Subject title: Fluid Flow Operation

Subject code 22409

Page 1 of 17

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject title: Fluid Flow Operation
Subject code 22409
Page 2 of 17

		Answer	Marking scheme
		Attempt any FIVE of the following	10
1	a	Definition of Fluid static: The branch of fluid mechanics which deals with the study of fluids at rest. Fluid dynamics: The branch of fluid mechanics which deals with the study of fluids in motion.	1 1
1	b	Eg for Newtonian fluid (any two) $\mathrm{H}_{2} \mathrm{O}, \mathrm{CHCl}_{3}$, gases, low viscosity liquids Eg for Newtonian fluid (any two) Complex fluid like rubber latex, sewage sludge, polymer solutions, starch solutions, toothpaste, tomato ketch up.	1/2 mark each $1 / 2$ mark each
1	c	SI units of Volumetric flow rate: $\mathrm{m}^{3} / \mathrm{s}$ Mass flow rate: kg / s Density: $\mathrm{kg} / \mathrm{m}^{3}$ Reynolds number: no unit (Dimensionless number)	$1 / 2$ mark each
1	d	Different flow meter (any four): Orifice meter, venturimeter, rotameter, pitot tube	$\begin{gathered} 1 / 2 \text { mark } \\ \text { each } \end{gathered}$
1	e	Definition of NPSH: Net Positive Suction Head is the amount by which the pressure at the suction point of the pump (sum of velocity head and suction head) is in excess of the vapour pressure of the liquid	2

Subject title: Fluid Flow Operation
Subject code
22409
Page $\mathbf{3}$ of $\mathbf{1 7}$

\begin{tabular}{|c|c|c|c|}
\hline 1 \& f \& \begin{tabular}{l}
Parts of pump (any four): \\
Suction pipe, delivery pipe, pump casing, impeller or cylinder with a reciprocating element or a rotating element, suction valve, delivery valve
\end{tabular} \& \begin{tabular}{l}
\(1 / 2\) mark \\
each
\end{tabular} \\
\hline 1 \& g \& \begin{tabular}{l}
Two vacuum generating equipment: \\
Jet ejectors, vacuum pumps, vacuum blowers
\end{tabular} \& 1 mark each \\
\hline 2 \& \& Attempt any THREE of the following \& 12 \\
\hline 2 \& a \& \begin{tabular}{l}
Newton's law of viscosity: \\
It states that shear stress \(\tau\) (\(\mathrm{F} / \mathrm{A})\) is proportional to shear rate or velocity gradient (du / dy) and the proportionality constant is called viscosity (\(\mu\)) of the fluid. \\
Shear stress \(\alpha\) shear rate
\[
\begin{aligned}
\& (F / A) \alpha(d u / d y) \\
\& (F / A)=\mu(d u / d y)
\end{aligned}
\] \\
Principle of hydrostatic equilibrium: \\
Pressure exerted by a fluid is the force exerted by the fluid on the walls of the container. The principle of hydrostatic equilibrium states that the pressure at any point in a fluid at rest is due to the weight of the overlying fluid.
\end{tabular} \& 2

2

\hline 2 \& b \& Diagram of Venturimeter: \& 2 marks for diagram and 2 marks for labeling.

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-19 EXAMINATION
Model Answer

Subject title: Fluid Flow Operation

$$
\text { Subject code } 22409
$$

Page 4 of 17

2	c	Purpose of fitting: (i) Tee: For branching the pipe in 3 directions. (ii) Cross: For branching the pipe in 4 directions. (iii) Plug: To close the end of the pipe. (iv) Bend: For changing the direction of flow.	1 mark each
2	d	Classification of pumps: Pumps can be classified as Positive Displacement Pump and Centrifugal pumps. Positive Displacement Pumps are classified into Reciprocating pumps and Rotary pumps. There are different types of reciprocating pumps like Piston pump, Plunger pump, diaphragm pump etc. There are different types of rotary pumps like gear pump, lobe pump, screw pump etc. Reciprocating pumps can be single acting or double acting pumps. Depending on the number of cylinders, the reciprocating pumps can also be classified as simplex, duplex and triplex pumps.	4
3		Attempt any THREE of the following	12
3	a	Derivation of equation of continuity: Mass balance states that for a steady state flow system, the rate of mass entering the flow system is equal to that leaving the system provided accumulation is either constant or nil. Let $v_{1}, \rho_{1} \& A_{1}$ be the avg. velocity, density\& area at entrance of tube \& v_{2}, $\rho_{2} \& A_{2}$ be the corresponding quantities at the exit of tube.	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-19 EXAMINATION
Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 5 of 17

| | Let \dot{m} be the mass flow rate
 Rate of mass entering the flow system $=\mathrm{v}_{1} \rho_{1} \mathrm{~A}_{1}$
 Rate of mass leaving the flow system $=\mathrm{v}_{2} \rho_{2} \mathrm{~A}_{2}$
 Under steady flow conditions
 $\dot{m}=\rho_{1} \mathrm{v}_{1} \mathrm{~A}_{1}=\rho_{2} \mathrm{v}_{2} \mathrm{~A}_{2}$
 $\dot{m}=\rho \mathrm{A}=$ constant | 2 |
| :--- | :--- | :--- | :--- |

WINTER-19 EXAMINATION

Subject title: Fluid Flow Operation
Subject code
22409
Page 6 of 17

WINTER-19 EXAMINATION

Model Answer
Subject title: Fluid Flow Operation \quad Subject code 22409

Page $\mathbf{7}$ of $\mathbf{1 7}$

		Less than 30 kPa. The pressure developed depends on the type of compressor. Reciprocating compressor develop high pressure than centrifugal compressor.	
4		Attempt any THREE of the following	12
4	a	$\mathbf{P}_{1}-P_{2}=h\left(\rho_{m}-\rho\right) g$ (Derivation) Let $\mathrm{P}_{1}=$ pressure acting due to process at point 1 $\mathrm{P}_{2}=$ Pressure acting due to process at point 2 (if right leg is open to atmosphere, P_{5} is atmospheric pressure) ρ_{m} - density of manometric fluid ρ - Density of flowing fluid	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-19 EXAMINATION
Model Answer

Subject title: Fluid Flow Operation \quad Subject code 22409
Page $\mathbf{8}$ of $\mathbf{1 7}$

		The differential pressure acting across the manometer can be determined by using principle of hydrostatic equilibrium. As per this principle, pressure exerted by height of liquid column can be expressed as $\mathrm{P}=\rho \mathrm{gh}$ Where h is the height of liquid column (m) By applying this principle, pressure acting at point 1 can be expressed as $\begin{equation*} \mathrm{P}=\mathrm{P}_{1} \tag{2} \end{equation*}$ At point 2 in left limb $\begin{equation*} \mathrm{P}_{2}=\mathrm{P}_{1}+(\mathrm{x}+\Delta \mathrm{h}) \rho \mathrm{g} \tag{3} \end{equation*}$ By using the principle that fluid exert same pressure at same level, we can write $\quad P_{2}=P_{3}$ \qquad $\begin{equation*} \mathrm{P}_{3}=\mathrm{P}_{2}=\mathrm{P}_{1}+(\mathrm{x}+\Delta \mathrm{h}) \rho \mathrm{g} \tag{4} \end{equation*}$ Similarly pressure exerted at point 4 will be less than P_{3} by magnitude equal to pressure exerted by mercury column of height Δh $\begin{equation*} \mathrm{P}_{4}=\mathrm{P}_{3^{-}} \Delta \mathrm{h} \rho_{\mathrm{m}} \mathrm{~g} \tag{6} \end{equation*}$ Using similar procedure, we can write P_{5} as $\begin{equation*} \mathrm{P}_{5}=\mathrm{P}_{4}-\mathrm{x} \rho \mathrm{~g} \tag{7} \end{equation*}$ Substituting the value of P_{3} and P_{4} from equation (5) and (6), $P_{5}=P_{3}-\Delta h \rho_{m} g-x \rho g=P_{1}+(x+\Delta h) \rho g-\Delta h \rho_{m} g-x \rho g$ P_{1} is upstream pressure and P_{5} is downstream pressure $\mathrm{P}_{1}>\mathrm{P}_{5}$ Simplifying the above equation, we get $P_{1}-P_{5}=\Delta h(\rho m-\rho) g$ $\Delta \mathbf{P}=\Delta h(\rho m-\rho) g$	3
4	b	Kinematic viscosity $\mathrm{v}=30$ stokes $=30 \mathrm{~cm}^{2} / \mathrm{s}=30^{*} 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$ $\mathrm{D}=200 \mathrm{~mm}=0.2 \mathrm{~m}$	

Subject title: Fluid Flow Operation

Subject code 22409

Page 9 of 17

		$\begin{aligned} & \mathrm{Q}=25 \mathrm{l} / \mathrm{s}=25^{*} 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\ & \text { Area of pipe }=\frac{\Pi}{4} D^{2}=\left(3.14^{*} 0.2^{2}\right) / 4=0.0314 \mathrm{~m}^{2} \\ & \text { Velocity } \mathrm{u}=\mathrm{Q} / \mathrm{A}=0.025 / 0.0314=0.796 \mathrm{~m} / \mathrm{s} \\ & \mathrm{~N}_{\mathrm{Re}}=\frac{\mathrm{Du}}{\mathrm{v}}=0.2 * 0.796 /\left(30^{*} 10^{-4}\right)=\mathbf{5 3 . 0 6} \end{aligned}$ Since NRe is less than 200, flow is laminar	1 1 1
4	c	Calibration of Rotameter with graph Calibration of Rotameter is establishing a relation between volumetric flow rate and float position. Step wise procedure for calibration of Rotameter is as follows. i. Connect the rotameter in fluid circuit consisting of flow measuring tank, pipe line arrangement and pump. ii. Rotameter should be connected vertically. iii. Start the flow of fluid through the Rotameter. iv. Note down the float position by referring to scale fixed adjacent to Rotameter tube. v. Collect fixed volume of fluid and note down the time required for collection. vi. By varying the flow, note down the float position and corresponding volumetric flow rate by collecting certain volume of fluid and noting down the time for collection each time. vii. Vary the float position over the entire height of Rotameter tube. viii. Plot calibration curve between height of float and corresponding volumetric flow rate	3

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

WINTER-19 EXAMINATION
Model Answer

Subject title: Fluid Flow Operation
Subject code 22409
Page 10 of 17

			1
4	d	Characteristic curves of a centrifugal pump : Characteristics curve can also be called as performance curve. Generally variation of flow rate, impeller speed varies head developed, power output and efficiency. Even though optimum parameter corresponding to maximum efficiency are specified, actual operating conditions may vary. Characteristics curve consists of $\Delta \mathrm{H}$ vs Q (Head vs Discharge or volumetric flow rate	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-19 EXAMINATION
Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 11 of 17

		η vs Q (efficiency vs Discharge or volumetric flow rate) P_{B} vs Q (power input vs Discharge or volumetric flow rate) $\mathrm{P}_{\mathrm{f}} \mathrm{Vs} \mathrm{Q}$ (power output vs Discharge or volumetric flow rate)	
4	e	Comparison between reciprocating compressor and centrifugal compressor:	2 marks each
5		Attempt any TWO of the following	12
5	a	Data: Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Viscosity of water $=\mu=0.0008 \mathrm{~kg} / \mathrm{m} . \mathrm{s}$ Fanning Friction factor $f=0.0001$ Diameter of pipe $=\mathrm{d}=25 \mathrm{~mm}=0.025 \mathrm{~m}$ Area of pipe: $\mathrm{A}=\pi / 4 \mathrm{D}^{2}=\pi / 4^{*}(0.025)^{2}=0.0004906 \mathrm{~m}^{2}$ Length of pipe $=\mathrm{L}=100 \mathrm{~m}$ Mass flow rate $(\dot{m})=1 \mathrm{~kg} / \mathrm{s}$ $\begin{gathered} \text { As } \dot{m}=\rho \mathrm{u} . \mathrm{A} \\ \dot{m}=1000 * \mathrm{u} * 0.0004906 \\ \mathrm{u}=2.04 \mathrm{~m} / \mathrm{s} \end{gathered}$	2 1

Subject title: Fluid Flow Operation
Subject code
22409
Page 12 of 17

\begin{tabular}{|c|c|c|c|}
\hline \& \& The pressure drop through a pipe is given by
$$
\begin{gathered}
\Delta P=\frac{4 f L \rho u^{2}}{2 D} \\
\Delta P=\frac{4 * 0.0001 * 100 * 1000 *(2.04)^{2}}{2 * 0.025} \\
\Delta P=3329.28 \frac{N}{m^{2}}=3.32928 * 10^{3} \mathbf{3 k N} / \mathrm{m}^{2}
\end{gathered}
$$ \& 1

2

\hline 5 \& b \& | Data : |
| :--- |
| Diameter of orifice: $\mathrm{d}_{0}=25 \mathrm{~mm}=0.025 \mathrm{~m}$ |
| Diameter of pipe: $\mathrm{D}=50 \mathrm{~mm}=0.05 \mathrm{~m}$ |
| Coefficient of orifice $=\mathrm{C}_{\mathrm{o}}=0.62$ |
| Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$ |
| Density of mercury $=13600 \mathrm{~kg} / \mathrm{m}^{3}$ |
| Area of orifice $=\mathrm{A}_{0}=\pi / 4 \mathrm{~d}_{0}{ }^{2}=\pi / 4(0.025)^{2}=4.906 * 10^{-4} \mathrm{~m}^{2}$ |
| $\beta=$ Diameter of throat $/$ Diameter of pipe $=25 / 50=0.5$ |
| Pressure drop across the meter $=\Delta \mathrm{h}=11 \mathrm{~cm}=0.11 \mathrm{~m}$ of mercury |
| Let's find out the value of pressure drop in terms of process fluid(water) ΔH $\begin{aligned} & \Delta H=\Delta h\left[\frac{\rho_{\mathrm{Hg}-} \rho_{\mathrm{H}_{2 O}}}{\rho_{\mathrm{H}_{2 O}}}\right] \\ & \Delta H=0.11\left[\frac{13600-1000}{1000}\right]=1.386 \mathrm{~m} \text { of water } \end{aligned}$ |
| The flow equation of orificemeter is $Q=\frac{C_{o} A_{o}}{\left(1-\beta^{4}\right)} \cdot \sqrt{2 g \Delta H}$ $Q=\frac{0.62 \times 4.906 \times 10^{-4}}{\sqrt{\left(1-0.5^{4}\right)}} \cdot \sqrt{2 \times 9.81 \times 1.386}=1.691 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$ |
| Volumetric flow rate $Q=\mathbf{1 . 6 9 1} \times \mathbf{1 0}^{-\mathbf{3}} \mathrm{m}^{\mathbf{3}} / \mathrm{s}$ | \& 1

1

1

\hline 5 \& c \& Single acting reciprocating pump: Diagram \&

\hline
\end{tabular}

Subject title: Fluid Flow Operation \quad Subject code 22409
Page 13 of 17
Working:
Reciprocating pump consists of a piston or plunger which reciprocates in
stationary cylinder. Suppose the piston is initially at extreme left position and
when crank rotates thro 180°,piston moves to extreme right position.
Therefore due to outward movement of piston, a partial vacuum is created in
cylinder, which enables the atmospheric pressure acting on the liquid surface
in the sump below to force the liquid up the suction pipe \& fill the cylinder by
forcingly opening the suction valve(it is called as a suction stroke). When the
crank rotates thro further $180^{\circ}{ }^{\circ}$,piston moves inwardly from its extreme right
position towards left. The inward movement of piston causes the pressure of
liquid in the cylinder to rise above atmospheric pressure,because of which the
suction valve closes \& delivery valve opens. The liquid is then forced up the
delivery valve \& raised to the required height (Delivery stroke).

Subject title: Fluid Flow Operation \quad Subject code 22409
Page 14 of 17

6		Attempt any TWO of the following	$\mathbf{1 2}$
6	Steam Jet Ejector Diagram		
Working: An ejector has two inlets: one to admit the motive fluid, usually steam (inlet 1), and the other to admit the gas/vapour mixture to be evacuated or pumped (inlet 2). Motive steam, at high pressure and low velocity, enters the inlet 1 and exits the steam nozzle at design suction pressure and supersonic velocity, entraining the vapour to be evacuated into the suction chamber through inlet 2. The nozzle throat diameter controls the amount of steam to pass through the nozzle at a given pressure and temperature. The entrained gas/vapour flow and the motive fluid (steam) flow mix while they move through the converging section of the diffuser, increasing pressure and reducing velocity. The velocity of this mixture is supersonic and the decreasing cross sectional area creates an overall increase in pressure and a	3		

		decrease in velocity. The steam slows down and the inlet gas stream picks up speed and, at some point in the throat of the diffuser, their combined flow reaches the exact speed of sound. A stationary, sonic-speed shock wave forms there and produces a sharp rise in absolute pressure. Then, in the diverging section of the diffuser, the velocity of the mixture is sub-sonic and the increasing cross sectional area increases the pressure but further decreases the velocity.	
6	b	Pipe length: 30 m Pipe $\mathrm{ID}=25 \mathrm{~mm}=0.025 \mathrm{~m}$ Mass flow rate $=1.3 \mathrm{~kg} / \mathrm{s}$ Height difference between the level of acid in tank and discharge point $=12 \mathrm{~m}$ Viscosity of acid $=0.025 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ Density of acid $=1840 \mathrm{~kg} / \mathrm{m}^{3}$ Pump efficiency $=55 \%$ Area of pipe $\mathrm{A}=\pi / 4 \mathrm{D}^{2}=\pi / 4 *(0.025)^{2}=0.0004906 \mathrm{~m}^{2}$ Mass flow rate $(\dot{m})=1.3 \mathrm{~kg} / \mathrm{s}$ $\begin{array}{r} \dot{m}=\rho \mathrm{u} . \mathrm{A} \\ \mathrm{u}=1.3 /(0.0004906 * 1840)=1.44 \mathrm{~m} / \mathrm{s} \end{array}$ To predict the type of flow, value of Reynold's number must be calculated. $\begin{gathered} \mathrm{As}_{\mathrm{Re}}=\frac{D . u \rho}{\mu} \\ \mathrm{~N}_{\mathrm{Re}}=\frac{0.025 \times 1.44 * 1840}{0.025}=2650 \end{gathered}$ As $\mathrm{N}_{\mathrm{Re}}>2100$ and < 4000, the flow is in a transition region and for practical purpose ,it is treated as turbulent. For turbulent flow, Fanning friction factor	1 1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

WINTER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 16 of 17

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-19 EXAMINATION
Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 17 of 17

