Subject title: Chemical Engineering Thermodynamics
Subject code
22406
Page 1 of 15

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject title: Chemical Engineering Thermodynamics
Subject code
22406
Page 2 of 15

Q No.		Answer	Marking scheme
		Attempt any five	10
1	a	Open system: Systems which can exchange both mass and energy across the boundaries are known as open system. Closed system: Systems that can exchange energy with the surroundings but which cannot transfer mass across the boundaries are known as closed system.	1 1
1	b	Extensive property: If the property of the system depend on the quantity of matter present in the system, then it is known as extensive property. Eg Volume, mass. Intensive property: If the property of the system does not depend on the quantity of matter present in the system, then it is known as intensive property. Eg. Temperature, Pressure.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
1	c	First law of thermodynamics: The law States that although energy assumes many forms, the total quantity of energy is constant and when energy disappears in one form, it appears simultaneously in other forms.	2
1	d	Expression for $\mathbf{C}_{\mathbf{p}}$ $\mathrm{C}_{\mathrm{p}}=(\partial \mathrm{H} / \partial \mathrm{T})_{\mathrm{P}}$ Expression for $\mathbf{C}_{\mathbf{v}}$	1 1

Subject title: Chemical Engineering Thermodynamics
Subject code
22406
Page 3 of 15

		C $_{\mathrm{v}}=(\partial \mathrm{U} / \partial \mathrm{T})_{\mathrm{V}}$	
1	e	Internal energy (U): It is the energy stored in the system by virtue of the configuration and motion of the molecules constituting the system.	2
1	f	Degree of freedom: The number of intensive parameters that can be varied independently is called the degree of freedom	2
$\mathbf{1}$	g	Standard entropy: Entropy of 1 mole of a substance at 1 atm and $25^{\circ} \mathrm{C}$ is known as standard entropy.	2
2	a	Attempt any three Definition: System: It is the part of the universe which is set apart for the process to takes place. Surroundings: The part of the universe outside the system and separated from the system by boundaries is called surroundings. Boundary: Boundary is a closed surface surrounding (enclosing) a system through which mass and energy may enter or leave	1.5
2	Zeroth law of thermodynamics: It states that if body A is in thermal equilibrium with body B and B is in thermal equilibrium with body C, then C is also in thermal equilibrium with A. It is the basis of temperature measurement Mathematical statement: If A= B and B =C then C=A (A,B, C are in thermal equilibrium with each	1.5	

WINTER-19 EXAMINATION

Model Answer
Subject title: Chemical Engineering Thermodynamics \quad Subject code $\quad 22406$

Page 4 of 15

		other ie they are having the same or common temperature.)	
2	c	Phase diagram of sulphur system: Triple point $\mathrm{O}\left(\mathrm{S}_{\mathrm{R}}-\mathrm{S}_{\mathrm{M}}-\mathrm{S}_{\mathrm{V}}\right)$ B $\left(\mathrm{S}_{\mathrm{M}}-\mathrm{S}_{\mathrm{L}}-\mathrm{S}_{\mathrm{V}}\right)$ $\mathrm{C}\left(\mathrm{S}_{\mathrm{R}}-\mathrm{S}_{\mathrm{M}}-\mathrm{S}_{\mathrm{L}}\right)$ AO - Sublimation curve of rhombic sulphur OB - Sublimation curve of monoclinic sulphur BE - Vaporization curve of liquid sulphur	4

Subject title: Chemical Engineering Thermodynamics
Subject code
22406
Page 5 of 15

		OC - Transition curve BC - Fusion curve for monoclinic sulphur CD - Fusion curve for rhombic sulphur	
2	d	$\begin{array}{ll} \mathrm{n}=3 \text { moles } \\ \mathrm{T}_{1} & =27^{\circ} \mathrm{C}=300 \mathrm{~K} \\ \mathrm{P}_{1} & =0.2 \mathrm{~atm} \\ \mathrm{Cp} & =7 \mathrm{cal} / \mathrm{mol} \mathrm{~K} \\ \Delta \mathrm{~S} & =\mathrm{nC}_{\mathrm{p}} \ln \frac{T_{2}}{T_{1}}+\mathrm{nR} \ln \frac{P_{1}}{P_{2}}=3 * 7 * \ln (1000 / 300)+3 * 1.987 * \ln (0.2 / 2) \\ & =\mathbf{1 1 . 5 5 7} \mathbf{c a l} \end{array}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$
3		Attempt any three	12
3	a	Definition: Isothermal process It is the process in which temperature is maintained constant. ii) Adiabatic process In an adiabatic process, there is no heat interaction between the system and the surroundings. iii) Isochoric process Isochoric process also constant volume process in a thermodynamic process is the process in which the volume of closed system remains constant. vi) Isobaric process It is the process in which the pressure remains constant.	1 1 1 1
3	b	Definition: Enthalpy: It is the total heat content of a system. $\mathrm{H}=\mathrm{U}+\mathrm{PV}$	2

WINTER-19 EXAMINATION

Model Answer

Subject title: Chemical Engineering Thermodynamics
Subject code
22406
Page 6 of 15

		Heat capacity The heat capacity of a substance is the quantity of heat to be supplied to effect a temperature rise of one degree. Specific heat The specific heat is the amount of heat per unit mass required to raise the temperature by one degree.	1

WINTER-19 EXAMINATION

Model Answer

Subject title: Chemical Engineering Thermodynamics
Subject code
22406
Page $\mathbf{7}$ of $\mathbf{1 5}$

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
\[
\Delta \mathrm{S}=\mathrm{nC}_{\mathrm{v}} \ln \frac{T_{2}}{T_{1}}=2 * 1.5 * 8.314 * \ln (320 / 90)=31.639 \mathrm{~J} / \mathrm{K}=7.53 \mathrm{cal} / \mathrm{K}
\] \\
(ii) Pressure is kept constant
\[
\begin{aligned}
\& \Delta \mathrm{S}=\mathrm{nC}_{\mathrm{p}} \ln \frac{T_{2}}{T_{1}} \\
\& \mathrm{C}_{\mathrm{v}}=1.5 \mathrm{R} \\
\& \mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R} \text { ie } \mathrm{C}_{\mathrm{p}}=\mathrm{R}+\mathrm{C}_{\mathrm{v}}=\mathrm{R}+1.5 \mathrm{R}=2.5 \mathrm{R} \\
\& \Delta \mathrm{~S}=\mathrm{nC}_{\mathrm{p}} \ln \frac{T_{2}}{T_{1}}=2 * 2.5 * 8.314 * \ln (320 / 90) \\
\& =\mathbf{5 2 . 7 3 J} / \mathrm{K}=\mathbf{1 2 . 6 0 3} \mathbf{C a l} / \mathbf{K}
\end{aligned}
\]
\end{tabular} \& 2 \& \\
\hline 4 \& \& Attempt any three \& \& 12 \\
\hline 4 \& a \& \begin{tabular}{l}
Relation between \(\Delta G\) and \(K\) \\
Consider the reaction \(\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{rR}+\mathrm{sS}\) \\
\(\Delta \mathrm{G}\) reaction \(=\Delta \mathrm{G}\) product \(-\Delta \mathrm{G}\) reactant.
\[
=\left(\mathrm{r} \mu_{\mathrm{R}}+\mathrm{s} \mu_{\mathrm{S}}\right)-\left(\mathrm{a} \mu_{\mathrm{A}}+\mathrm{b} \mu_{\mathrm{B}}\right) .
\] \\
At equilibrium there is no Gibb's free energy change, \(\Delta \mathrm{G}=0\)
\[
\begin{aligned}
\& \left(\mathrm{r} \mu_{\mathrm{R}}+\mathrm{s} \mu_{\mathrm{S}}\right)-\left(\mathrm{a} \mu_{\mathrm{A}}+\mathrm{b} \mu_{\mathrm{B}}\right)=0 \\
\& \left(\mathrm{r} \mu_{\mathrm{R}}+\mathrm{s} \mu_{\mathrm{S}}\right)=\left(\mathrm{a} \mu_{\mathrm{A}}+\mathrm{b} \mu_{\mathrm{B}}\right)
\end{aligned}
\] \\
But \(\mu_{\mathrm{i}}=\mu_{\mathrm{i}}^{0}+\mathrm{RT} \ln \mathrm{p}_{\mathrm{i}}\) \\
Therefore \(\mathrm{r}\left(\mu_{\mathrm{R}}{ }^{0}+\mathrm{RT} \ln p_{\mathrm{R}}\right)+\mathrm{s}\left(\mu_{\mathrm{S}}^{0}+\mathrm{RT} \ln \mathrm{p}_{\mathrm{S}}\right)=\mathrm{a}\left(\mu_{\mathrm{A}}^{0}+\mathrm{RT} \ln \mathrm{p}_{\mathrm{A}}\right)+\)
\[
\mathrm{b}\left(\mu_{\mathrm{B}}^{0}+\mathrm{RT} \ln \mathrm{p}_{\mathrm{B}}\right)
\]
\[
\left.\begin{array}{rl}
\mathrm{RT} \ln \left(\frac{p_{A}^{r}}{p_{A}^{a}} p_{B}^{s} p_{B}^{b}\right.
\end{array}\right)=\left(\mathrm{a} \mu_{\mathrm{A}}^{0}+\mathrm{b} \mu_{\mathrm{B}}{ }^{0}\right)-\left(\mathrm{r} \mu_{\mathrm{R}}{ }^{0}+\mathrm{s} \mu_{\mathrm{S}}{ }^{0}\right) .
\] \\
\(\ln \left(\frac{p_{R}^{r}}{p_{A}^{a}} \frac{p_{S}^{s}}{p_{B}^{b}}\right)=\frac{-\Delta \mathrm{G} \text { reaction }}{R T} \quad \operatorname{But}\left(\frac{p_{R}^{r}}{p_{A}^{a}} \frac{p_{S}^{s}}{p_{B}^{b}}\right)=\mathrm{K}_{\mathrm{p}}\) \\
Therefore \(\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{K}\)
\end{tabular} \& 2

2 \&

\hline
\end{tabular}

WINTER-19 EXAMINATION

Model Answer
Subject title: Chemical Engineering Thermodynamics \quad Subject code $\quad 22406$

Page $\mathbf{8}$ of $\mathbf{1 5}$

		The left-hand side gives the standard free energy change ΔG^{0}, the free energy change accompanying the reaction when each of the reactants and the products is in its standard state. Using the definition of the equilibrium constant, $\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{~K}$	
4	b	Second law of thermodynamics : The second law of thermodynamics is just the generalization of our experiences with spontaneous processes and can be stated in a number of ways: 1. Heat cannot by itself pass from a cold to a hot body. 2. All spontaneous processes are, to some extent, irreversible and are accompanied by a degradation of energy. 3. Every system, when left to itself, will on the average, change toward a system of maximum probability. 4. Kelvin-Planck statement. It is impossible to construct an engine that, operating continuously (in a cycle), will produce no effect other than the transfer of heat from a single thermal reservoir at a uniform temperature and the performance of an equal amount of work.	4
4	c	Clausius inequality. It states that in a cyclic operation, the sum of the $d Q / T$ terms around a complete cycle is less than or equal to zero depending on whether the process is irreversible or reversible. $\oint \frac{d Q}{T} \leq 0$	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-19 EXAMINATION
Model Answer

Subject title: Chemical Engineering Thermodynamics \quad Subject code $\quad 22406$
Page 10 of 15

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
\(\oint \frac{d Q}{T}<0\) for irreversible process \\
\(\oint \frac{d Q}{T}\) equals zero for reversible process
\end{tabular} \& 1
1 \& \\
\hline 4 \& d \& As per Gibb's Phase rule,
\[
\begin{aligned}
\& \mathrm{F}=\mathrm{C}-\mathrm{P}+2 \\
\& \mathrm{C}=1, \mathrm{P}=3, \\
\& \mathrm{~F}=1-3+2 \\
\& \mathrm{~F}=0
\end{aligned}
\] \& 2
1
1 \& \\
\hline 4 \& e \& \begin{tabular}{l}
Relation between \(K_{p}\) and \(K_{y}\) : \\
Consider the reaction \(\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{rR}+\mathrm{sS}\)
\[
\mathrm{K}_{\mathrm{p}}=\left(\mathrm{p}_{\mathrm{R}}{ }^{\mathrm{r}} \cdot \mathrm{p}_{\mathrm{s}}{ }^{\mathrm{s}}\right) /\left(\mathrm{p}_{\mathrm{A}}{ }^{\mathrm{a}} \cdot{\left.\mathrm{p}_{\mathrm{B}}{ }^{\mathrm{b}}\right)}\right.
\] \\
But \(\mathrm{p}_{\mathrm{A}}=\mathrm{P} . \mathrm{y}_{\mathrm{A}}\) Where \(\mathrm{p}_{\mathrm{A}}-\) partial pressure of \(\mathrm{A}, \mathrm{P}\) - total pressure \(y_{A}\) - mole fraction of \(A\).
\[
\begin{aligned}
\mathrm{K}_{\mathrm{p}} \& =\left(\mathrm{p}_{\mathrm{R}}{ }^{\mathrm{r}} \cdot \mathrm{ps}^{\mathrm{s}}\right) /\left(\mathrm{p}_{\mathrm{A}}{ }^{\mathrm{a}} \cdot \mathrm{p}_{\mathrm{B}}{ }^{\mathrm{b}}\right) \\
\& =\left\{\left(\mathrm{Py}_{\mathrm{R}}\right)^{\mathrm{r}} \cdot\left(\mathrm{Py}_{S}\right)^{\mathrm{s}}\right\} /\left\{\left(\mathrm{Py}_{A}\right)^{\mathrm{a}} \cdot\left(\mathrm{Py}_{\mathrm{B}}\right)^{\mathrm{b}}\right\} \\
\& =\left(\mathrm{y}_{\mathrm{R}}{ }^{\mathrm{r}} \cdot \mathrm{ys}^{\mathrm{s}}\right) /\left(\mathrm{y}_{A}{ }^{\mathrm{a}} \cdot \mathrm{y}_{\mathrm{B}}{ }^{\mathrm{b}}\right) \cdot \mathrm{P}^{(\mathrm{r}+\mathrm{s}+\ldots)-(\mathrm{a}+\mathrm{b}+\ldots))}
\end{aligned}
\] \\
\(K_{p}=K_{y} \cdot P^{\Delta n} \quad\) where \(K_{y}=\left(y_{R}{ }^{r} \cdot y_{S}{ }^{s}\right) /\left(y_{A}{ }^{a} \cdot y_{B}{ }^{b}\right)\) and \\
\(\Delta \mathrm{n}=(\mathrm{r}+\mathrm{s}+\ldots)-(\mathrm{a}+\mathrm{b}+\ldots))\) is the difference in the number of moles of product and reactant
\end{tabular} \& 1

2
1 \&

\hline 5 \& \& Attempt any two \& \& 12

\hline 5 \& a \& $$
\begin{aligned}
& \mathbf{C p}-\mathbf{C v}=\mathbf{R} \text { (proof) } \\
& \mathrm{Cp}=\mathrm{dH} / \mathrm{dT} \quad \text { and } \mathrm{Cv}=\mathrm{dU} / \mathrm{dT} \\
& \mathrm{Cp}-\mathrm{Cv}=\frac{d H}{d T}-\frac{d U}{d T}=\frac{d H-d U}{d T} \ldots . .(1)
\end{aligned}
$$ \& 2 \&

\hline
\end{tabular}

Page 11 of 15

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
\[
\begin{align*}
\& \mathrm{H}=\mathrm{U}+\mathrm{PV} \\
\& \mathrm{dH}=\mathrm{dU}+\mathrm{d}(\mathrm{PV}) \\
\& \mathrm{dH}-\mathrm{dU}=\mathrm{d}(\mathrm{PV}) \tag{2}
\end{align*}
\] \\
Substituting(2) in (1)
\[
\begin{equation*}
\mathrm{Cp}-\mathrm{Cv}=\frac{d(P V)}{d T} \tag{3}
\end{equation*}
\] \\
For ideal gas \(\mathrm{PV}=\mathrm{RT}\) \\
Equation (3) becomes \(\mathrm{Cp}-\mathrm{Cv}=\frac{d(R T)}{d T} \quad=\mathrm{R} \frac{d(T)}{d T}=\mathrm{R}\) Therefore \(\mathrm{Cp}-\mathrm{Cv}=\mathrm{R}\)
\end{tabular} \& 2

2

\hline 5 \& b \& | Gibb's Phase rule: |
| :--- |
| The phase rule states that number of degree of freedom of the system is related to the number of components and number of phases by the equation $\mathrm{F}=\mathrm{C}-\mathrm{P}+2$ for any system at equilibrium at a definite temperature and pressure. |
| Where C is the number of components, P is the number of phases in thermodynamic equilibrium with each other and F is the number of degrees of freedom or variance of the system. |
| Component is the smallest number of independent variable constituents, taking part in the state of equilibrium, by means of which the composition of each phase can be expressed in the form of chemical equation, |
| Phase is any homogeneous, physically distinct and mechanically separable portion of a system which is separated from other such parts of the system by definite boundary surfaces. |
| The number of intensive parameters that can be varied independently is called the degree of freedom | \& 3

3

\hline
\end{tabular}

WINTER-19 EXAMINATION

Model Answer

Subject title: Chemical Engineering Thermodynamics
Subject code
22406
Page 12 of 15

5	c	Van't Hoff equation: Consider the reaction $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{rR}+\mathrm{sS}$ $\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{K} \ldots .$. (1) $\Delta G^{0}=(r \mu R+s \mu s)-(a \mu A+b \mu B) \ldots \ldots \text { (2) }$ From 1 and $2-\mathrm{RT} \ln \mathrm{K}=(\mathrm{r} \mu \mathrm{R}+\mathrm{s} \mu \mathrm{s})-(\mathrm{a} \mu \mathrm{A}+\mathrm{b} \mu \mathrm{B})$ Differentiating with respect to T at constant pressure $\mathrm{d} / \mathrm{dT} \ln \mathrm{k}=-(1 / \mathrm{R})((\mathrm{r} \partial / \partial \mathrm{T} \mu \mathrm{R} / \mathrm{T}+\mathrm{s} \partial / \partial \mathrm{T} \mu \mathrm{~s} / \mathrm{T})-(\mathrm{a} \partial / \partial \mathrm{T} \mu \mathrm{~A} / \mathrm{T}+\mathrm{b} \partial / \partial \mathrm{T} \mu \mathrm{~b} / \mathrm{T})$ Gibb's Helmholtz equation is a $\partial / \partial \mathrm{T}(\mu \mathrm{i} / \mathrm{T})=-\mathrm{Hi} / \mathrm{RT}^{2}$ ie $\mathrm{d} / \mathrm{dTlnk}=\left(1 / \mathrm{RT}^{2}\right)\left\{\left[\mathrm{rH}_{\mathrm{R}}+\mathrm{sH} \mathrm{s}_{\mathrm{s}}\right]-\left[\mathrm{aH}_{\mathrm{A}}+\mathrm{bH}_{\mathrm{B}}\right]\right\}$ $=\left(1 / \mathrm{RT}^{2}\right)\left(\Sigma \mathrm{H}_{\text {product }}^{0}-\Sigma \mathrm{H}_{\text {reactant }}^{0}\right)$ $\mathbf{d} / \mathbf{d T} \ln \mathbf{k}=\Delta \mathbf{H}^{\mathbf{0}} / \mathbf{R T}^{\mathbf{2}}$ is the Van't Hoff equation where $\Delta \mathrm{H}^{0}$ is molal enthalpy	2	
6		Attempt any TWO of the following		12
6	a	Phase diagram for water system: Water can exist in 3 possible phases, hence there can be 3 forms of equilibrium namely liquid \leftrightarrow vapour, solid \leftrightarrow vapour, solid \leftrightarrow liquid. Each equilibrium involves 2 phases. The curve OA represents the vapour pressure curve where liquid water and its vapour coexist at equilibrium. Curve OA extends only up to the critical temperature of water $\left(374^{\circ} \mathrm{C}\right)$ since above this temperature liquid water cannot exist. Consider a point x on the line OA .Increasing the pressure at constant temperature (line xb) or decreasing the temperature at constant pressure (line xc) will convert the vapour un to liquid. The curve OB represents the sublimation curve where ice and water vapour coexist at equilibrium. Consider point s on the line OB. Decreasing the pressure at constant temperature(along line sn) or increasing the temperature	3	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

WINTER-19 EXAMINATION

Model Answer
Subject title: Chemical Engineering Thermodynamics \quad Subject code $\quad 22406$

Page 13 of 15

Page 14 of 15

WINTER-19 EXAMINATION

Model Answer

Subject title: Chemical Engineering Thermodynamics \quad Subject code $\quad 22406$
Page 15 of 15

