MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2013 Certified)

Winter - 2019 Examinations

Model Answers
Subject \& Code: Electric Motors and Transformers (22418)
Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Winter - 2019 Examinations
 Model Answers
 Subject \& Code: Electric Motors and Transformers (22418)

1 Attempt any FIVE of the following:
1 a) State Fleming's Right Hand Rule.
Ans:

Fleming's Right Hand Rule:

Stretch out the first three fingers of your right hand such that they are mutually perpendicular to each other. If first finger indicates direction of magnetic field, thumb indicates direction of motion of conductor with respect to magnetic field, then the middle finger will indicate the direction of induced EMF / current.

1 b) State the working principle of DC generator.
Ans:
Working principle of DC generator:

- Working principle of DC generator is the principle of dynamically induced emf or electromagnetic induction.

2 Marks

- According to this principle, when flux is cut by a conductor, an emf is induced in the conductor.
- In case of DC generator, when armature winding is rotated in magnetic field by the prime mover, the flux is cut by the armature winding and an emf is dynamically induced in it.

1 c) "DC series motor should never be started at no load". Justify.

Ans:

"DC series motor should never be started at no load"- Justification

- At no load, the field current (which is also the armature current) is very small and hence the useful air-gap field flux is also very small.
- As Speed $N \propto \frac{1}{f l u x}$ the speed rises excessively high / dangerous values and it is mechanically very harmful for machine.
- At high speeds, due to centrifugal forces of the rotating parts, they may damage the machine.
Hence DC series motor should never be started at no-load.
1 d) State why a transformer always have an efficiency of more than 90%.
Ans:
As transformer is static device with no moving parts, the losses due to friction \& windage are completely absent. Hence transformer has efficiency of more than 90%.

1 e) Give the specification of three phase transformer as per IS 1180 (Part-1) 1989 (any four).
Ans:
Specification of 3-phase transformer as per IS 1180 (Part-1) 1989:

1) kVA rating of transformer
2) Voltage ratings for the primary and secondary voltages
3) HV and LV currents

2 Marks
4) Operating frequency of the transformer
$1 / 2$ Mark for
each of any
four
specification
5) \% impedance of transformer

Winter - 2019 Examinations
 Model Answers

Subject \& Code: Electric Motors and Transformers (22418)
6) Allowable temperature rise.
7) Wiring instructions for HV and LV windings/terminal diagram
8) Model number and serial number of the transformer
9) Weight of the transformer
10) Information related to the tap changer
11) Transformer vector group
12) Winding connection diagrams
13) Type of cooling
14) Insulation class
15) Name of the manufacturer
16) Weight of core
17) Weight of winding
18) Volume of oil in litres.

1 f) State two applications of isolation transformer.
Ans:
Applications of isolation transformer:
i) Isolates the load equipment from supply ground:
ii) Reduction of voltage spikes
iii) It acts as a decoupling device.
iv) Protects loads from harmonic distortion.

> 1 Mark for
> each of any
> two
> applications
> $=2$ Marks

1 Mark for each of any two features $=2$ Marks

2 Attempt any THREE of the following:
2 a) Explain the working principle of induction motor.
Ans:
Working principle of induction motor:

- When the motor is excited with three-phase supply, three-phase stator winding carries three-phase currents \& produces a rotating magnetic field of constant magnitude and rotates at synchronous speed.
- This changing magnetic field is cut by the rotor conductors and induces emf in

Winter - 2019 Examinations

Model Answers

Subject \& Code: Electric Motors and Transformers (22418)

them according to Faraday's laws of electromagnetic induction. As these rotor conductors are shorted, the current starts to flow through these conductors.

- These current carrying rotor conductors are now in the rotating magnetic field produced by stator. Consequently, mechanical force acts on rotor conductors. The sum of the mechanical forces on all the rotor conductors produces a torque, which tend to move the rotor in the same direction as the rotating magnetic field.

2 b) State at least one function and the material used for the following parts of DC Motor.
Ans:
NOTE: Since the parts are not given in question, the marks may please be allotted for any TWO parts

Part	Function	Material
Yoke	-Provides mechanical support for poles -Acts as protecting cover for machine -Provides path for magnetic flux	Cast Iron OR Cast Steel
Field Winding	-Produce magnetic field in which armature rotates	Copper
Commutator	-Converts AC from armature to DC for generator -Converts DC to AC for motor armature.	Copper segments insulated from each other by mica
Brushes	-To collect current from armature winding of generator \& supply current to armature winding of motor.	Carbon
Pole shoe	To spread the flux in air gap.	Cast Iron OR Cast Steel
Pole core	Provides mechanical support to field winding.	Cast Iron OR Cast Steel

2 c) A $3300 / 250 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase transformer is built on a core having an effective cross sectional area of $125 \mathrm{~cm}^{2}$ and 70 turns on the low voltage winding.
Calculate:
i) The value of max. flux density.
ii) Number of turns on high voltage windings.

Ans:

Given Data:

Cross sectional Area, $\mathrm{A}=125 \mathrm{~cm}^{2}=125 \times 10^{-4} \mathrm{~m}^{2}$
Frequency $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{~N}_{2}=70, \mathrm{E}_{1}=3300, \mathrm{E}_{2}=250$.
To Find $\mathrm{B}_{\mathrm{m}}, \mathrm{N}_{1}$
$E_{2}=4.44 \Phi_{m} f N_{2}$ volt
$\therefore \Phi \mathrm{m}=\frac{\mathrm{E}_{2}}{4.44 \times \mathrm{f} \times \mathrm{N}_{2}}=\frac{250}{4.44 \times 50 \times 70}$

$$
\therefore \Phi \mathrm{m}=0.016087 \mathrm{~Wb}
$$

Maximum Flux Density $=B_{\mathrm{m}}=\Phi \mathrm{m} / \mathrm{A}=0.016087 /\left(125 \times 10^{-4}\right)$

$$
\mathrm{B}_{\mathrm{m}}=1.2869 \mathrm{~Wb} / \mathrm{m}^{2}
$$

4 Marks for step-wise answer

1 Mark for function and 1 Mark for material of each of any two parts $=4$ Marks

1 Mark
1 Mark

Winter - 2019 Examinations

Model Answers
Subject \& Code: Electric Motors and Transformers (22418)

$$
\begin{array}{ll}
\frac{E_{1}}{E_{2}}=\frac{N_{1}}{N_{2}} & 1 \text { Mark } \\
& 1 \text { Mark }
\end{array}
$$

$$
\therefore N_{1}=\frac{E_{1} N_{2}}{E_{2}}
$$

$$
\therefore N_{1}=\frac{3300 \times 70}{250}=924 \mathbf{N}_{\mathbf{1}}=\mathbf{9 2 4} \text { turns } \quad 1 \text { Mark }
$$

2 d) Draw the equivalent circuit of transformer referred to primary. State the meaning of each term related to equivalent circuit.
Ans:
Equivalent Circuit Diagram of Transformer Referred to Primary:

2 Marks for
Equivalent circuit
V_{1}-Primary Input voltage
I_{1} - Input Current
I_{0} - Exciting current/ No load current
I_{m} - Magnetizing component of no load current
I_{w}-Working component of no load current
$\mathrm{R}_{0^{-}}$Core loss resistance
$\mathrm{X}_{0^{-}}$magnetizing reactance
R_{1}-Primary winding resistance $\quad 2$ Marks for
X_{1} - Primary winding reactance terminology
E_{1}-Induced emf in Primary winding
$\mathrm{R}_{2}{ }^{\prime}$ - Secondary winding resistance referred to primary
$\mathrm{X}_{2}{ }^{\prime}$ - Secondary winding reactance referred to primary
I_{2}-Secondary winding current
$\mathrm{I}_{2}{ }^{\prime}-$ Primary equivalent of secondary current
K- Transformation ratio
V_{2} - Secondary terminal voltage
$\mathrm{V}_{2}{ }^{\prime}$ - Primary equivalent of secondary terminal voltage
Z_{L} - Load impedance
Z_{L} '- Primary equivalent of load impedance
3 Attempt any THREE of the following:
3 a) Explain the necessity of starter for D.C. motor. State various types of D.C. motor starter.
Ans:
Necessity of Starter for D.C. Motor:
Armature current is given by equation $\mathrm{Ia}=\left(\mathrm{V}-\mathrm{E}_{\mathrm{b}}\right) / \mathrm{Ra}$

Winter - 2019 Examinations
 Model Answers

Subject \& Code: Electric Motors and Transformers (22418)
i) If the motor is at standstill or rest, back emf E_{b} is zero (as $\mathrm{E}_{\mathrm{b}}=\Phi Z \mathrm{ZP} /(60 \mathrm{~A})$, at start speed N is zero). This causes starting current $\mathrm{Ia}=\mathrm{V} / \mathrm{Ra}$, which is large as armature resistance is usually low. This large starting current may damage armature winding due to heavy heating.
ii) Hence to limit the very high starting current, the starter is required.
iii) Once motor picks up the speed, the back emf E_{b} is induced in armature winding and armature current is limited to safe value. So starter is not required under running condition.
Types of D.C. motor starters:
i) Two point starter

1 Mark
ii) Three point starter
iii) Four point starter

3 b) Derive the emf equation of a transformer.
Ans:

Emf equation of transformer:

$\mathrm{N}_{1}=$ No. of turns on primary winding
$\mathrm{N}_{2}=$ No. of turns on secondary winding
$\Phi_{\mathrm{m}}=$ Maximum value of flux linking both the windings in Wb
$\mathrm{f}=$ Frequency of supply in Hz

$1^{\text {st }}$ method

1 Mark

1 Mark
1 Mark

Winter - 2019 Examinations

Model Answers
Subject \& Code: Electric Motors and Transformers (22418)
$\mathrm{E}_{1}=4.44 \Phi_{\mathrm{m}} \mathrm{f} \mathrm{N}_{1}$ volts
1 Mark
Similarly,
$\mathrm{E}_{2}=4.44 \Phi_{\mathrm{m}} \mathrm{f} \mathrm{N}_{2}$ volts
OR
$2^{\text {nd }}$ method:
$\Phi=\Phi_{\mathrm{m}} \sin \omega \mathrm{t}$
According to Faraday's laws of electromagnetic induction
Instantaneous value of emf/ turn $=-\mathrm{d} \Phi / \mathrm{dt}=-\mathrm{d} / \mathrm{dt}\left(\Phi_{\mathrm{m}} \sin \omega \mathrm{t}\right) \quad 1$ Mark

$$
\begin{aligned}
& =-\omega \Phi_{\mathrm{m}} \cos \omega \mathrm{t} \\
& =\omega \Phi_{\mathrm{m}} \sin (\omega \mathrm{t}-\pi / 2) \text { volts }
\end{aligned}
$$

Maximum value of emf/turn $=\omega \Phi_{\mathrm{m}}$
1 Mark
But $\omega=2 \pi \mathrm{f}$
Max. value of emf /turn $=2 \pi f \Phi_{\mathrm{m}}$
RMS value of emf /turn $=0.707 \times 2 \pi f \Phi_{\mathrm{m}}=4.44 \Phi_{\mathrm{m}} \mathrm{f}$ volts $\quad 1$ Mark
RMS value of emf in primary winding $\mathrm{E}_{1}=4.44 \Phi_{\mathrm{m}} \mathrm{f} \mathrm{N}_{1}$ volts 1 Mark
$\mathrm{E}_{2}=4.44 \Phi_{\mathrm{m}} \mathrm{f} \mathrm{N}_{2}$ volts
3 c) A single phase transformer has 300 turns on its primary side and 750 turns on its secondary side, the maximum flux density in the core is $1 \mathrm{~Wb} / \mathrm{m}^{2}$, calculate:
(i) The net cross sectional area of the core,
(ii) The emf induced in the secondary side.

Ans:
(NOTE: The data regarding the supply voltage is not given. Assuming the primary of the transformer is connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply)
Given: $\mathrm{N}_{1}=300, \quad \mathrm{~N}_{2}=750, \quad \mathrm{Bm}=1 \mathrm{~Wb} / \mathrm{m}^{2}$
Assumption: $\mathrm{E}_{\mathbf{1}}=\mathbf{2 3 0 V} \mathrm{f}=50 \mathrm{~Hz}$
(i) The net cross sectional area of the core,

$$
\begin{array}{ll}
\mathrm{E}_{1}=4.44 \mathrm{~B}_{\mathrm{m}} \mathrm{~A} \mathrm{f} \mathrm{~N}_{1} \text { volt } & \text { 1 Mark } \\
\therefore A=\frac{E_{1}}{4.44 B_{m} f N_{1}}=\frac{230}{4.44 \times 1 \times 50 \times 300} & 1 \text { Mark } \\
\mathbf{A}=\mathbf{3 . 4 5 3 \times 1 0} \mathbf{~ x - 3} \mathbf{m}^{2} &
\end{array}
$$

(i) The emf induced in the secondary side.

$\mathrm{E}_{2} / \mathrm{E}_{1}=\mathrm{N}_{2} / \mathrm{N}_{1}$	1 Mark
$\mathrm{E}_{2} / 230=750 / 300$	
$\mathbf{E}_{\mathbf{2}}=\mathbf{5 7 5}$ volt	1 Mark

(NOTE: Examiners are requested to award the marks for the procedure followed by the student for any assumed data)

3 d) Compare core type and shell type transformer.
Ans:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2013 Certified)

Winter - 2019 Examinations
 Model Answers
 Subject \& Code: Electric Motors and Transformers (22418)
 Comparision of core type and shell type transformer:

Sr. No.	Core type	Shell type
1		
2	It has one window	It has two windows
3	It has one magnetic circuit.	It has two magnetic circuits.
4	Winding surrounds the core.	Core surrounds the winding.
5	Average length of core is more.	Average length of core is less.
6	Area of cross section is less so more turns are required.	Area of cross section is more so less turns are required.
7	Better cooling for winding	Better cooling for core
8	Mechnical strength is less	Mechnical strength is high
9	Repair and maintenance is easy	Repair and maintenance is difficult
10	Application: Low current, high voltage	Application: High current, low voltage

4 Attempt any THREE of the following:
Each point
1 Mark
(any four
points)
$=4$ Marks

4 a) Give any four selection criteria for :
i) Distribution transformer
ii) Power transformer

Ans:

Selection Criteria for Distribution Transformer:

i) Ratings - The kVA ratings should comply with IS:2026 (Part 1)-1977*. The noload secondary voltage should be 433 volts for transformers to be used in 415 V system. Voltage should be normally in accordance with IS:585-1962 except for special reasons when other values may be used.

1 Mark for each of any two criteria $=2$ Marks
ii) Taps - The transformers of these ratings are normally provided with off-circuit taps on HV side except in special cases when on-load tap changers are specified. The standard range for off-circuit taps which are provided on HV side should be of 2.5 percent and of 5.0 percent. In case of on-load tap changers, the taps may be in steps of 1.25 percent with 16 steps. The positive and negative taps shall be specified to suit the system conditions in which the transformer is to be operated.
iii) Connection Symbol - The two winding transformers should be preferably connected in delta/star in accordance with IS:2026 (Part 4)-1977s. The exact connection symbol (Dyn11or Dyn1) is to be specified depending upon requirements of parallel operation.

Winter - 2019 Examinations
 Model Answers
 Subject \& Code: Electric Motors and Transformers (22418)

iv) Impedance - Consideration shall be given in the selection of impedance for the standard available rating of the switchgear on the secondary side and associated voltage drops.
v) Termination Arrangement - The HV and LV terminals may be bare outdoor bushings, cable boxes or bus trunking depending upon the method of installation. Wherever compound filled cable boxes are used, it is preferable to specify disconnecting chamber between transformer terminals and cable box to facilitate disconnection of transformer terminals without disturbing the cable connections (see also IS:9147-1979). In case of extruded insulation cables with connections in air, a separate disconnecting chamber is not necessary.
vi) Cooling - The transformers covered in this group are generally ONAN, AN

Selection Criteria for Power Transformer:

1) Ratings - The kVA ratings should comply with IS: 10028 (Part l)-1985. The noload secondary voltage should be 5% more than nominal voltage to compensate the transformer regulation partly. The transformer required to be operated in parallel, the voltage ratio should be selected in accordance with guidelines given in 12.0.1 \& 12.0.1.1 of IS:10028 (Part 1)-1985
2) Taps - On-Load tap changers on HV side should be specified, wherever system conditions warrant. In case of OLTC, total number of taps should be 16 in steps of 1.25%. The standard range for off-circuit taps which are provided should be in range of +2.5 percent and +5 percent.
3) Connection Symbol - The preferred connections for two winding transformers should be preferably connected in delta/star (Dyn) and star/star (YNyn). For higher voltage connections star/star (YNyn) or star/delta (YNd) may be preferred accordance with IS:10028 (Part l)-1985.
4) Impedance -The transformer impedance is decided taking into consideration the secondary fault levels and voltage dip. The typical values are given in table 3 of IS:2026.
5) Termination Arrangement - The HV and LV terminals may be bare outdoor bushings, cable boxes or bus trunking depending upon the method of installation. Wherever compound filled cable boxes are used, it is preferable to specify disconnecting chamber between transformer terminals and cable box to facilitate disconnection of transformer terminals without disturbing the cable connections (see also IS:9147-1979). In case of extruded insulation cables with connections in air, a separate disconnecting chamber is not necessary.
6) Cooling - The transformers covered in this group are generally ONAN, ONAN/ONAF, ONAN/ONAF/OFAF.

4 b) With the help of neat diagram, describe the procedure to carry out phasing out test on a

1 Mark for each of any two criteria $=2$ Marks

Winter - 2019 Examinations
 Model Answers
 Subject \& Code: Electric Motors and Transformers (22418)

3-phase transformer. Also state the purpose of conducting this test on 3 phase transformer.
Ans:

v) The switch ' S ' is connected as shown in fig. When switch is closed, deflection of galvanometer is observed.
v) Similarly galvanometer is connected to other secondary terminals and procedure is repeated. The winding across which maximum deflection occurs is the secondary phase winding that corresponds to primary winding to which source is connected.
vi) The procedure is repeated for remaining primary windings.
vii) Phasing out test can be carried out by using AC voltage source also. Voltmeter is connected at secondary terminals to observe deflections.
The purpose of this test is to check the respective phases of primary \& secondary windings in 3 -ph transformer.

4 c) Explain with the neat circuit diagram only the scott connection scheme for conversion of three phase supply to two phase supply. Name one application of the same.
Ans:
Three-phase to Two-phase Transformation (Scott Connection of Transformers):

Working:

i) Scott connection can be used for three-phase to two-phase conversion using two single-phase transformers.
ii) Scott connection for three-phase to two-phase conversion is as shown in figure.
iii) Point ' O ' is exactly at midpoint of winding connected between phases Y \& B .
iv) The no. of turns of primary winding will be $\frac{\sqrt{3}}{2} \mathrm{~N}_{1}$ for Teaser and N_{1} for main transformer. The no. of secondary turns for both the transformers are N_{2}.

1 Mark for circuit diagram

2 Marks for steps of procedure

1 Mark for purpose

1 Marks for diagram

2 Marks for explanation

Winter - 2019 Examinations
 Model Answers

Subject \& Code: Electric Motors and Transformers (22418)

v) When three-phase supply is given to primary, two-phase emfsare induced in secondary windings as per turns ratio \& mutual induction action.
vi) It is seen that the voltage appearing across the primary of main transformer is $\mathrm{V}_{1 \mathrm{M}}=\mathrm{V}_{\mathrm{L}}$ i.e line voltage. The voltage induced in secondary of main transformer is $V_{2 M}$ which is related to $V_{1 M}$ by turns ratio $N_{1}: N_{2}$.
vii) From phasor diagram it is clear that the voltage appearing across the primary of Teaser transformer corresponds to phasor RO which is $\frac{\sqrt{3}}{2}$ times the line voltage V_{L}. Due to this limitation, the turns selected for primary of Teaser transformer are not N_{1} but $\frac{\sqrt{3}}{2} N_{1}$. This makes the volts per turn in teaser transformer same as that in main transformer and results in voltage induced in secondary of teaser transformer same as that in main transformer, i.e $\mathrm{V}_{2 \mathrm{~T}}=\mathrm{V}_{2 \mathrm{M}}$.
As seen from the phasor diagram, the output voltages to the two loads are identical.

Applications:

i) The Scott-T connection is used in an electric furnace installation where it is desired to operate two single-phase loads together and draw the balanced load from the three-phase supply.
ii) It is used to supply the single phase loads such as electric train which are so scheduled as to keep the load on the three phase system balanced as nearly as possible.
iii) The Scott-T connection is used to link a 3-phase system with a two-phase system with the flow of power in either direction.

4 d) In $20 \mathrm{kVA}, 1000 / 400 \mathrm{~V}, 1-\mathrm{ph}, 50 \mathrm{~Hz}$ transformer, iron and full load copper losses are $300 \mathrm{~W} \& 500 \mathrm{~W}$ respectively. Calculate the efficiency at $3 / 4$ full load at unity power factor.
Ans:

Given Data:

T/F rating $20 \mathrm{kVA}, 1000 / 400 \mathrm{~V}, 1 \mathrm{ph}, 50 \mathrm{~Hz}$.
F.L.Cu loss $=500 \mathrm{~W}$ Iron Loss $=300 \mathrm{~W}$,

For $3 / 4$ full-load, $x=3 / 4$
Cu loss $=(\mathrm{x})^{2} \times$ Full-load Cu loss $=(3 / 4)^{2} \times 500=281.25 \mathrm{~W}=0.28125 \mathrm{~kW} \quad 1$ Mark
T / F Output $=3 / 4 \times 20=15 \mathrm{kVA}$
Total losses at $3 / 4$ full-load $=300+281.25=581.25=0.58125 \mathrm{~kW}$
$\% \eta$ at unity pf and $3 / 4$ full-load $=\frac{\text { Output } \times \text { p. } \mathrm{f} \times 100}{\text { output } \times \text { p. } \mathrm{f}+\text { Losses }}$
1 Mark for any one application

1 Mark

$$
\% \eta=96.27 \%
$$

Winter - 2019 Examinations
 Model Answers

Subject \& Code: Electric Motors and Transformers (22418)
4 e) Explain with circuit diagram use of potential transformer to measure 33 kV .
Ans:

2 Marks for circuit diagram

Circuit Diagram of PT:

i) Higher voltage ' 33 kV ' is the voltage to be measured
ii) Primary of PT is connected across this voltage

2 Marks for
iii) PT is step down transformer
iv) Due to PT, voltage across voltmeter gets reduced by a factor equal to the turns ratio of PT. Hence low range voltmeter is used to measure voltage.
v) The secondary voltage is given by, $\mathrm{V}_{2}=\mathrm{V}_{1} \times\left(\mathrm{N}_{2} / \mathrm{N}_{1}\right)$
The secondary voltage of PT is standardized to 110 V . The ratio of PT required for this measurement is $(33000 / 110)=300: 1$

5 Attempt any TWO of the following:
5 a) A 250 V shunt motor on no load runs at 1000 rpm and takes 5 A . The total armature and shunt field resistance are respectively 0.2Ω and 250Ω. Calculate the speed when loaded and taking a current of 50 A , if armature reaction weaken on field by 3%.

Ans:

Motor I/P current , $\mathrm{I}_{\mathrm{L} 1}=5 \mathrm{~A}$ at no-load
Field current , $\mathrm{I}_{\mathrm{f} 1}=($ Applied voltage/Field resistance $)$

$$
\begin{aligned}
& =250 / 250 \\
& =1 \mathrm{~A} \\
& =\text { Motor } \mathrm{I} / \mathrm{F} \\
& =5-1=4 \mathrm{~A}
\end{aligned}
$$

Armature current $\mathrm{I}_{\mathrm{a} 1}=$ Motor I/P current - Field current
At a load current of 50 A , the armature reaction weakens the field by 3%,
The back emf $\mathrm{E}=\mathrm{K} \emptyset N$, where K is proportionality constant and $\mathrm{E}=\mathrm{V}-I_{a} R_{a}$

$$
\begin{aligned}
& \frac{E_{1}}{E_{2}}=\frac{\emptyset_{1} N_{1}}{\emptyset_{2} N_{2}} \\
& N_{2}=\frac{\emptyset_{1} N_{1} E_{2}}{\emptyset_{2} E_{1}}
\end{aligned}
$$

Due to armature reaction, the field is weakened by 3%,

1 Mark

$$
\therefore \mathrm{N}_{2}=\frac{(1)(1000)\left(\mathrm{V}-\mathrm{I}_{\mathrm{a} 2} \mathrm{R}_{\mathrm{a}}\right)}{(0.97)\left(\mathrm{V}-\mathrm{I}_{\mathrm{a} 1} \mathrm{R}_{\mathrm{a}}\right)}
$$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2013 Certified)

Winter - 2019 Examinations

Model Answers

Subject \& Code: Electric Motors and Transformers (22418)

$$
\begin{aligned}
& \therefore \mathrm{N}_{2}=\frac{(1)(1000)[250-49 \times 0.2]}{(0.97)[250-4 \times 0.2]} \\
& \therefore \mathrm{N}_{2}=\frac{240200}{241.724}
\end{aligned}
$$

1 Mark
$\therefore \mathrm{N}_{2}=993.69 \mathrm{rpm}$
5 b) List the Conditions for parallel operation of three phase transformer.
Ans:
Conditions for Parallel operation of $\mathbf{3}$ phase transformer:

1) Voltage ratings of both the transformers must be identical.
2) Phase sequence of both must be same.
3) Transformer connections must be carried out polarity wise.
4) Vector group of both the transformers must be same.
5) Percentage / p.u. impedances should be equal in magnitude.
6) X / R ratio of the transformer windings should be equal.

5 c) A 500 kVA , distribution transformer having copper and iron losses of 5 kW and 3 kW respectively on full load. The transformer is loaded as shown below:

Loading (KW)	Power Factor (lag)	No. of hrs.
400	0.8	06
300	0.75	12
100	0.8	03
No load	------	03

Calculate the all day efficiency.
Ans:
The problem can be solved by using following steps:
Step-I Calculate output energy in KWh
Step-II : Convert the loading from kW to KVA
Step-III : Calculate copper losses at different KVA values
Step-IV: Calculate copper losses in 24 hours
Step-V: Calculate iron losses in 24 hours
Step-VI: Calculate All day efficiency

No of Hrs	Load in KW	P.F.	Output energy in kWh= load in KW \times No.of hrs	$\begin{gathered} \text { Load in } \\ \text { KVA= } \\ \frac{\text { LoadinKW }}{\cos \emptyset} \end{gathered}$	Copper Losses/hr = Losses at F.L. $\times\left(\frac{\text { ActualKVA }}{\text { RatedKVA }}\right)^{2}$	Total cu Losses in kwh	Total Iron losses
06	400	0.8	2400	$\frac{400}{0.8}=500$	$\begin{gathered} 5 \mathrm{kw} \times\left(\frac{500}{500}\right)^{2}= \\ 5 \mathrm{kw} \end{gathered}$	$\begin{aligned} & 5 \times 6 \mathrm{hr} \\ = & 30 \mathrm{kWh} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~kW} \times \\ & 24 \mathrm{hr} \end{aligned}$
12	300	0.75	3600	$\frac{300}{0.75}=400$	$\begin{gathered} 5 \mathrm{kw} \times\left(\frac{400}{500}\right)^{2}= \\ 3.2 \mathrm{kw} \end{gathered}$	38.4	
03	100	0.8	300	$\frac{100}{0.8}=125$	$\begin{gathered} 5 \mathrm{kw} \times\left(\frac{125}{500}\right)^{2}= \\ 0.3125 \mathrm{kw} \end{gathered}$	0.9375	

1 Mark for each row calculations $=4$ Marks

Winter - 2019 Examinations

Model Answers
Subject \& Code: Electric Motors and Transformers (22418)

03	0	-	-	0	0	0	
Total			6300kwh			69.337kwh	72kwh
Efficiency - Output Energy in 24 hrs							
Efficiency $_{\text {Allday }}=\frac{{ }_{\text {Output Energy in } 24 \text { Hrs }+ \text { Losses in } 24 \mathrm{Hrs}}^{6300}}{6300}$							
$=\overline{6300+69.337+72}=\frac{6341.337}{64}=0.978$							

6 Attempt any TWO of the following:
1 Mark

1 Mark

6 a) Explain with the help of neat diagram, the following methods of speed control for DC series motor.
i) Field diverter method.
ii) Tapped field method.

Ans:

i) Field diverter method:

- Resistance connected in parallel with field winding.
- By adjusting this resistance current can by diverted from field winding.
- Thus field current decreases and the speed can be increased above rated speed.

ii) Tapped field method :
- Selector switch is moved from position 1 onwards.
- The number of field turns decreases which decrease mmf.
- Hence the speed increases above the rated speed.

6 b) Explain with the help of neat diagram working of 3 phase autotransformer. Write any two application.
Ans:
Working of three phase autotransformer:

- Working principle of Auto-transformer is based on self-induction.
- When three-phase ac supply is given to star connected three windings, flux is produced and gets linked with each phase winding. The emf is induced in it according to self-induction.
- As only one winding per phase is available, part of it acts as secondary between

Winter - 2019 Examinations

Model Answers
Subject \& Code: Electric Motors and Transformers (22418)
variable terminal and neutral.

- Depending upon the position of variable terminal, we get variable AC voltage at the output.

Applications:

1) It is used as power transformer in transmission system for $110 \mathrm{kV}, 132 \mathrm{kV}$ and 220 kV voltage levels
2) It is used as autotransformer starter for starting high capacity motors.

6 c) Explain the effect of Harmonics on the Transformer.
Ans:

Effect of Harmonics on the Transformer:

1. Core loss: Harmonic voltage increases the hysteresis and eddy current losses in the lamination. The amount of the core loss depends on harmonic present in supply voltage.
2. Copper loss: Harmonic current increases copper loss. The loss mainly depends on the harmonics present in the load and effective ac resistance of the winding. Copper loss increase temperature and create hot spots in that transformer. The effect is prominent in the case of converter transformers. These transformers do not benefit from the presence of filters as filter are normally connected on the AC. system side.
3. Stress: Voltage harmonics increase stresses of the insulation,
4. Core vibration: Current and voltage harmonics increase small core vibrations.
5. Saturation problem: Sometimes additional harmonic voltage causes core saturation.

2 Marks

1 Mark for two applications

2 Marks for each of any three effects $=6$ Marks

