received is 1001110 .
5. This data is again divided by a divisor 1011.
6. The remainder obtained is 000 ; it means there is no error.

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | |

	REDUCTION OF NOISE The slope overload error can be reduced by increasing slope of the approximated signal $\mathrm{xq}(\mathrm{t})$. If slope of $\mathrm{xq}(\mathrm{t})$ can be increased and hence the slope overload error can be reduced by either increasing the step size δ or by increasing sampling frequency fs. Granular noise can be reduced by keeping the step size δ should be as small as possible.	Each reduct--on of noise
b)	Lis	4M
Ans:	Types of error: 1. Single bit error: Single-bit error occurs when only one bit of a given data string is in error (changed from 0 to 1 or from 1 to 0). 2. Burst error: A burst error or multiple-bit error occurs when two or more bits within a given data string is in error. Causes of errors: Due to addition of noise in transmission \& reception of data following errors occur. 1. If data block is lost in the network as it has been delivered to wrong destination. 2. If two or more bits from data unit such as a byte change from 1 to 0 or 0 to 1 .	Types of error 2M Causes of errors 2M
c)	Draw and explain PSK receiver.	4M
Ans:	Block diagram of PSK receiver Working of PSK receiver i) The coherent carrier recovery circuit detects and regenerates a carrier signal sin $\omega c t$. This regenerated carrier has the same frequency and phase as the carrier used at the transmitter. ii) So the regenerated carrier is known as coherent carrier. iii) The filtered BPSK signal along with the regenerated carrier is applied to a balanced modulator which acts as a product detector. $\begin{aligned} \therefore \quad \text { B.M. output } & - \text { BPSK } \times \text { Regoncrated carricr } \\ & \left.- \pm \sin \omega_{\mathrm{c}} t \times \sin \omega_{0} t- \pm \sin ^{2} \omega_{0} t\right) \\ \quad \text { But } \sin ^{2} \theta & =\frac{1}{2}-\frac{1}{2} \cos 2 \theta \\ \therefore \quad \text { B. M. output } & - \pm \frac{1}{2} \mp \frac{1}{2} \cos 2 \omega_{0} t \end{aligned}$ iv) The BM output consists of a dc term and a term having frequency twice the carrier frequency. v) The BM output is passed through LPF which allows only the second term to pass through. $\therefore \quad \text { LPF output }=\mp \frac{1}{2} \cos 2 \omega_{\mathrm{c}} \mathrm{t}$ vi) The LPF is applied to the level detector and clock recovery circuit at the output of level detector we get the following output.	Block diagra2 M 2M expl

$$
\begin{aligned}
& -\frac{1}{2} \cos \omega_{\mathrm{c}} \mathrm{t} \rightarrow \frac{1}{2} \mathrm{~V}(\operatorname{logic} 1) \\
& +\frac{1}{2} \cos \omega_{\mathrm{c}} \mathrm{t} \rightarrow-\frac{1}{2} \mathrm{~V}(\operatorname{logic} 0)
\end{aligned}
$$

vii) Thus the binary signal is obtained at the output.

OR

- The received BPSK signal at the receiver input is in the form:

$$
\mathrm{V}_{\mathrm{BPSK}}(\mathrm{t})=\mathrm{b}(\mathrm{t}) \sqrt{2 \mathrm{P}_{\mathrm{s}}} \cos \omega_{\mathrm{c}} \mathrm{t}
$$

- The demodulation technique used is coherent demodulation. The synchronous detection technique requires a locally generated synchronized carrier signal $\cos \omega_{\mathrm{c}} \mathrm{t}$.
- This carrier is recovered from the received BPSK signal. The carrier recovery is done as follows:
- The received signal is passed through a square law device and we get a squared signal at the output of the square law device.
- Output of the square law device $=(\pm 1)^{2} 2 \mathrm{P}_{\mathrm{S}} \cos ^{2} \omega_{\mathrm{c}} \mathrm{t}=2 \mathrm{P}_{\mathrm{S}} \cos ^{2} \omega_{\mathrm{c}} \mathrm{t}$

But,

$$
\cos ^{2} \omega_{\mathrm{c}} \mathrm{t}=1 / 2\left[1+\cos 2\left(\omega_{\mathrm{c}} \mathrm{t}\right)\right]
$$

- The RHS of this expression shows that the output of the square law device consists of a dc term [1/2] and the $2^{\text {nd }}$ harmonic of the carrier $\left[1 / 2 \cos 2\left(\omega_{c} t\right)\right]$.
- Only the $2^{\text {nd }}$ harmonic component is allowed to pass through the BPF, the center frequency of which is adjusted to $2 \omega_{\mathrm{c}}$. Thus, the output of the BPF is $\cos 2\left(\omega_{\mathrm{c}} \mathrm{t}\right)$ neglecting the amplitude. The dc component is blocked by the filter.
- The BPF output is then passed through a frequency divider to recover the carrier signal $\cos \left(\omega_{\mathrm{c}} \mathrm{t}\right)$. Thus, the carrier is recovered from the received BPSK signal.
- The received BPSK signal at the input of receiver and the recovered carrier signal are multiplied by the synchronous modulator which is nothing but a multiplier.

Output of the multiplier $=b(t) \sqrt{2 \mathrm{P}_{\mathrm{s}}} \cos \left(\omega_{\mathrm{c}} \mathrm{t}\right) \mathrm{x} \cos \left(\omega_{\mathrm{c}} \mathrm{t}\right)$

$$
=\mathrm{b}(\mathrm{t}) \sqrt{2 \mathrm{P}_{\mathrm{s}}} \cos ^{2}\left(\omega_{\mathrm{c}} \mathrm{t}\right)
$$

$$
=\mathrm{b}(\mathrm{t}) \sqrt{2 \mathrm{P}_{\mathrm{s}}}\left[1 / 2+1 / 2 \cos 2\left(\omega_{\mathrm{c}} \mathrm{t}\right)\right]
$$

- This signal is applied to an integrator. The bit synchronizer device is able to recognize precisely the moment which corresponds to the end of the time interval allocated to one bit and the beginning of the next. The bit synchronizer closes the switch S_{1} momentarily to discharge (dump) the integrator capacitor at the beginning of every bit interval and leaves the switch S_{1} open for the entire bit duration so that the integrator can produce an output proportional to its input voltage. The switch S_{1} is closed again very briefly at the end of the bit interval. Thus, this circuit is called an "integrate-and-dump" circuit.
- The output of the integrator is the output of the BPSK receiver. This output signal is made available by closing the switch S_{2} at the end of each bit interval but immediately before the closing of switch S_{1}. The switch S_{2} is called the sampling switch and is operated by the bit synchronizer. The output of the integrator is given by,

$$
\begin{aligned}
v_{\mathrm{o}}\left(\mathrm{kT} \mathrm{~T}_{\mathrm{b}}\right)=\mathrm{b}(\mathrm{t}) & \sqrt{2 \mathrm{P}_{\mathrm{s}}} \int 1 / 2 \mathrm{dt}+\mathrm{b}(\mathrm{t}) \sqrt{2 \mathrm{P}_{\mathrm{s}}} \int 1 / 2 \cos 2\left(\omega_{\mathrm{c}} \mathrm{t}\right) \mathrm{dt} \\
= & \mathrm{b}(\mathrm{t}) \sqrt{2 \mathrm{P}_{\mathrm{s}}}\left(\mathrm{~T}_{\mathrm{b}} / 2\right) \\
= & (\pm 1) \sqrt{2 \mathrm{P}_{\mathrm{s}}}\left(\mathrm{~T}_{\mathrm{b}} / 2\right)
\end{aligned}
$$

- Since the integral of sinusoid over a whole number of cycles has the value zero. In the above equation, T_{b} is the bit interval of each bit. Thus, we see that the demodulator output is the transmitted bit stream $\mathrm{b}(\mathrm{t})$.

d)	With the help of OFDM block diagram, explain its working.	$\mathbf{4 M}$

Ans: Figure below shows the conceptual diagram highlighting the orthogonal (OFDM) multiple Block carrier modulation scheme.
The $a i-\mathrm{s}$ in the diagram indicates the modulating signal in the $\mathrm{I}-$ path and the $b i-\mathrm{s}$ are the modulating signals in the Q - path.
The 'encoder' in a practical system performs several operations but if of no special significance at the moment.
All the cosine modulated signals are added algebraically and similarly are the sine modulated signals.
The overall I - phase and Q - phase signals together form a complex baseband OFDM signal.
At this point, one may interpret the scheme consisting of a bank of N parallel QPSK modulators driven by N orthogonal sub carriers.

MAHARASHTF

\begin{tabular}{|c|c|c|}
\hline (ii) \& With example explain how hamming code is used for single bit error connection implications. \& 4M \\
\hline Ans: \& \begin{tabular}{l}
Hamming codes are basically linear block codes. It is an error correcting code. The parity bits are inserted in between the data bits as shown below. \\
Where D-data bits and P-parity bits. The hamming coded data is then transmitter. At the receiver it is coded to get the data back. The bits \((1,3,5,7),(2,3,6,7)\) and \((4,5,6,7)\) are checked for even parity or odd parity, if all the 4-bit groups mentioned above possess the even parity (or odd parity) then the received code word is correct but if the parity is not matching then error exist. Such error can be located by forming a three bit number out of three parity checks. This process can be well explained by following example, \\
For example: Suppose a 7-bit hamming code is received as 1110101 (for transmitter data 1111) and parity used is assumed to be even .hence we can detect and correct the code as Step1: Received 7bit hamming code is applied to hamming code format as \\
So, \(\mathrm{P} 1=0\) Hence the error word is \(\mathrm{E}=110\) \\
Step 5: decimal equivalent of 110 is 6 hence 6thbit is incorrect so invert it and the correct code word will be, \\
Hence the single bit error can be corrected using hamming code.
\end{tabular} \& Hammi
ng
Code
Explana
-
-tion
2M

Exampl
e with
Steps
2M

\hline (iii) \& Draw block diagram of SDM multiplexing and explain each block. \& 4M

\hline Ans: \& SDM is space division multiplexing. Figure shows block diagram of SDM .When we want to transmit multiple message with maximum reuse of the given resources like time and frequency.it can be done by grouping many separate wires in to a common cable enclosure. SDM system does not require any multiplexing equipment. It is usually combined with other multiplexing techniques to be better utilizing the physical channels. \& Block diagra m And working 2M

\hline
\end{tabular}

tified)

| | which has a cut-off frequency fc=W Hz. This will ensure x (t) will not have any frequency
 component higher than "W". In other words, suppresses high frequency components and
 passes only low frequency signal to avoid 'aliasing error'.
 - The band limited analog signal is then applied to sampled and hold circuit where this
 circuit acts as modulator and both modulating input signal and sampling signal with
 adequately high sampling rate are inputs to this circuit. Output of sampled and hold block is
 a flat topped PAM signal.
 - These samples are subjected to operation "quantization" in the "quantizer". Quantization is
 a process of approximation of the value of respective sample into a finite number that will
 reduce data bits. The combined effect of sample and quantization produces is 'Quantized
 PAM' at the quantizer output.
 - The Quantized PAM output is analog in nature. So to transmit it through digital
 communication system the quantized PAM pulses are applied to an encoder which is
 basically A to D convertor. Each quantized level is converted into N bit digital word by A to
 D converter.
 - The communication system is normally connected to each other using a single cable i.e.
 serial communication. But the output of ADC is parallel which cannot be transmitted
 through serial communicating links. So this block will convert the parallel data into serial
 stream of data bits.
 - A pulse generator produces train of rectangular pulses of duration " t " seconds. This signals
 acts as sampling signals for the sample and hold block. The same signal acts as "clock"
 signals for parallel to converter .the frequency " f " is adjusted to satisfy the criteria. |
| :--- | :--- | :--- | :--- |
| Q.5 | |

| | | The band limited signal is applied to a codec, which convert it into DS0 signal.24 DS0 lines
 are multiplexed into a DS1.The telephone companies implement TDM through the hierarchy
 of digital signals. This is called as digital signal service. Multiplexed signal is converted into
 a frame at the DS1 or T1 level. | |
| :--- | :--- | :--- | :--- | :--- |
| c) | State importance of spread spectrum modulation. List out application of spread
 spectrum modulation.(any two) | 8M | |

tified)

	10.System complexity		re comple	x than QPSK	Less complex than QAM	
	erro		han			
	12.Performance of sy		ter than	K	Less than	
b)	Explain specification of T carrier system					
Ans:	1. Leased lines come in two configurations T1 and T3. A T1 line offers a data transfer rate of 1.54 million bits per second. 2. A T1 line is a dedicated connection meaning that it is permanently connected to the internet. 3. This is useful for web server or other computers that need to be connected to the internet all the time. 4. It is possible to lease only a portion of a T 1 line using one of two systems fractional T1 or Frame relay. 5. You can lease them in blocks ranging from 128 kbps to 1.5 Mbps . 6. The differences are not worth going into in detail but fractional T 1 will be more expensive at the slower available speeds and frame relay will be slightly more expensive as you approach the full T 1 speed of 1.5 Mbps . 7. AT3 line is significantly faster at 45 million bits per second. 8. Leased lines are expensive and are generally used only by companies whose business is built around the internet or need to transfer massive amounts of data.					4M for correct specific ations
c)	Explain Direct Sequence Spread Spectrum techniques with the help of block diagram.(DSSS)					4M
Ans:	DSSS(Direct Sequence Spread Spectrum): - Each bit is represented by multiple bits using spreading code, Spreading code spreads signal across wider frequency band and in proportion to number of bits used, - e.g., 10 bit spreading code spreads signal across 10 times bandwidth of 1 bit code - One method: Combine input with spreading code using XOR a. Input bit 1 inverts spreading code bit b. Input zero bit doesn't alter spreading code bit. - Data rate is equal to original spreading code and performance is similar to FHSS OR					2M for diagra m and 2M for explana tion

	The generation block diagram of DPSK signal is shown in Figure 3.16. The data stream to be transmitted, $d(t)$, is applied to one input of an exclusive-OR logic gate. To the other gate input the output of the exclusive-OR gate $b(t)$ delayed by time T_{b} allocated to one bit is applied. This second input is then $b\left(t-T_{b}\right)$.	
d)	Explain DPCM transmitter with neat block diagram.	4M
Ans:	DPCM Transmitter DPCM system is particularly efficient when there is high correlation between adjacent samples. In video and audio transmission, the information signal does not rapidly change from one sample to the other. These highly correlated samples are encoded using standard PCM system, the resultant encoded signal contains redundancy (repeated code-words are transmitted) which leads to larger bandwidth utilization in PCM. Before encoding, this redundancy can be removed. Correlation between the adjacent samples suggests that it should be possible to predict the present value of the message signal from the knowledge of its immediate past behavior. The DPCM system employs a predictor which predicts the present sample value making use of immediate past samples. If the prediction is good the difference between the actual value and predicted value, called the error will have a smaller dynamic range than the original message itself and therefore needs far fewer bits per each error sample than that would have required for the original sample.	2M for diagra m 2M for explana tion
e)	State Shannon's Hartleystheorem. What is Shannon's information rate theoretically?	4M
Ans:	Shannon Hartley Theorem: The channel capacity of a white, band limited Gaussian channel is given by, $\mathrm{C}=\mathrm{B} \log _{2}\left(1+\frac{S}{N}\right) \quad \mathrm{bit} / \mathrm{sec}$ Where, $\begin{aligned} & \mathrm{B}=\text { Channel Bandwidth } \\ & \mathrm{S}=\text { Signal Power } \\ & \mathrm{N}=\text { Noise within the channel bandwidth } \end{aligned}$	2M for Theore m and 2M for

