

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 19 EXAMINATIONS

Subject Name: Digital Communication Systems Model Answer

Subject Code: 22428

Important Instructions to examiners:

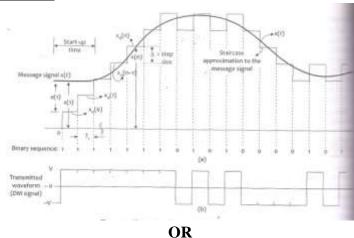
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

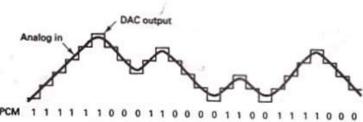
Q.	Sub Q.	Answer	Marking
No.	N.		Scheme
			10-
Q.1		Attempt any FIVE of the following:	Total
			Marks
	a)	Define (i)Bit rate (ii)Baud rate	2M
	Ans:	(i)Bit rate :-	1M
		Bit rate is simply the number of bits transmitted during one second and is expressed in bits per second (bps). Mathematically bit rate is given by:- $Rb = 1 / T_b$	each
		where Tb is time interval of one bit	
		(ii)Baud rate: -	
		Baud is the unit of symbol rate. Baud rate is the number of symbols transmitted during one second and is expressed in symbols per second or baud.	
		Mathematically, baud rate is the reciprocal of the time of one output signaling element and a Signaling element (symbol) may represent several information bits. Baud rate is	
		expressed as, $Rs = 1/T_s$	
		Where, baud rate = symbol rate (symbols per second) and T_s = time interval of one symbol.	
	b)	State the Hartley's law with mathematical expression.	2M
	Ans:	Hartley's Law / Nyquist Theorem:-	
		Statement: Hartley's Theorem/Law states that the channel capacity of the transmission	
		channel of bandwidth 'B' which carries a signal having 'M' levels in the total absence of	
		noise is given by:	
		$C = 2 B \log 2 M$	
		where, C – channel capacity (bits/sec)	
		B – channel bandwidth M – number of coding levels (2 or more)	
		In the absence of noise, Hartley's Law shows that greater the number of levels in the	
		coding system, the greater the information rate that can be sent through the channel.	

c)	State sampling theorem. Define Nyquist rate.	2M
Ans:	SAMPLING THEOREM:	1M
	Sampling theorem states that a band-limited signal of finite energy having the highest	each
	frequency component f_m Hz can be represented and recovered completely from a set of	
	samples taken at a rate of f_s samples per second provided that $f_s \ge 2f_m$.	
	Here f_s is the sampling frequency. This theorem is also known as the Sampling Theorem for	
	Baseband or Low-pass Signals.	
	Nyquist rate:-	
	Sampling frequency should be equal to or greater than twice the maximum signal	
	frequency $(f_s \ge 2f_m)$	
d)	Classify the modulation techniques.	2M
Ans:	Classification of the modulation techniques:-	2M
	1. Amplitude Shift Keying (ASK)	
	2. Frequency Shift Keying (FSK)	
	3. Phase Shift Keying (PSK)	
e)	State two advantages of WDM technique.	2M
Ans:	ADVANTAGES OF WDM:	Any 2
	1. WDM has enhanced capacity.	1M
	2. WDM can be used for full duplex transmission with a single fiber.	each
	3. It is inherently easier to reconfigure (addition or removal of channels).	
	4. Fiber optic cable networks use optical components which are simpler and more reliable	
	and often less costly than their electronic counterparts	
f)	List the various multiple access techniques.	2M
Ans:	Frequency Division Multiple Access (FDMA)	½ M
	2. Time Division Multiple Access (TDMA)	each
	3. Code Division Multiple Access (CDMA)	
	4. Space Division Multiple Access (SDMA)	
g)	Define the concept of spread spectrum.	2M
Ans:	Concept of spread spectrum :-	2M
	Spread-spectrum techniques are methods by which a signal (e.g. an electrical,	
	electromagnetic, or acoustic signal) generated with a particular <u>bandwidth</u> is deliberately	
	spread in the <u>frequency domain</u> , resulting in a signal with a wider <u>bandwidth</u> . OR	
	Spread spectrum systems are intended to provide such secure and reliable communication.	
	In this system the spectrum of the transmitted signals spreaded over a very wide	
	bandwidth. This achieved in these systems by modulating for a second time, an already	
	modulated signal in such a way as to spread the power of the transmitted spread spectrum	
	signal over a very large bandwidth.	
	Attempt any THREE of the following:	12-
	Autinpliany THREE of the following.	Total
		Marks
a)	State the advantages and disadvantages of digital communication system.	4M

Ans:	Advantages of Digital Communication : (any 2)	1M
	1. High noise interference tolerance due to digital nature of the signal.	each
	2. With channel coding, error detection and correction at receiver is possible.	
	3. It provides us added security to our information signal i.e. Data encryption is possible for	
	greater security.	
	4. Cheaper due to advances in digital VLSI technology.	
	5. Digital information can be saved and retrieved when necessary.	
	6. Large data storage is possible.	
	Disadvantages of Digital Communication: (any 2)	
	1. Large System Bandwidth: - Digital transmission requires a large system bandwidth to	
	communicate the same information in a digital format as compared to analog format.	
	2. High power consumption (Due to various stages of conversion).	
	3. Needs synchronization	
	4.Sampling Error.	
b)	Draw the block diagram of DM transmitter. Explain each block in detail.	4M
Ans:	Block diagram of DM transmitter:-	2M
	Analog Sample and India Delta PCM	
	Sampling pulse	
	Digital-to-analog converter	
	(DAC)	
	Upldown Uiō	
	Clock Counter 1=up 0=down	
		2M
	Explanation:-	
	Sample and Hold:-	
	The input analog is sampled and converted to PAM signal, which is compared with the	
	output of the DAC. The output of the DAC is a voltage equal to the regenerated magnitude	
	of the previous sample, which was stored in the up-down counter as a binary number.	
	Up-down counter:-	
	The up-down counter is incremented or decremented depending on whether the previous	
	sample is larger or smaller than the current sample.	
	The up-down counter is clocked at a rate equal to the sample rate. Therefore the up-down	
	counter is updated after each comparison.	
	Initially the up-down counter is zeroed and DAC output is 0v.	
	The first sample is taken and converted to a PAM signal, and compared with zero volts.	
	The output of the comparator is a logic 1 condition (+v), indicating that the current sample	
	is larger in amplitude than the previous sample.	
	On the next clock pulse, the up-down counter is incremented to a count of 1.The DAC	
	now outputs a voltage equal to the mgnitude of the minimum step size (resolution). The	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)


steps change at a rate equal to the clock frequency (sample rate).


Consequently, with the input signal shown, the up-down counter follows the input analog signal up until the output of the DAC exceeds the analog sample; then the up-down counter will begin counting down until the output of the DAC drops below th sample amplitude.

Digital to Analog Converter (DAC):-

In the idealized situation the DAC output follows the input signal. Each time the up-down counter is incremented, a logic 1 is transmitted, and each time the up-down counter is decremented, alogic 0 is transmitted.

(Waveform is optional):-

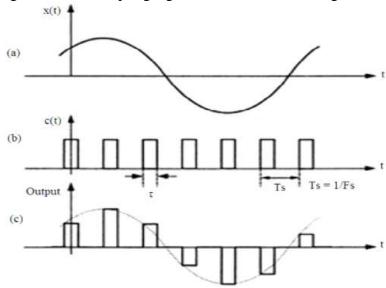
c)	Explain flat top sampling with circuit diagram. Draw flat top sampled signal.	4M
Ans:	Flat top sampling: • In flat top sampling, the top of the samples remains constant and equal to the	Diagra m 1M
	instantaneous value of the modulating signal at the start of the sampling.	111 1111
	 Thus the amplitude of the pulse after sampling is kept constant and the top of the sampled pulse do not follow the contour of the modulating signal unlike Natural sampling. The duration of each sample is τ and the sampling rate is: F_s = 1/T_s. T_s= 1/F_s 	Explan ation 2M
	Sample and hold circuit is used for the generation of the sampled signal to attain flat top sampling, which is shown in the Figure below. Sample and hold circuit is used for the generation of the sampled signal to attain flat top sampling, which is shown in the Figure below.	Wavefo rm 1M
	Figure shows the Sample and hold circuit to generate flat top samples	

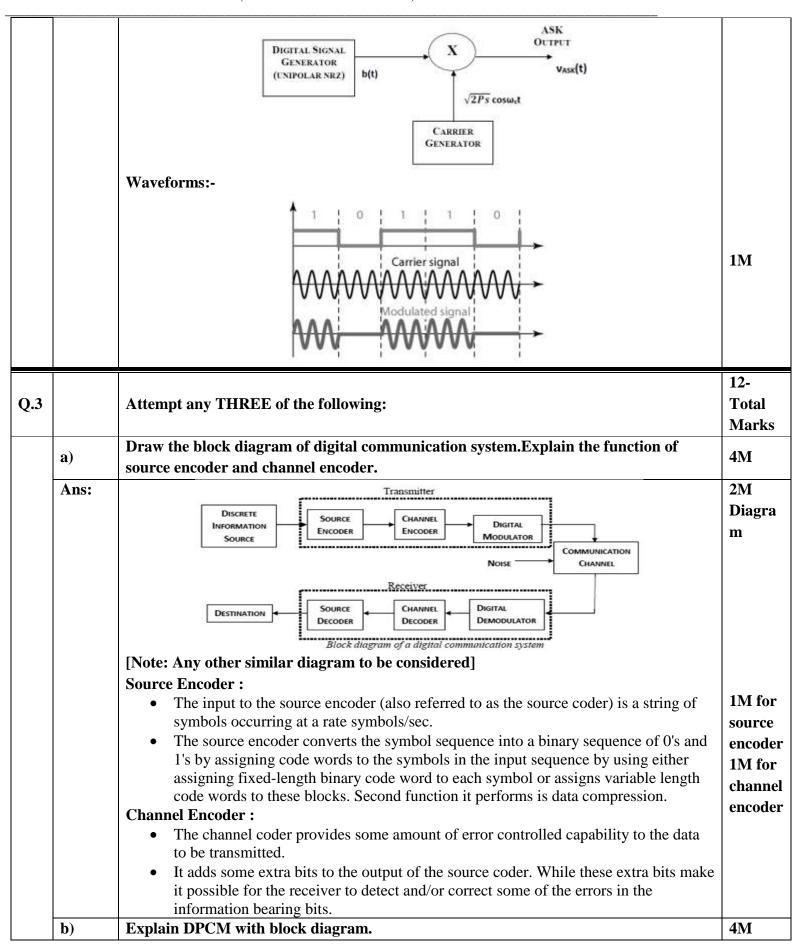
The second

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

- The switch S_1 closes at each sampling instant to sample the modulating signal.
- The capacitor C holds the sampled voltage for period τ at the end of which switch S_2 is closed in order to discharge the capacitor.
- Thus the signal generated as a result of sample and hold process is the flat top sampled signal. The spectrum of the generated flat top sampling signal along with the modulating signal and the sampling signal is shown below in Figure 2 below.

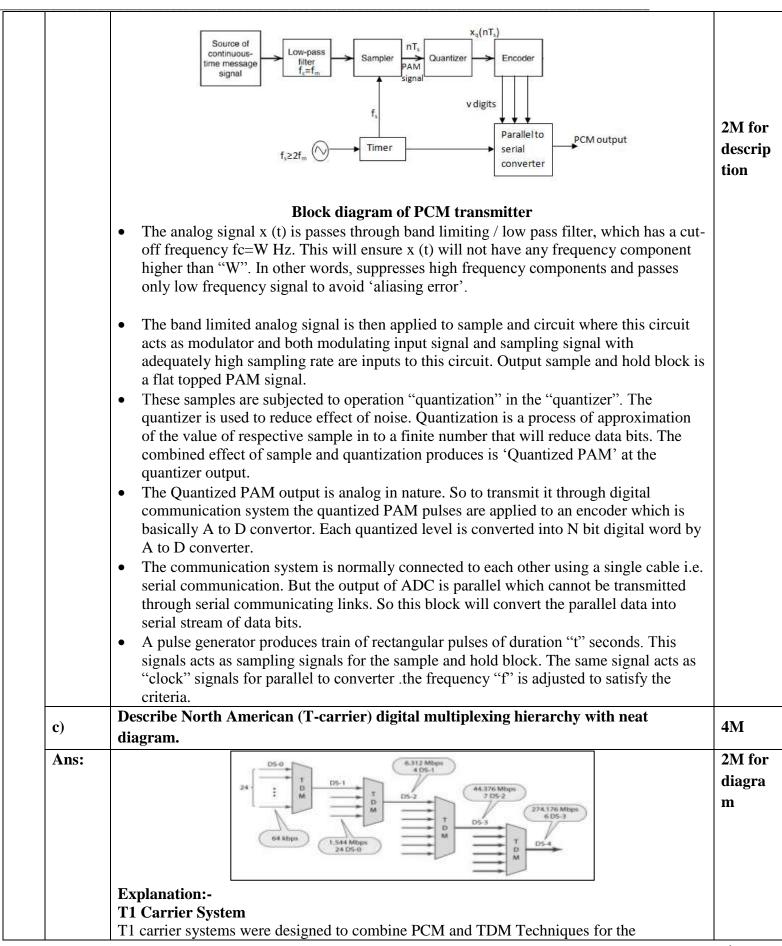



Figure.2 (a) Modulating signal (b) sampling signal and (c) Flat top sampling spectrum

- The starting edge of the pulse corresponds to the instantaneous value of the modulating signal x (t).
- Flat top sampling can be mathematically considered as convolution of the sampled signal and the pulse signal.

	 Flat top sampling is mostly used in digital transmission 	
d)	Describe amplitude shift keying (ASK) modulation with suitable circuit diagram.	4M
Ans:	 Explanation:- ASK MODULATOR: The process where a binary information signal directly modulates the amplitude of an analog carrier. The digital signal is used to switch the carrier between amplitude levels is called Amplitude Shift Keying (ASK). The ASK technique of binary modulation is illustrated in Figure where modulating signal consists of unipolar pulses. Because in this case the carrier is switched ON and OFF, this method is also known as <i>ON-OFF keying</i>. For the entire time the binary input is high, the output is a constant amplitude, constant frequency signal and for the entire time the binary input is low, the carrier is off. ASK is given by: V_{ASK}(t) = b(t) √2P_S cosωct Block diagram of ASK Transmitter / ASK modulator:- 	2M 1M

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)



Ans:		Difference amplifier	Sampling signal t Sample Advantizer So(t) Encode	Parallel DPCM to serial output	2M diagra m
	sign is later than the same of	nal and x^(t) is its a arger or smaller that each sampling instant on the and hold circuite difference signals antizer. The quantizer arm of bits as explaint equantizer output it	(Block Diagram of DPCM as the block diagram of DPCM trapproximated signal. What is important the difference amplifier compart will hold the result of this subtrate the output of sample and hold are output SO(t) is the transmitted and in conventional PCM systems also used to produce the appropriate the predictor and accumulated and accumulated and accumulated and accumulated and predictor and accumulated accumulated and accumulated	ansmitter $x(t)$ is the analog input ortant to know is whether $x^*(t)$ ares $x(t)$ and $x^*(t)$ and the action. circuit is quantized by the as it is or it is encoded into a n. oximated signal $x^*(t)$ by passing	2M explantion
c)	Disting	guish between TDN	MA and CDMA (any four point	s)	4M
Ans:	Sr. No.	Parameter	TDMA	CDMA	1 mar for
	1.	Definition	Entire bandwidth is shared among different subscribers at Fixed predetermined or dynamically assigned time intervals/slots.	Entire bandwidth is shared among different users by assigning unique codes.	Each point (Any 4
	2.	Bandwidth Available	Time sharing of satellite transponder takes place	Sharing of bandwidth and time both takes place	point s)
	3.	Synchronization	Synchronization is essential	Synchronization is not necessary	
	4.	Interference	Due to incorrect synchronization there can be interference between the adjacent time slots.	Both type of interference will be present	
	5.	Guard bands	Guard times between adjacent timeslots are necessary.	Guard bands and Guard times both are necessary	
	6.	Active terminals	Terminals are active in their specified slot on same frequency	All terminals active on same frequency	
	7.	Signal separation	Synchronization in time	Code separation	
	8.	Near Far Problem	No	Yes	
	9.	Handoff	Hard handoff	Soft handoff	
	10.	Application	Advanced mobile phone, system(AMPS), Cordless telephone	IS95 Wide band, CDMA 2000,2.5G and 3G	

	Compare FDM & TDM systems (any four points).				
Ans:	Sr. No.	FDM	TDM	1M for each	
	1	Divides the channel into the two or more frequency ranges that do not overlap.	Divides and allocates certain Time periods to each channel.	point	
	2	Code word is not required	No coding	1	
	3	Needs guard bands	Needs guard time	1	
	4	Problem of crosstalk	No problem of crosstalk	-	
2.4	Attem	pt any THREE of the following :		12- Total Marks	
a)		he Shannon Hartley's theorem for ch tio and bandwidth on channel capaci	nannel capacity. Explain the effect of	4M	
Ans:	In info inform the pre Accord are related	rmation theory, the Shannon–Hartley ation can be transmitted over a commusence of noise. In the shandwidth of the cated by the formula $\log_2(1 + S/N)$ cannel capacity in bits per second (bps) andwidth of the channel in Hz the signal-to-noise power ratio (SNR). at $dB = 10 \log(Signal power / Noise power of S/N on Channel Capacity C: the communication channel is noiseless that to \infty. Thus the noiseless channel will of Bandwidth B on Channel Capacity is sthe bandwidth approaches infinity, the$	theorem tells the maximum rate at which nications channel of a specified bandwidth in shannel and signal energy and noise energy some solution of the signal energy and noise energy solutions. SNR generally is measured in dB using the series of the signal energy and so C also have an infinite capacity. Therefore, $S/N \to \infty$ and so C also have an infinite capacity. The channel capacity C does not become infinite and solution of the signal energy and noise energy.	1M for statement 1M for formula 2M effect of s/n & Bandw dth B on Channel Capacity	
b)	Descri	be PCM transmitter with block diag	ram.	4M	
Ans:		Source of continuous-time message signal	Ouantizer DCM signal pplied to channel input	2M for block diagra	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

	(ISO/IEC - 2/0	001 - 2013 Certifie	ea) 		
	Transmission of 24 64Kbps c	hannels with e	each channel Ca	apable of Carrying Digitally.	
	Encoded voice band telephon	e signals or da	ata. The transm	ission bit rate (line speed) for	
	a T1 carrier is 1.544 Mbps.	_		_	2M for
	All 24 DS-0 channels combin	ned has a data	rate of 1.544Ml	bps, this digital signal level is	explana
	Called DS-1. Therefore T1 lin				tion
	Service	Line	Rate (Mbps)	Voice Channels	tion
	DS-1	T-1	1.544	24	
	DS-2	T-2	6.312	96	
	DS-3	T-3	44.736	672	
	DS-4	T-4	274.176	4032	
	DS and T Line rates				
	T2 Carrier System				
	_	tiplex 96 64-K	Abps voice or da	ata channels into a single 6.312	
	Mbps data signal for transmis	-	-		
	special metallic cable.		1 ··· ·· ·· ·· ·· ·· ·· ··	1	
	T3 Carrier system				
		ltiplex 672.64	-kbps voice or a	data channels for transmission	
	over a single coaxial cable. T	-	-		
	T4 Carrier System	ne uansimssic	11 1ate 15 +4./3(ο πιορο.	
	•	tipley 1022 61	khne voice er	data channels for transmitting	
		1		<u> </u>	
	over a single T4 coaxial cable	e upto 500 mm	e. The transmis	ssion rate is very high i.e.	
	274.16Kbps.				
	T5 Carrier System	1 0064.64	1771	1. 1. 1. 1.	
	T5 carriers time division mul	_	_	data channels and transmit	
	them at 560.16Mbps over a si	ingle coaxial c	able.		
d)	Explain direct sequence spr	ead spectrum	n (DSSS) trans	mitter with block diagram.	4M
Ans:		ry modulation	Secondary mod		2M for
	Narrow b	and modulation	Spread spectrum	modulation T	diagra
		P5K	-0		
	Modulatin signal	rus 🕈	1		m
	Signal	Comice	PN	7	
		Carrier	sequenc	Same sequer	
		Trans	mitter side		
	In direct sequence, the serial b	inary data is m	ived with a high	per frequency pseudorandom	2M for
	binary code at a faster rate and	•	_	* * *	
	The information signal underg				explana
				modulation. Spread spectra are	tion
	3			* *	
	obtained by multiplying the pr	•	-	cases where spread modulation is	
	-			-	
	applied to the data first, and na				
	afterwards. The figure below is				
	parity. le of spread spectrum	modulation and	d demodulation	using PSK for primary	
	modulation.				
e)	Construct the Hamming coo	de for the dat	a 1010 with od	ld parity.	4M
ns:	Let us find the Hamming coo	de for binary c	ode, $d_4d_3d_2d_4 =$	1010. Consider even parity bits.	1M for
	The number of bits in the given	_		r	calculat
		•		ing the following mathematical	1
	relation.	or pu		Tomo minimum municimum mun	mg no.
		2k>n+k	+12k≥n+k+1		of
	•	<u> </u>			1

		• So, the code an	value of p ₃ . There code are nming code will d p1,p2 re, the code will r bits 1,3	k that safefore, the and 3 parisode as should be: "plant and p3 a	⇒2k≥4+1 ⇒2k≥: atisfied the e number of ty bits. Whown below e 3 parity b	$c+1 \Rightarrow 2k$ $5+k \Rightarrow 2k$ the above of bits in the have the end of the constraints of the constraints in the constraints of th	≥4+k+1 ≥5+k relation is Hamming o place the 2 and p3 n4" where calculated	g code when parity at location	ill be bits a on 1,2	7, since the	ere are binary p.	parity bits. 3 marks for calculat ing hammi ng code
Q.5		Odd parity fo Odd parity fo Therefore ODI Attempt any T	r bits 4,5	5,6,7 hamminş	1 P3 O g code will	1 1 n2 0	1 1 n3 1	0 0 0 n4 0				12- Total Marks
	(a) Ans:	A discrete mentits output give Symbol Probability Compute: (i) Huffman (ii) The coordinates	n in the S_0 0.25 an code : ding efficode for	followin S_1 0.25 for the aciency of the sou	sg table: S2 0.125 bove sour f the designce is:	S ₃ 0.12	S ₄ 5 0.1	S ₅ 25 0.0		S ₆ 0.0625	es foe	6M 2M
			S, S,	0.125	The encire	202	0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25	correspond t	9 10			

Symbol	Probability	Codeword	Codeword length	2N
So	0.25	10.	2 bit	
Si	0.25	11	2 bit	
S ₂	0.125	001	3 bit	
S	0.125	010	3 bit	
S ₄	0.125	011	3 bit	
S ₅	0.0625	0000	4 bit	
S ₆	0.0625	0001	4 bit	
k = 0		L ymbol in bits)		21
= \(\sum_{k=0} \) From Ta	able P. 2.7,3(b) (0.25 × 2) + (0.	ymbol in bits)	(5×3) ×3	2N
= \(\sum_{k=0} \) From Ti	able P. 2.7.3(b) (0.25 × 2) + (0 + (0.0625 × 4))	ymbol in bits) 25 × 2) + (0.12	5×3)×3	2N
= \(\sum_{k=0} \) From Ta L = 1	able P. 2.7,3(b) (0.25 × 2) + (0.	ymbol in bits) 25 × 2) + (0.32 × 2 si per message	600	2N
= ∑ k = 0 From Ta L = 1 ∴ L = 1	table P. 2.7.3(b) $(0.25 \times 2) + (0.4) + (0.0625 \times 4) + (0.0625 \times$	ymbol in bits) 25 × 2) + (0.12 × 2 N per message log ₂ [1 / p (x ₁)	1	2N
= \(\sum_{k=0} \) From Ta L = 1 The aver H = 1	this P. 2.7.3(b) $(0.25 \times 2) + (0.0625 \times 4)$ 2.625 hits/symbol rage information 6 $H = \sum_{i=0}^{\infty} p(x_i)$ i=0 $[0.25 \log_2(4)]$ $+ [0.0625 \log_2(4)]$	ymbol in bits) 25 × 2) + (0.12 × 2 si per message log ₂ [1 / p (x _i) × 2 + [0.125 li 16)] × 2)) ₂ (8)}×3	2N
= \(\sum_{k=0} \) From Ta L = 1 The aver H = 1	this P. 2.7.3(b) $(0.25 \times 2) + (0.0625 \times 4)$ 2.625 hits/symbol rage information 6 $H = \sum_{i=0}^{\infty} p(x_i)$ i=0 $[0.25 \log_2(4)]$ $+ [0.0625 \log_2(4)]$	ymbol in bits) 25 × 2) + (0.12 × 2 si per message log ₂ [1 / p (x _i) × 2 + [0.125 li 16)] × 2	1	2N
= \(\sum_{k=0} \) From Ta L = \(\text{The aven} \) H = \(\text{The aven} \)	thic P. 2.7.3(b) $(0.25 \times 2) + (0.4) + (0.0625 \times 4) + (0.0625 \times $	ymbol in bits) 25 × 2) + (0.12 × 2 × 2) per message $\log_2 [1/p(x_i)]$ $[×2+[0.125]$ $[6)]×2$ $[0.125 × 3 × 3]$ age.	og ₂ (8)]×3 3]+[0.0625×4×2]	2N
$= \sum_{k=0}^{\infty} K = 0$ From Ta $L = 0$ $\therefore L = 0$ $\Rightarrow H = 0$ $\Rightarrow H = 0$	thic P. 2.7.3(b) $(0.25 \times 2) + (0.4) + (0.0625 \times 4) + (0.0625 \times 4) + (0.0625 \times 4) + (0.0625 \times 4) + (0.0625 \log_2(4)) + ($	ymbol in bits) 25 × 2) + (0.12 × 2 × 2) per message $\log_2 [1/p(x_i)]$ $[×2+[0.125]$ $[6)]×2$ $[0.125 × 3 × 3]$ age.	og ₂ (8)]×3 3]+[0.0625×4×2]	2N

	Sr. No	Parameter	Binary ASK	Binary FSK	Binary PSK	eac for
	1.	Variable Characteristic	Amplitude	Frequency	Phase	6 va poi
	2.	Maximum bandwidth(Hz)	2f _b	5 f _b /3	2f _b	
	3.	Noise immunity	low	high	high	
	4.	Error probability	high	low	low	
	5.	Performance in presence of noise	poor	Better than ASK	Better than FSK	
	6.	Complexity	Simple	Moderately complex	Very complex	
	7.	Bit rate	Suitable upto 100 bits/sec	Suitable upto about 1200 bits/sec	Suitable for high bit rates	
	8.	Detection method	Envelope	Envelope	Coherent	
(c)	_		tion reduces slope ov		=	oise 6M
Ans:	both ca modula	annot be controlled ation wherein the s	tep size is constant so a . These drawbacks can tep size is variable. ransmitter and its wave	be controlled by	_	

Q.6		Attempt any TWO of t	he following:		12 Marks
	(a)	Explain QPSK transmi	itter with block diagram i	ts constellation diagram.	6M
	Ans:				2M for
					block
			√2F,ce	** m,t ***	diagra
		n	DARY BALANCE MODEL	CED	m
		D.	ATA NRZ BINARY DEMUX ENCODER	ADDER	
			BALAN Monta	KTOR	
			$\sqrt{2P_s}$	S _a (0) in es,5	2M
		Operation:	QPSE Demonster ou	m - affiati	explana
		of b(t) = + 1 for l The Demultiplex be(t). The bit str whereas bo(t) bi as shown in Figu Each bit in the e is called as symb The bit stream b superimposed o multipliers) to ge These signals are	ogic 1 input and b(t) = -1 when er(DEMUX) will divide b(t) into eam be(t) consists of only the e it stream consists of only the od ere 3.18. ven and odd stream will be held ool duration Ts. Thus, every sym e(t) is superimposed on a carrie e a carrier sinwct by using two lets.	twoseparate bit streams bo(t) and even numbered bits 2, 4, 6, 8,	d is
				180° 270°	
			O(0) 01	> t(t)	ation diagra
	(b)	Distinguish between m	01 - 11	m of QPSK	constell ation
			Constellation diagram	n of QPSK echniques.(Any six points)	constell ation diagra m
	(b) Ans:	Parameter	Constellation diagram	n of QPSK echniques.(Any six points) M-ary FSK	constell ation diagra m
		Parameter Number of bits per	Constellation diagram	n of QPSK echniques.(Any six points)	constell ation diagra m 6M 1M each
		Parameter Number of bits per symbol	Constellation diagram -ary PSK & m-ary FSK te M-ary PSK N [M = 2 ^N]	m of QPSK echniques.(Any six points) M-ary FSK N [M = 2 ^N]	constell ation diagra m 6M 1M each
		Parameter Number of bits per	Constellation diagram	n of QPSK echniques.(Any six points) M-ary FSK	constell ation diagra m 6M 1M each for any

	Method			
	Bandwidth	2fb/N	2 N+1 fb/N	
	Probability of Error	More than that in M-ary FSK	Less than that in M-ary	
			PSK	
	Transmitted signal	$\sqrt{2f_s} \cos (\omega_c t + \phi_m)$ $\cdot \cdot \cdot \phi_m = (2m + 1) \pi/4$	$\sqrt{2P_s}\cos\omega_c t$	
(c)	Explain fast frequency advantage and disadva	hopping techniques with suitab	le waveforms. State its	6M
Ans:	 In Fast Frequency hopping multiple frequencies or hops are used to transmit one symbol. The hop rate is higher than symbol rate but chip rate is equal to hop rate For each symbol several hops takes place. So several frequencies changes for one 			2M explantion
	 symbol such that symbol rate Rs< Hop rate Rh A jammer cannot detect this signal because one symbol is transmitted using more 			
	than one carrier frequency.			
	Input binary dat PN sequence	MFSK symbol 01 11 11 10 00 10 01	11 10 10	2M diagra m
	Advantages: 1. The processing gain is higher			1M each
	2. More secured transmission as only transmitter and receiver are aware of PN Codes			for an
	3. Shorter time for acquisition			one
	4. Robust technology			adava
		Disadvantages:		
	Disadvantages:			tage
	Disadvantages : 1. Bandwidth require	rement is more [GHz]		tage and
	Disadvantages: 1. Bandwidth require 2. Lower Coverage	rement is more [GHz] range due to high SNR requirements		tage