MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page 1 of 19

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page 2 of 19

Q	No.	Answer	Marking
			scheme
	1	Attempt any FIVE of the following	10
1	a	Definition	1
		(i)Drift:	
		Drift is the gradual shift in the indication or record of the instrument over an	
		extended period of time during which the true value of the variable does not	
		change	
		(ii) Sensitivity:	1
		It is the smallest change in the value of the measured variable to which an	
		instrument responds.	
1	b	Temperature measuring instruments: (any four)	½ mark
		RTD, thermocouple, thermistor, mercury in-glass thermometer, bimetallic	each
		thermometer, radiation pyrometer, optical pyrometer	
1	С	Pressure measuring instruments: (any four):	½ mark
		LVDT, bellows pressure gauge, diaphragm pressure gauge, strain gauge, Force	each
		balance pressure gauge (Dead weight pressure gauge) Bourdon tube pressure	
		gauge, Mc Leod gauge etc.	
1	d	Electrical temperature measuring devices:	2
		RTD, thermocouple, thermistor	
1	e	Flow meters used for flow measurement (any four):	½ mark
		Rotating vane meter, ultrasonic flow meter, Piston type flow meter, thermal	each
		flow meter, electromagnetic flow meter.	
1	f	Types of controllers:	½ mark

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page **3** of **19**

	1.On-Off or Two position controller	each for
	2. Proportional (P)controller	any 4
	3. Integral (I)controller	
	4. Derivative (D) controller	
	5. PD controller	
	6. PI controller	
	7. PID controller	
2	Attempt any THREE of the following	12
2 a	Construction of rotameter:	
	Flow Out -90 -80 -70 -60 -50 -40 -30 -10 -40 -30 -10 -10 -8 (Scale)	
	It consists of a tapered glass tube mounted vertically with smaller end on the lower side. A float is installed in the tube after the meter is mounted in the flow line. Floats are usually made of corrosion resistant metals like aluminium, bronze, monel, nickel etc. Usually a series of slanting notches are cut in the underside of float rim that gives rotation to float so as to reduce the friction. Float material decides the flow range of the rotameter. Flow scale is marked on the glass tube. Rotameter is installed in the pipeline by means of flanges or threads along with the inlet and outlet piping supported in bracket.	4

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

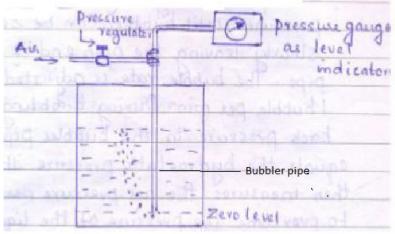
Page **4** of **19**

2	b	Temperature scales with ice point and boiling point of water (any four):				
		Temperature scale	Ice point	Boiling point	each	
		Centigrade or Celsius	0°C	100°C		
		Kelvin	273K	373K		
		Fahrenheit	32°F	212°F		
		Rankine	491.69°R ¹	671.69 °R ¹		
		Reaumur	0°R	80 °R		
2	С	Dead weight tester:	L			
		Principle:				
		It works on the principle	that the downward t	force of the weight on the top of	2	
		the piston is balanced by	the pressure exerted	by the fluid beneath the piston		
		Working:				
		For calibration purpose, f	first a known (calcul	ated) weight is placed on the		
		platform and the fluid pre	essure is applied on	the other end of the piston until	2	
		enough force is develope	d to lift the piston-w	veight combination and the piston		
		floats freely within the cy	linder when the flui	id gauge pressure equals the dead		
		weight divided by the pis	ton area.			
2	d	Air purge method for of	f level measuremen	nt:		
		Principle:				
		When liquid is held in a	tank, then it exerts	equal pressure on the walls of the		
		tank. Such a pressure is	due to the weight	of liquid present above a certain		
		reference point or base ar	nd is called hydrosta	tic head or pressure.	2	
		Air purge system works of	on measuring the pro	essure required to force a gas into		
		a liquid at a point beneath	n the surface. This n	nethod uses a source of clean gas		
		or air and is connected th	rough a restriction t	o a bubble tube immersed at a		

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION **Model Answer**

Subject title: Chemical Instrumentation & Process Control


Subject code

22407

Page **5** of **19**

fixed depth in to the vessel.

Explanation(construction/working):

ion/

Construction:

The air purge system consists of a 1 inch bubbler pipe installed vertically having its open end 3 inch above the bottom of the vessel containing the liquid. The other end of bubbler pipe has two connections; out of which one is connected to regulated metered and filtered air or gas supply while the other is connected to pressure gauge.

Working:

To make level measurement, the air supply is adjusted so that the pressure is slightly higher than the pressure due to the height of the liquid and bubbles can be seen slowly leaving the open end of the pipe. The bubble rate is adjusted as 1 bubble / minute. During bubbling, the back pressure in the bubbler pipe exactly equals the hydrostatic pressure. The gauge then measures the air pressure needed to overcome the pressure of the liquid.

Construct

Working:

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page **6** of **19**

3		Attempt any THREE of the following	12
3	a	Diagram of ultrasonic flow meter (Time Difference Type): Transducer B Transducer A Change Over Switch Detector	4
		(Any other type of ultrasonic flow meter should be given due consideration)	
3	b	Thermal flow meter: Principle: It works on the principle $Q = \dot{m} C_p \Delta T$ where Q is heat transfer	
		\dot{m} is mass flow rate	
		C _p is specific heat of fluid.	2
		$\Delta T = T_2 - T_1$ where T_2 is temperature of fluid after heating and T_1 is the	
		temperature of fluid before heating.	
		Working	
		It consists of an electric immersion heater for the heating of flowing fluid.	
		Two thermocouples (or resistance thermometers) T1 and T2 are placed at each	
		side of the heater. The thermocouple T1 measures the temperature of fluid	
		before it is heated, while the thermocouple T2 measures the temperature so	

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page **7** of **19**

		after.	The power supply to the hea	ter equals the heat transferred to the fluid,	
		i.e. Q,	, and is measured by a wattmet	ter. Thus by measuring the values of Q, T1	
		and T	2 the flow rate W of liquid is a	letermined from the equation	
		$\dot{m} = 0$	$Q/Cp(T_2-T_1)$		2
		7.0	_		
			- Thermocouple -		
		Flow	To Hoater To	wattmeter	
3	c	Diffe	rence between open loop and	closed loop control system (four	1 mark
		points	s):		each
		Sr	Open loop control system	Closed loop control system	
		No.			
		1	Feedback doesn't exists	Feedback exists	
		2	Output measurement is not	Output measurement is	
			necessary	necessary	
		3	Any change in output has	Changes in output affects the	
			no effect on input	input	
		4	Error detector is absent	Error detector is present	
		5	Inaccurate and unreliable	Highly accurate and reliable	
		6	Highly sensitive to	Less sensitive to disturbance	
			disturbance		
		7	Highly sensitive to	Less sensitive to environmental	
			environmental changes	changes	

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page **8** of **19**

		8	Simple in construction and	Complicated in construction and		
			cheap	hence costly		
			-	•		
		9	Highly affected by non-	Reduced effect of non-linearity		
			linearities			
3	d	Defin	ition of dead zone:			
		It is th	ne largest range of values of a	measured variable to which the instrum	nent	
		does 1	not respond. It is the largest ch	ange of input quantity for which there	is	2
		no ou	tput of the instruments. It is ba	sically range of input value for which		
		outpu	t is zero. Dead zone is also kno	own as Dead band or dead space or neu	ıtral	
		zone				
		Reaso	ons of dead zone:			
		Dead	zone can be intentional or unit	ntentional. Unintentional dead zone is		2
		cause	d by friction or by permanent s	set in highly stressed material. Intention	nally	
		dead a	zone is provided to increase the	e life span of the instrument.		
4		Atten	npt any THREE of the follow	ving		12
4	a	Bime Princ	tallic thermometer: iple:			2
		When	heated different solids expand	d differently depending on their coeffic	cient	
		of the	ermal expansion.			
		Work	king:			
		Bime	tallic strip consists of two strip	s of metal such as invar and brass weld	ded	
		togeth	ner, each strip made from a me	tal having a different coefficient of the	rmal	2
		expan	sion. Whenever the welded str	rip is heated, the two metals change len	ngth	2
		in acc	ordance with their individual r	rates of thermal expansion. The two me	etals	
		expan	nd to different lengths as the ten	mperature rises. This forces the bimeta	llic	
		strip t	to bend towards the side with le	ow coefficient of thermal expansion. as	s	

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page **9** of **19**

		shown in Fig above. If one end of the bimetallic strip is fixed so that it cannot	
		move, the distance the other end bends is directly proportional to the square of	
		the length of the metal strip, as well as to the total change in temperature, and	
		is inversely proportional to the thickness of the metal. The movement of the	
		bimetallic strip is utilized to deflect a pointer over a calibrated scale.	
		Fixed End High-expansion Metal	
4	b	Bourdon tube:	
		Advantages:	
		1) Low cost	1 mark
		2) Simple construction	each for
		3) Wide pressure range	any two
		4) High accuracy in relation with low cost	
		Disadvantages:	1 mark
		1) Low spring gradient	each for any two
		2) Susceptible to shock and vibration	
		3) Susceptible to hysteresis	
4	c	LVDT:	
		Principle:	
		The differential voltage of two secondary windings of a transformer is varied	2

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

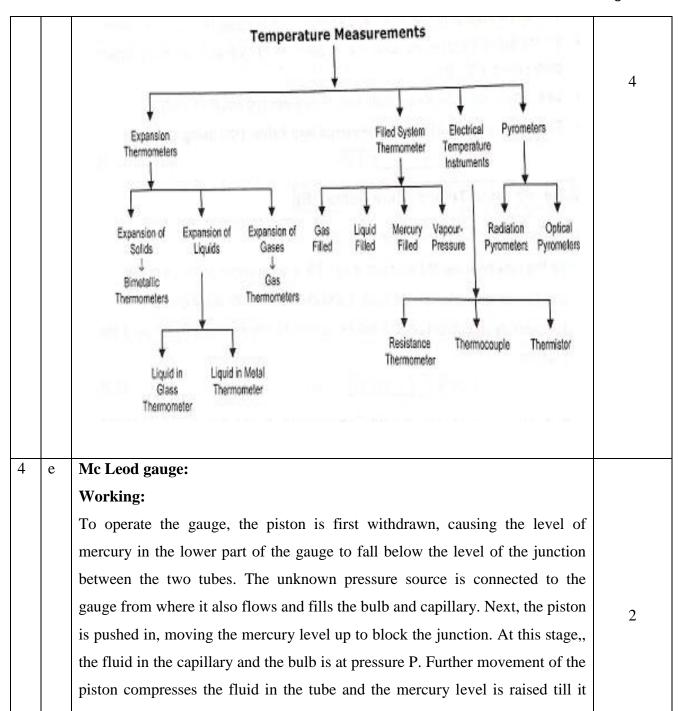
22407

Page **10** of **19**

	by positioning the iron core through an externally applied force. Working AC Excitation Coil	2
		2.
	AC Excitation Coil	2.
	0.0	
	Pressure, P Magnetic Core	
	Converter	
	V-Output	
	When the pressure inside the bellows changes, its free end gets deflected along	
	with the movable core. When the core is symmetrically positioned between the	
	two secondary coils, the magnetic coupling of the core with both the secondary	
	coils is equal. In this position, equal but opposite emfs are developed in the	
	coil, and hence the net voltage between two secondary coils is zero. When core	
	takes any other position, the magnetic coupling with each secondary coil is	
	different, that induces different voltages in the secondary coils. Hence some	
	unbalance voltage is produced between the coils that depend upon the position	
	of the core which in turn depends upon the pressure fed inside the bellows.	
d	Classification of temperature measuring instruments with one eg	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page **11** of **19**

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

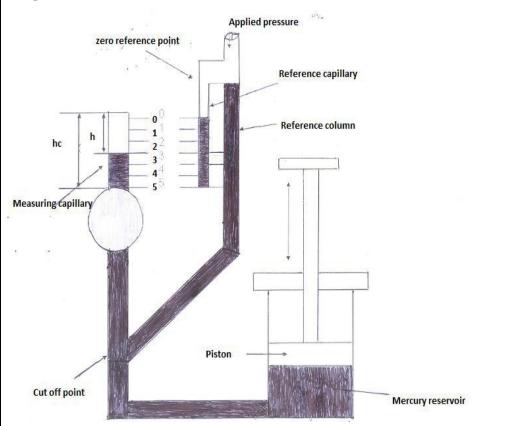
Subject code

22407

Page **12** of **19**

reaches the zero reference point in R. Measurement of the height above the mercury column in the capillary allows the calculation of the compressed volume of the fluid.

The expression for calculating the unknown pressure is


$$P = A\rho gy^2 / V$$

Where A is capillary area

ρ is density of fluid

y is height above the mercury column in capillary

Diagram:

2

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

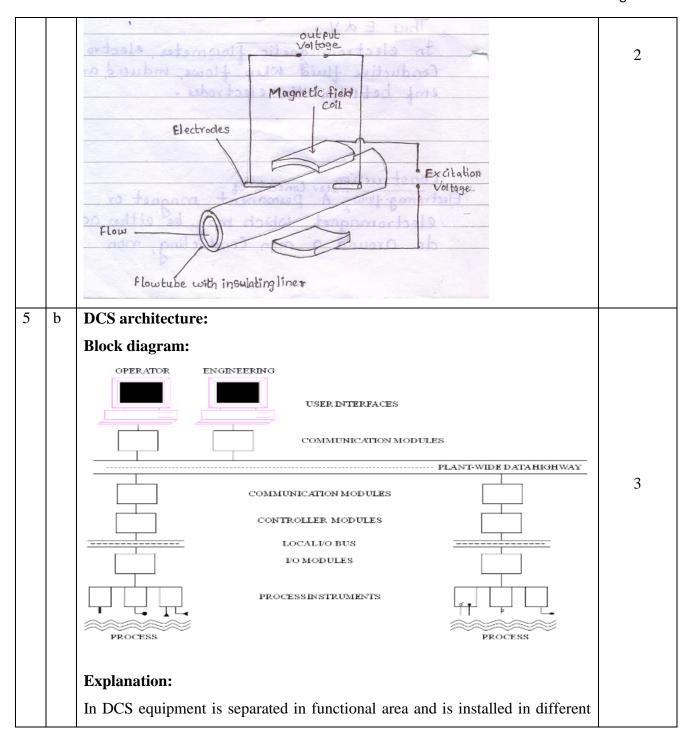
22407

Page **13** of **19**

5		Attempt any TWO of the following	12
5	a	Electromagnetic flow meter:	
		Principle:	
		Electromagnetic flow meter works on the principle of Faraday's law of	
		electromagnetic induction which states that when a current carrying conductor	2
		moves through stationary transverse magnetic field, an emf is induced between	
		the ends of the conductor and this emf. is proportional to relative velocity	
		between the conductor and magnetic field. The induced emf is given by	
		E=Blv where E-emf	
		1-Length of conductor	
		B-Magnetic flux density	
		v-Velocity of conductor	
		Working:	
		As the fluid flows through the pipe, due to magnetic field an emf is induced	
		between the electrodes. The emf induced is proportional to the velocity of	2
		fluid. As the flow rate varies, velocity of fluid changes causing the induced	
		emf to change.	
		Diagram:	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page **14** of **19**

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page **15** of **19**

		work areas of a process plant. The plant operator monitors and manipulates the	
		set-points of the process parameter from central control room.	
		Controlling portion of the DCS, distributed at various locations performs	
		following two function at each location.	
		1. Measurement of analog variable and discrete inputs	
		2. Generation of output signals to actuators that can change process condition	
		In Figure above the operator console in the control room is connected through	3
		a data highway to several distributed system components.	
		A DCS consist of the following modules:	
		1 Operator stations that use microprocessor based CRT display and keyboard	
		communication with control device and displays	
		2 Remote multifunction microprocessor based controllers (PLCs)	
		3 A digital data link (data highway) that connects the multifunction	
		controllers with the central operator stations.	
		The first priority of DCS is to provide operator interfacing and real time	
		process control. DCS has flexibility of implementation of sequential control	
		and integration among the various types of control.	
5	С	Factors to be considered for control valve selection:	1 mark
		The basic steps in control valve selection are	each
		1. The first step in control valve selection involves collecting all relevant data	
		and completing the ISA Form S20.50. The piping size must be set prior to	
		valve sizing, and determining the supply pressure may require specifying a	
		pump	
		2. The size of the valve is required; select the smallest valve Cv that satisfies	
		the maximum Cv requirement at 90% opening. While performing these	

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

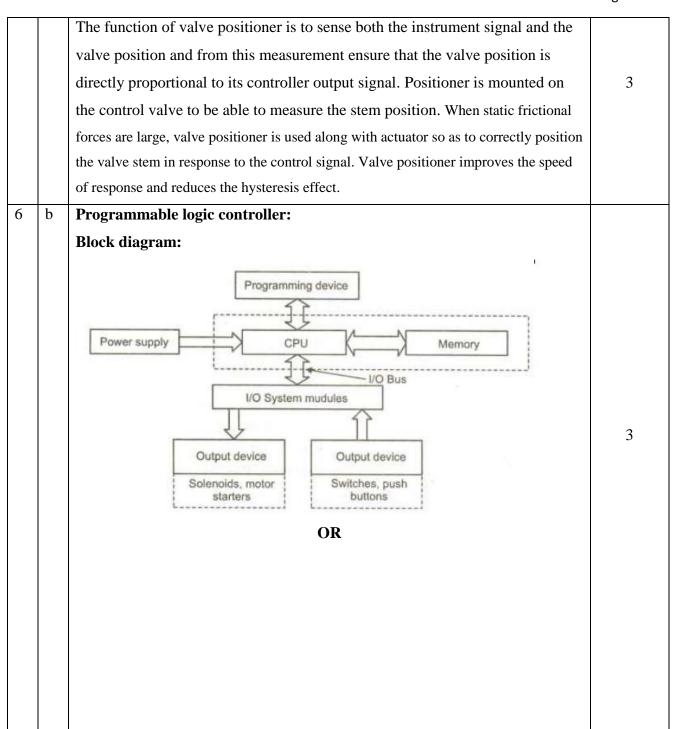
Subject code

22407

Page **16** of **19**

		Valve positioner:		
		consists of diaphragm, stem and diaphragm returning spring		
		It is that portion of the valve that responds to the applied signal and results in the movement of the stem due to which the flow rate of fluid changes. It	3	•
		Valve actuator:	~	,
6	a	Function of		
6	1	Attempt any TWO of the following		1
		manual operation of the valve is expected.		
		valves or valves with high actuator force or friction. A hand wheel is needed if		
		actuators. A positioner can be applied for slow feedback loops with large		
		increase the volume of the pneumatic signal for long pneumatic lines and large		
		6. Finally, auxiliaries can be added to enhance performance. A booster can be		
		and plug.		
		5. The actuator is now selected to provide sufficient force to position the stem		
		outlet expander are required to make connections to the process piping.		
		When the valve size is smaller than the process piping, an inlet reducer and		
		size or slightly less, for example, a 3-inch pipe with a 2-inch globe valve body.		
		4. The valve body can be selected. The valve size is either equal to the pipe		
		usually linear control loop behavior along with acceptable rangeability.		
		3. The trim characteristic is selected to provide good performance; goals are		
		closed during normal operation and has poor rangeability.		
		valves. Adding lots of "safety factors" will result in a valve that is nearly		
		are used. As many difficulties occur due to oversized valves as to undersized		
		and Reynolds number to ensure that the proper equation and correction factors		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)


WINTER-19 EXAMINATION <u>Model Answer</u>

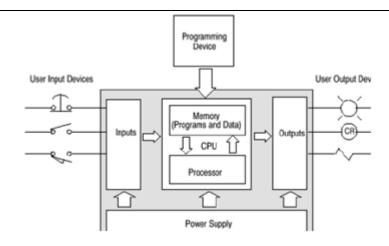
Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page **17** of **19**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)


WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page **18** of **19**

Explanation:

PLCs are industrially hardened microcomputers that perform discrete or continuous control functions in a variety of processing plant and factory environments.

PLC architecture consists of the following main units.

- 1. **Power supply**: Power supply unit converts power line voltages to those required by the solid state components.
- 2. **Input / Output system**: Inputs are real world signals of sensors. These signals can be Analog or Digital, low or high frequency, continuous or momentary. Outputs can be of discrete, register or analog.
- 3. **Central Processing Unit (CPU):** It performs the tasks necessary to fulfill the PLC functions such as scanning, I/O bus traffic control, program execution, peripheral and external device communications, and data handling and self-diagnostics.
- 4. **Memory Unit**: This is the library where the application program, input data, as well as output data are being stored.
- 5. **Programmer Unit**: Programmer unit provides an interface between the

3

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Instrumentation & Process Control

Subject code

22407

Page **19** of **19**

		PLC and user during program development, start-up and trouble shooting	
6	c	Solenoid valve	
		Construction:	
		A solenoid valve consists of an electromagnetic coil and a valve. The	
		electromagnetic coil actuates an armature or a valve stem in a magnetic field to	3
		control fluid flow.	
		Solenoid Coil Power Movable Lore Spring	
		Working:	
		When electrical power is supplied to the electromagnet, a magnetic field is	
		created that causes the plunger to be positioned in the solenoid coil. The	2
		plunger is connected to a valve disc that opens or closes the orifice depending	3
		on the valve action ie whether the valve is energized to open or energized to	
		close. Solenoid valves provide an on-off switching option in the system and	
		are actuated by electric signals from remote locations.	