MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **1** of **15**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **2** of **15**

Q	No.	Answer	Marking
			scheme
	1	Attempt any five	10
1	a	Open system:	
		Systems which can exchange both mass and energy across the boundaries are	1
		known as open system.	
		Closed system:	
		Systems that can exchange energy with the surroundings but which cannot	1
		transfer mass across the boundaries are known as closed system.	
1	b	Extensive property:	
		If the property of the system depend on the quantity of matter present in the	1⁄2
		system, then it is known as extensive property.	
		Eg Volume, mass.	1/2
		Intensive property:	
		If the property of the system does not depend on the quantity of matter present	1⁄2
		in the system, then it is known as intensive property.	1⁄2
		Eg. Temperature, Pressure.	
1	c	First law of thermodynamics:	2
		The law States that although energy assumes many forms, the total quantity of	
		energy is constant and when energy disappears in one form, it appears	
		simultaneously in other forms.	
1	d	Expression for C _p	1
		$C_p = (\partial H / \partial T)_P$	
		Expression for C _v	1

WINTER-19 EXAMINATION **Model Answer**

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **3** of **15**

		$C_v = (\partial U / \partial T)_V$	
1	e	Internal energy (U): It is the energy stored in the system by virtue of the	2
		configuration and motion of the molecules constituting the system.	
1	f	Degree of freedom:	2
		The number of intensive parameters that can be varied independently is called	
		the degree of freedom	
1	g	Standard entropy:	2
		Entropy of 1 mole of a substance at 1 atm and $25^{\circ}C$ is known as standard	
		entropy.	
2		Attempt any three	12
2	a	Definition:	
		System:	
		It is the part of the universe which is set apart for the process to takes place.	1.5
		Surroundings:	
		The part of the universe outside the system and separated from the system by	
		boundaries is called surroundings.	1.5
		Boundary:	
		Boundary is a closed surface surrounding (enclosing) a system through which	1
		mass and energy may enter or leave	
2	b	Zeroth law of thermodynamics:	
		It states that if body A is in thermal equilibrium with body B and B is in	2
		thermal equilibrium with body C, then C is also in thermal equilibrium with A.	
		It is the basis of temperature measurement	
		Mathematical statement:	
		If A= B and B =C then C=A (A,B, C are in thermal equilibrium with each	2

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **4** of **15**

		other ie they are having the same or common temperature.)	
2	c	Phase diagram of sulphur system:	
2	с	Phase diagram of sulphur system: $\frac{2}{\sqrt{3}}$ S_R S_L	4
		$q_{5\cdot b}$ $(20')$ 444.7	
		Triple point	
		$O(S_R-S_M-S_V)$	
		B $(S_M - S_L - S_V)$	
		$C (S_R - S_M - S_L)$	
		AO – Sublimation curve of rhombic sulphur	
		OB - Sublimation curve of monoclinic sulphur	
		BE – Vaporization curve of liquid sulphur	

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **5** of **15**

		OC – Transition curve	
		BC – Fusion curve for monoclinic sulphur	
		CD - Fusion curve for rhombic sulphur	
2	d	n = 3moles	
		$T_1 = 27^0 C = 300 K$ $T_2 = 727^0 C = 1000 K$	
		$P_1 = 0.2 \text{ atm}$ $P_2 = 2 \text{ atm}$	
		Cp = 7 cal / mol K	
		$\Delta \mathbf{S} = \mathbf{nC}_{p} \ln \frac{T_{2}}{T_{1}} + \mathbf{nR} \ln \frac{P_{1}}{P_{2}} = 3*7*\ln(1000/300) + 3*1.987*\ln(0.2/2)$	3
		= 11.557 cal	1
3		Attempt any three	12
3	a	Definition:	
		Isothermal process	1
		It is the process in which temperature is maintained constant.	
		ii) Adiabatic process	1
		In an adiabatic process, there is no heat interaction between the system and the	
		surroundings.	
		iii) Isochoric process	
		Isochoric process also constant volume process in a thermodynamic process is	1
		the process in which the volume of closed system remains constant.	
		vi) Isobaric process	
		It is the process in which the pressure remains constant.	1
3	b	Definition:	
		Enthalpy:	
		It is the total heat content of a system.	2
		H = U + PV	

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **6** of **15**

		Heat capacity	
		The heat capacity of a substance is the quantity of heat to be supplied to effect	1
		a temperature rise of one degree.	
		Specific heat	
		The specific heat is the amount of heat per unit mass required to raise the	1
		temperature by one degree.	
3	c	Third law of thermodynamics: The law states that absolute entropy is zero for a perfect crystalline substance	
		at absolute zero temperatures. In comparison with internal energy and	
		enthalpy, which are calculated relative to an arbitrary reference state, entropy	4
		is a reference property and is absolute, as are pressure, volume and	
		temperature. Third law of thermodynamics can be utilized to calculate the	
		absolute entropy of substances at a given temperature by assigning the value	
		zero for entropy of the crystalline form of the substance at absolute zero. This	
		is done by measuring the heat capacity at different temperatures and the latent	
		heats of phase transition that the substance must have undergone to arrive at	
		the present state from the initial state of absolute zero of temperature. For	
		example, let the melting point of the substance be Tf and the boiling point be	
		Tb. The entropy at T , where T is above the boiling point may be evaluated as	
		$S = \int_0^{T_f} \frac{C_{PS}dT}{T} + \frac{\Delta H_f}{T_f} + \int_{T_f}^{T_b} \frac{C_{PL}dT}{T} + \frac{\Delta H_V}{T_b} + \int_{T_b}^{T} \frac{C_{PG}dT}{T}$ where C_{PS} , C_{PL}	
		and C_{PG} are the specific heats of solid, liquid and gas respectively and ΔH_f and	
		ΔH_V are the latent heats of fusion and vaporization respectively.	
3	d	$T_1 = 90K$ $T_2 = 320 K$	
		(i) Volume is constant	

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **7** of **15**

		$\Delta S = nC_v \ln \frac{T_2}{T_1} = 2* 1.5*8.314* \ln (320/90) = 31.639 J/K = 7.53 cal/K$	2
		(ii) Pressure is kept constant	
		$\Delta \mathbf{S} = \mathbf{n} \mathbf{C}_{\mathbf{p}} \ln \frac{T_2}{T_1}$	
		$C_v = 1.5R$	2
		$C_p - C_v = R$ ie $C_p = R + C_v = R + 1.5R = 2.5 R$	
		$\Delta S = nC_p \ln \frac{T_2}{T_1} = 2*2.5 *8.314 * \ln(320/90)$	
		= 52.73J/K =12.603 Cal/ K	
4		Attempt any three	12
4	a	Relation between ΔG and K	
		Consider the reaction $aA + bB \rightarrow rR + sS$	
		ΔG reaction = ΔG product - ΔG reactant.	
		$= (r \ \mu_R + s \ \mu_S) - (a \ \mu_A + b \ \mu_B).$	
		At equilibrium there is no Gibb's free energy change, $\Delta G = 0$	
		$(r \ \mu_R + s \ \mu_S) - (a \ \mu_A + b \ \mu_B) = 0$	
		$(r \mu_R + s \mu_S) = (a \mu_A + b \mu_B)$	2
		But $\mu_i = \mu_i^0 + RT \ln p_i$	
		Therefore $r(\mu_R^0 + RT \ln p_R) + s(\mu_S^0 + RT \ln p_S) = a(\mu_A^0 + RT \ln p_A) + c(\mu_B^0 + RT \ln p_A) + c(\mu_B^0 + RT \ln p_B) + c(\mu_B^0 + $	
		b($\mu_B^0 + RT \ln p_B$)	
		RT ln $\left(\frac{p_R^r}{p_A^a}\frac{p_S^s}{p_B^b}\right) = (a \mu_A^0 + b \mu_B^0) - (r \mu_R^0 + s \mu_S^0)$	
		= - (ΔG product - ΔG reactant)	
		$= -\Delta G$ reaction.	
		$\ln\left(\frac{p_R^r p_S^s}{p_A^a p_B^b}\right) = \frac{-\Delta G \text{ reaction}}{RT} \qquad \text{But}\left(\frac{p_R^r p_S^s}{p_A^a p_B^b}\right) = K_p$	
		Therefore $\Delta G = -RT \ln K$	2

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **8** of **15**

OR The criterion of equilibrium, can be written for the general chemical reaction represented by Eq. as $(lm_{\rm I} + mm_{\rm M}) - (am_{\rm A} + bm_{\rm B}) = 0$ The chemical potential of a component in the equilibrium state of the reaction mixture is related to its fugacity in that state as given below $\mu_i = RT \ln \bar{f}_i + C \quad \dots \quad (1)$ Suppose that at the same temperature, but at another state, which may be called the standard state, the free energy of component *i* is μ_i^0 . Then, $\mu_i^0 = RT \ln f_i^0 + C \qquad(2)$ C is a constant that depends only on temperature. Since the temperature in the standard state is the same as that in the equilibrium state, C can be eliminated from Eq.1 using Eq.2 as, $\mu_i = \mu_i^0 + RT \ln \frac{\bar{f}_i}{f_i^0} = \mu_i^0 + RT \ln a_i$(3) where a_i is the activity of species *i* in the mixture. Express the chemical potential of all the components as in Eq.3 The resulting expression is $(l\mu_{\rm L}^0 + m\mu_{\rm M}^0) - (a\mu_{\rm A}^0 + b\mu_{\rm B}^0) + RT \ln \frac{a_{\rm L}^l a_{\rm M}^m}{a_{\rm A}^a a_{\rm B}^b} = 0 \quad \dots \dots (4)$ Equation can be put into the following form: That is, $\Sigma \mu_i^0 v_i = -RT \ln \frac{a_{\rm L}^i a_{\rm M}^m}{a^a a^b}$

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **9** of **15**

		The left-hand side gives the standard free energy change ΔG^0 , the free energy	
		change accompanying the reaction when each of the reactants and the products is	
		in its standard state. Using the definition of the equilibrium constant,	
		$\Delta G^0 = - RT \ln K$	
4	b	Second law of thermodynamics :	4
		The second law of thermodynamics is just the generalization of our	
		experiences with spontaneous processes and can be stated in a number of	
		ways:	
		1. Heat cannot by itself pass from a cold to a hot body.	
		2. All spontaneous processes are, to some extent, irreversible and are	
		accompanied by a degradation of energy.	
		3. Every system, when left to itself, will on the average, change toward a	
		system of maximum probability.	
		4. Kelvin-Planck statement. It is impossible to construct an engine that,	
		operating continuously (in a cycle), will produce no effect other than the	
		transfer of heat from a single thermal reservoir at a uniform temperature and	
		the performance of an equal amount of work.	
4	c	Clausius inequality.	
		It states that in a cyclic operation, the sum of the dQ/T terms around a	
		complete cycle is less than or equal to zero depending on whether the process	2
		is irreversible or reversible.	
		$\oint \frac{dQ}{T} \le 0$	

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **10** of **15**

		$\oint \frac{dQ}{T} < 0 \text{for irreversible process}$	1
		$\oint \frac{dQ}{T}$ equals zero for reversible process	1
4	d	As per Gibb's Phase rule,	
		F=C-P+2	2
		C=1, P=3,	1
		F=1-3+2	1
		F=0	
4	e	Relation between K _p and K _y :	
		Consider the reaction $aA + bB \rightarrow rR + sS$	1
		$K_{p} = (p_{R}^{r} \cdot p_{S}^{s}) / (p_{A}^{a} \cdot p_{B}^{b})$	-
		But $p_A = P \cdot y_A$ Where p_A - partial pressure of A, P- total pressure	
		y_A – mole fraction of A.	
		$K_{p} = (p_{R}^{r} \cdot p_{S}^{s}) / (p_{A}^{a} \cdot p_{B}^{b})$	2
		$= \{(Py_R)^r . (Py_S)^s\} / \{(Py_A)^a . (Py_B)^b\}$	_
		$= (y_{R}^{r} \cdot y_{S}^{s}) / (y_{A}^{a} \cdot y_{B}^{b}) \cdot P^{(r+s+)-(a+b+))}$	
		$K_p = K_y \cdot P^{\Delta n}$ where $K_y = (y_R^r \cdot y_S^s) / (y_A^a \cdot y_B^b)$ and	1
		$\Delta n = (r + s +) - (a + b +)$ is the difference in the number of moles of	
		product and reactant	
5		Attempt any two	12
5	a	Cp - Cv = R (proof)	
		Cp = dH / dT and $Cv = dU / dT$	
		$Cp - Cv = \frac{dH}{dT} - \frac{dU}{dT} = \frac{dH - dU}{dT}$ (1)	2

WINTER-19 EXAMINATION **Model Answer**

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **11** of **15**

		H = U + PV	
		dH = dU + d(PV)	
		$dH - dU = d(PV) \dots (2)$	
		Substituting(2) in (1)	2
		$Cp - Cv = \frac{d(PV)}{dT} \dots (3)$	
		For ideal gas $PV = RT$	
		Equation (3) becomes $Cp - Cv = \frac{d(RT)}{dT} = R \frac{d(T)}{dT} = R$	2
		Therefore $Cp - Cv = R$	
5	b	Gibb's Phase rule:	
		The phase rule states that number of degree of freedom of the system is related	
		to the number of components and number of phases by the equation	3
		F = C - P + 2 for any system at equilibrium at a definite temperature and	
		pressure.	
		Where C is the number of components, P is the number of phases in	
		thermodynamic equilibrium with each other and F is the number of degrees of	
		freedom or variance of the system.	
		Component is the smallest number of independent variable constituents,	
		taking part in the state of equilibrium, by means of which the composition of	
		each phase can be expressed in the form of chemical equation,	3
		Phase is any homogeneous, physically distinct and mechanically separable	
		portion of a system which is separated from other such parts of the system by	
		definite boundary surfaces.	
		The number of intensive parameters that can be varied independently is called	
		the degree of freedom	

WINTER-19 EXAMINATION **Model Answer**

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **12** of **15**

5	c	Van't Hoff equation:		
		Consider the reaction $aA + bB \rightarrow rR + sS$		
		$\Delta G^0 =- RT ln K(1)$	2	
		$\Delta G^0 = (r\mu R + s \mu s) - (a \mu A + b \mu B)(2)$		
		From 1 and 2 - RTln K = ($r\mu$ R+ s μ s) –(a μ A +b μ B)		
		Differentiating with respect to T at constant pressure		
		$d/dTlnk = -(1/R) ((r \partial/\partial T \mu R/T + s \partial/\partial T \mu s/T) - (a \partial/\partial T \mu A/T + b \partial/\partial T \mu b/T)$	2	
		Gibb's Helmholtz equation is a $\partial/\partial T$ (µi/T)=- Hi/RT ²		
		ie d/dTlnk = $(1/RT^2)$ { $[rH_R + sH_s] - [aH_A + bH_B]$ }		
		$= (1/RT^{2})(\Sigma H^{0}_{\text{product}} - \Sigma H^{0}_{\text{reactant}})$	2	
		$d/dT \ln k = \Delta H^0 / RT^2$ is the Van't Hoff equation where ΔH^0 is molal enthalpy		
6		Attempt any TWO of the following		12
6	a	Phase diagram for water system:		
		Water can exist in 3 possible phases, hence there can be 3 forms of equilibrium		
		namely liquid \leftrightarrow vapour, solid \leftrightarrow vapour, solid \leftrightarrow liquid. Each equilibrium	3	
		involves 2 phases.		
		The curve OA represents the vapour pressure curve where liquid water and its		
		vapour coexist at equilibrium. Curve OA extends only up to the critical		
		temperature of water $(374^{0}C)$ since above this temperature liquid water cannot		
		exist. Consider a point x on the line OA .Increasing the pressure at constant		
		temperature (line xb) or decreasing the temperature at constant pressure (line		
		xc) will convert the vapour un to liquid.		
		The curve OB represents the sublimation curve where ice and water vapour		
		coexist at equilibrium. Consider point s on the line OB. Decreasing the		
		pressure at constant temperature(along line sn) or increasing the temperature		

WINTER-19 EXAMINATION Model Answer

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **14** of **15**

6	b	Vander Waals	equation of sta	ite:				
		An equation of s	state is an equati	on which relate	es the variable	s of state (T, P, V,		
		and n). It's partic	cularly useful w	hen we want to	know the effe	ect of a change in		
		one of the variat	oles of state, The	e ideal gas law	is only an app	roximation to the		
		actual behavior	of gases. At his	gh densities, the	at is at high pr	ressures and low	2	
		temperatures, the	e behavior of ac	tual or real gas	es deviate froi	n that predicted		
		by the ideal gas	law. An equatio	n of state takin	g account the	volume occupied		
		by the molecules and the attractive forces between them is the Vander Waals						
		equation.						
		Vander Waals equation is $\left(P + \frac{a}{V^2}\right)$ (V-b) = RT						
		Where a and b a						
		$a = \frac{27R^2 T_C^2}{64P_C}$					2	
		and $b = \frac{RT_c}{8P_c}$						
		where T _c and P	c are critical ten	nperature and c	ritical pressure	e respectively.	2	
6	c	Reaction is N ₂ +	$3 \text{ H}_2 \leftrightarrow 2 \text{NH}_3$					
		P = 30 atm						
		Let there be 1 m	ole of N_2 and 3	moles of H_2 in	nitially.			
		Let x mole of N	H ₃ be produced	at equilibrium				
			N_2	H_2	NH ₃	Total moles		
		Moles	1	3	0			
		present						
		initially						

WINTER-19 EXAMINATION **Model Answer**

ct title: Chemical Enginee	ring Thermodyna	amics	Subject code	22	2406 Page 15 of 1 5
Moles reacted /	$\frac{x}{2}$	$\frac{3x}{2}$	X		
produced at equilibrium					
Moles present at	$1-\frac{x}{2}$	$3-\frac{3x}{2}$	х	4 - x	3
equilibrium Mole	$\frac{1-\frac{x}{2}}{4-x}$	$\frac{3-\frac{3x}{2}}{4-x}$	$\frac{x}{4-x}$		_
individual moles / Total	ТА	4 - X			
Partial pressure =	$30* \frac{1-\frac{x}{2}}{4-x}$	$30 * \frac{3 - \frac{3x}{2}}{4 - x}$	$30 * \frac{x}{4-x}$		
Total pressure * mole fraction					
$\frac{1}{8} \text{ of } \text{NH}_3 \text{ at}$ $\frac{x}{4-x} = 0.1$	equilibrium = 10 x = 0.3636	$\frac{1-x}{2}$ 20 x ⁽¹⁻	0.3636/2)	1	
Partial pressure Partial pressure	e of $N_2 = 30^*$ e of $H_2 = -3$	$\frac{1}{4-x} = 30 * \frac{1}{4}$ $0 * \frac{3 - \frac{3x}{2}}{4-x} = 30 * \frac{1}{4}$	$\frac{1}{-0.3636} = 6.75$ $= \frac{\left(3 - \left(3 * \frac{0.3636}{2}\right)\right)}{(4 - 0.3636)} = 0.3636$	= 20.25 atm	
Partial pressure $Kp = \frac{(P_{NH3})^2}{(P_{H2})^3 * P_N}$	e of $NH_3 = 30^{*}$ $\frac{2.996^2}{6.75*20.25^3} =$	$\frac{x}{4-x} = 30*\frac{0}{(4-x)}$ 1.6014 *10⁻⁴ a	$\frac{3636}{0.3636} = 2.996$	atm	2