

WINTER - 2019 EXAMINATION

Subject Name: Electronic Devices And CircuitsModel AnswerSubject Code:Important Instructions to examiners:

22346

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance. Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub	Answer					
	Q. N.						
1.		Attempt any <u>FIVE</u> of the following:					
	а	Define following parameter for JFET along with mathematical relation: (i) Transconductance (ii) Amplification factor					
		Ans: 1. Definition of transconductance: It is given by the ratio of small change in drain current (ΔI_D) to the corresponding change in gate to source voltage (ΔV_{GS}) for a constant drain to source (V_{DS}). Mathematically , the transconductance $G = \Delta I_D / \Delta V_{GS}$					
		2. Definition of amplification factor: It is given by the ratio of small change in drain to source voltage (ΔV_{DS}) to the corresponding change in gate –to-source voltage (ΔV_{GS}) for a constant drain current (I_D) . Mathematically, the amplification factor $\mu = \Delta VDS/\Delta VGS$					
	b	Draw the symbol of (i) NPN transistor (ii) PNP transistor Ans: B C C B C C C B C C C C C C C C C C C C C	02 M				
		Fig: Symbol of NPN and PNP transistor					

	c List any two applications of crystal oscillator.				
		Ans: Applications of owestal assillatory			
		1 They are widely used in computers			
		 They are when y used in computers. It is used in digital systems 			
		2. It is used i	in instrumentation		02 111
		4 It is used i	in phase-locked loop systems		
		5. They are y	widely used in computers.		
		6. They are u	used in modems, marine, teleco	ommunications, in sensors and also in	
		disk drive	s. Crystal Oscillator is also use	d in engine controlling, clock and to trip	
		computer,	stereo, and in GPS systems.		
	d	Determine the output voltage of regulated power supply using following ICs-			
		(i) IC 7915			
		(ii) IC 7824			
		Ans:			
		1. IC7915:	It is a fixed positive linear v	oltage regulator IC. IC 7915 gives the	01 M
		output of	+15V.		01 34
		2. IC/824:	It is a fixed negative linear v 24N	oltage regulator IC. IC 7824 gives the	01 M
	0	Define lead and	-24 V. line regulation		
	C	Δns^{-1}	ine regulation.		
		Definition of loa	d and line regulation:		
		1. Load reg	ulation: the load regulation is	defined as the change in output voltage	01 M
		that will occur per unit change in load current.			
		Load regu	lation = $V_{NL} - V_{FL} / \Delta I_L$		
		2. Line regulation: The line regulation is the changes in output voltage that will be			
		occur per	unit change in the input voltag	е.	
		Line regul	lation= $\Delta V_L / \Delta V_S$		
	f	Compare linear	and non-linear wave shaping	circuits on the basis of :	
		(i) Compone	ents used		
		(II) Applicati	ons		
		Ans:			
		Parameter	Linear wave shaning	Nonlinear wave shaning circuits	
		I ar ameter	circuits	itoninical wave shaping circuits	
			circuits		
		Components	Which make use of only	Which make use of nonlinear	
		used	linear circuit elements such	circuit elements such as diodes	02 M
			as L.R.C.	and transistors.	
		Applications	Differentiation, Integration.	Clipping, clamping, amplitude	
			_	limiting.	
		Table:	Comparison of linear and no	nlinear wave shaping circuits	

	g	State Barkhausen criteria for sustained oscillations.					
		Ans:					
		Barkhausen criteria for sustained oscillations:					
		The Barkhausen criteria should be satisfied by an amplifier with positive					
		feedback to ensure the sustain	ined oscillations.				
		The Barkhausen criterion states that:					
		1. The loop gain is equa	al to unity, that is $\beta A_v = 1$	l and	01 M		
		2. The phase shift arou	nd the loop is zero or an ir	nteger multiple of 2π : $\angle \beta$ Av = 2	01 M		
		π or 0 the product β	A_v is called as the "loop ga	in".			
2		Attempt any THREE of th	ne following:		12 M		
4.	9	Compare RC integrator ar	nd differentiator on the h	asis of:	12 11		
	a	(i) Circuit diagram	in uniterentiator on the ba	asis 01.			
		(i) O/P voltage equation	n				
		(iii) Time constant cond	lition				
		(iv) Output voltage way	vaform for square wave i	nnut			
		(IV) Output voltage way	veror in for square wave in	iiput.			
		Alls. Parameter	RC Integrator	RC Differentiator			
		Circuit diagram	R				
				Capacitor			
			$\mathbf{V}_{\mathbf{v}}$ \mathbf{C} $\mathbf{V}_{\mathbf{v}}$	V_{IN} $R \geq V_R$ V_{OUT}			
				°°			
		Output voltage equation	1 _t	<u>+</u> dV	04 M		
		Sulput voltage equation	$V = \frac{1}{2} \int V dt$	$ V_{OUT} = RC \frac{GV_{IN}}{dt}$	0 1 1.1		
		$\mathbf{v}_{out} = \overline{\mathbf{RC}} \mathbf{J}_0 \mathbf{v}_{in} \mathbf{u}$					
		Time constant condition $T_{-}DC$ and $t > 10T$ $T_{-}DC$ and $t < 0.1T$					
		Time constant condition $1=RC$ and $t>101$ $1=RC$ and $t<0.11$					
		Output voltage	Triangular wave	Narrow pulses			
		waveform for square					
		wave input					
		Table: Comparison RC integrator and differentiator					
	b	Draw and describe working of negative clamper with neat circuit diagram and					
	~	input /output waveforms.	ng of negutive champer	inter chicare anglani ana			
		Ans:					
		A19679					
		С		$\land \land$			
		A	Vi				
			Vo/	$/ \setminus / \setminus , `$			
		Circuit					
		• Waveforms					
			Fig. Negative Clampo	AP			
	Fig: Negative Clamper						

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

<u> </u>			
		For negative clamper it is required to clamp the input signal waveform negatively at 0V. Here the diode is forward biased during positive half cycle of the input signal. And as the diode conducts-capacitor gets charged (up to peak value of input supply). During the negative half cycle, the diode is reverse biased and does not conduct and the output voltage become equal to the sum of the input voltage and the voltage stored across the capacitor.	02 M
	с	Derive the relation between α and β of transistor.	
		Ans. The relation between α and β of transistor: Common base current gain, $\alpha = (Ic / Ie)$ Common emitter current gain, $\beta = (Ic/Ib)$ From transistor current relations, Ie=Ic+Ib $\alpha = Ic/Ie$ $\alpha = Ic/(Ic+Ib)$ Dividing numerator and denominator by Ib $\alpha = (Ic/Ib)/((Ic/Ib)+(Ib/Ib))$ ie, $\alpha = \beta/\beta + 1$	02 M
		$\beta = lc/lb$	02 M
		$\Omega = 10/(10-10)$	02 IVI
		$\beta = (Ic/Ie)/((Ie/Ie)-(Ic/Ie))$	
		ie, $\beta = \alpha/1 - \alpha$	
	d	Draw VI characteristics of UJT and show its operating regions on it.	
		Alls. CUT-OFF REGION V PEAK POINT PEAK POINT VALLEY POINT VALLEY POINT VALLEY POINT VALLEY POINT VALLEY POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V PEAK POINT V POINT V PEAK POINT V POINT V POINT V POINT I V POINT Fig: VI characteristics of UJT	04 M
3.		Attempt any <u>THREE</u> of the following:	12 M
	a	Compare class A, class B, power amplifiers on the basis of :	
		(i) Current flow in terms of cycle (ii) Efficiency (iii)Distortion (iv)Place of Q point Ans:	

	Parameters	Class A power amplifier	Class B power amplifier	
	Current flow in terms of cycle	$\frac{\text{Current}}{\text{for 360}^0}$ conduction	Current conduction for 180 ⁰	
	Efficiency	50%	78.5%	04 M
	Distortion	Lowest distortion	High distortion (crossover distortion)	
	Place of Q point	Q point is on center of a c load line	Q point is on cut off point	
	Table: Compare c	lass A, class B, power	amplifiers	
b	List types of feedback connections for voltage series feedback with ne	s used in amplifiers a at block diagram	nd derive gain expression	
	Ans:	0		
	List types of feedback connections	used in amplifiers:		
	1. voltage series feedback			01 M
	2. voltage shunt feedback			
	3. current series feedback			
	4. current shunt feedback			
	0			
	V. V.	Amplifier	V _a ≸ _R ,	
		with gain A		
	ũ l			
				02 M
	V = Q V			02 111
	$V_f = \beta V_o$			
	V, F	eedback		
		Circuit β		
	Fig: Block dia	gram voltage series fee	edback	
	Cain avprossion for voltage series f	foodback is given by:		
	Sum capitosion for voltage series	iccubach is given by.		
	A - A	v		
	$A_{CL} = \frac{1}{1+1}$	AR		01 N <i>I</i>
	11.	· * * * *		UI MI
	Where B is feedback fraction			
	A _v is voltage gain of amplifi	er without feedback		
	A _{CL} is voltage gain of amplif	ier with feedback.		
6	Draw and describe working of walt	age divider biog used	as hissing singuit in DIT	
C	Ans.	lage urviner blas used	as brashing chi cuit ill DJ 1.	
	Voltage Divider Rias Circu	uit also known as emit	ter current hias is the most	
	stable of the three basic transistor big	as circuits A voltage div	vider bias circuit is shown in	
	Fig. It is seen that there is an e	mitter resistor $(R_{\rm P})$ or	onnected in series with the	
	transistor. The total dc load in seri	ies with the transistor	is $(R_{C}+R_{F})$, and this total	
	resistance must be used when drawing	ng the dc load line for	the circuit. Resistors R_1 and	

R₂ constitute a voltage divider that divides the supply voltage to produce the base bias voltage (V_B). Voltage Divider Bias Circuit are normally designed to have the voltage divider current

(I₂) very much larger than the transistor base current (I_B). In this circumstance, V_B is largely unaffected by I_B, so V_B can be assumed to remain constant.

$$V_B = \frac{V_{CC} \times R_2}{R_1 + R_2}$$

Referring to Fig.

With V_B constant, the voltage across the emitter resistor is also a constant VBE

$$V_E = V_B$$
 - quantity,

This means that the emitter current is constant,

$$I_E = \frac{V_B \cdot V_{BE}}{R_E}$$

The collector current is approximately equal to the emitter current, so I_C is held at a constant level.

the transistor collector voltage is,

$$V_{\rm C} = V_{\rm CC} \cdot (I_{\rm C} R_{\rm C})$$

The collector-emitter voltage is,

$$V_{CE} = V_C - V_E$$

V_{CE} can also be determined as,

$$V_{\rm CE} \approx V_{\rm CC} \cdot I_{\rm C} (R_{\rm C} + R_{\rm E})$$

Clearly, with I_c and I_B constant, the transistor collector-emitter voltage remains at a constant level.

02 M

		circuit. The biasing circuit part of the negative half cyc 2. Input Capacitor (C	needs to establish a proper le of the signal may be cut-	er operating $\overline{\mathbf{Q}}$ -point otherwise; a off in the output.		
		The capacitor C1 is used to couple the signal to the base terminal of the BIT. If				
		it is not there, the signal so	ource resistance. Rs will c	ome across R2 and hence, it will		
		change the bias. C1 allows only the AC signal to flow but isolates the signal source				
		from R2			02112	
		3. Emitter Bypass Ca	pacitor (CE)			
		An Emitter bypass c	capacitor CE is used para	allel with RE to provide a low		
		reactance path to the amplif	ied AC signal. If it is not u	sed, then the amplified AC signal		
		following through RE will	cause a voltage drop acros	ss it, thereby dropping the output		
		voltage.				
		4. Coupling Capacito	r (C2)			
		The coupling capacit	or C2 couples one stage of	t amplification to the next stage.		
		I his technique used to isola	te the DC bias settings of the	ne two coupled circuits.		
				4		
			$R_1 \leq 1$	\leq_{-}		
			~	$\geq R_L$ $I_C R_L$		
				IC IC		
				Vout		
					02 M	
				V _{CE}		
				≯.		
			V _P	TE		
		Vin	R₂ ≤ R	$\leq \perp_{\alpha}$		
			i	$\leq \top$		
				0v		
1			Fig: Single Stage BJ	T CE amplifier	10 M	
4.		Attempt any <u>THREE</u> of the	ne tonowing:			
	a	Compare BJT and JFET	on the basis of :			
		(i) Signal controlling	in terms of voltage or cur	rent		
		(ii) Input resistance				
		(iii) Thermal stability				
		(iv) Switching speed				
		Ans:				
		Comparison of BJ1 with J	IFEI DIT			
		Farameters Signal controlling in	DJ I			
		signal controlling in terms of voltage or		voltage	04 M	
		current				
		Innut resistance	Low input resistance	High input resistance		
		Thermal stability	less thermal stability	Better thermal stability		
		Switching sneed	Lower switching speed	high switching speed		
		Tab	le. Comparison of RIT u	rith IFET		
			No. Comparison of DJ I W	III JI L'I		

		As there is a voltage drop in the series resistance Regrises the unregulated voltage is also decreased along with it. The amount of voltage drop depends on the	
		current supplied t the load Rload. The value of the voltage across the load depends on	
		the Zener diode and the transistor base emitter voltage Vbe.	
		Thus, the output voltage can be written as	
		Vout = Vzener + Vbe = Vin - I R series	
		The output remains nearly a constant as the values of Vzener and Vbe are nearly	
		constant. This condition is explained below. When the supply voltage increases, the	
		output voltage and base emitter voltage of transistor increases and thus increases the	02 M
		base current Ibase and therefore causes an increase in the collector current Icoll (Icoll =	
		β . Ibase). Thus, the supply voltage increases causing an increase in supply current, which	
		intern causes a voltage drop i the series resistance R series and thereby decreasing the	
		output voltage. This decrease will be more than enough to compensate for the initial	
		avplained above happens in reverse if the supply voltage decreases. When the load	
		resistance Rload decreases the load current Iload increases due to the decrease in	
		currents through base and collector Ibase and Icoll Thus, there will not be any voltage	
		drop across Refries and the input current remains constant. Thus, the output voltage will	
		remain constant and will be the difference of the supply voltage and the voltage drop in	
		the series resistance. It happens in reverse if there is an increase in load resistance.	
5.		Attempt any <u>TWO</u> of the following:	12 M
	a	Draw circuit diagram of Zener diode as voltage regulator and describe its	
		operation for:	
		(i) Variable input voltage and constant load resistance.	
		(ii) Constant input voltage and variable load resistance.	
		Ans: Rs	
		$\frac{1}{2}$ Vin $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	02 M
		$-\top$	
		Fig: Zener diode as voltage regulator	
		Variable input voltage and constant load resistance:	
		Here the load resistance is kept fixed and the input voltage varies within the	
		limits. As the input voltage increases, the input current also increase .this increases the	
		current through Zener diode, without affecting the current .the increase in input current	
		will also increase the voltage drop across series resistance, thereby keeping the load	02 M
		voltage as constant. On the other hand, if the input voltage is decreased, the input	
		current also decreases as a result of this, the current through Zener will also decreases.	
		Consequently, the voltage across series resistance will be reduced. Thus the load voltage	
		and load current remains constant.	
		Here the input voltage is kept fixed and the load resistance varies. The variation	
	I	There are input voltage is kept lived and the four resistance varies. The variation	

		Parameters	СВ	СЕ	
		Current Gain	Low	High	
		Voltage Gain	High	Low	
		Input Impedance	Low	High	
		Output Impedance	High	Low	0.635
		Applications	Used as a cascade	Used in general	06 M
			stage to isolate	purpose amplifier	
			output voltage signal.	designs	
		Phase Shift	0°	180°	
		Table: Comparison	of CB, CE configuration	ons of BJT	
b	Describe	working of N-ch JFET	with neat circuit diag	ram. Also draw its drain	
	character	istics with labeled operati	ing regions on it.		
	Ans:				
			•V _{GS} •-		
			G		
			<i>p</i> _		
			: n	<u>`</u>	02 M
			(n)		
			• VDS•		
			Fig: N-ch JFET		
		In n-channel JFET, the ma	aiority charge carriers y	vill be the electrons as the	
	channel fo	ormed in-between the sour	ce and the drain is of n	-type. And the working of	
	this device	e depends upon the voltage	s applied at its terminals		
	C	ase I - Consider the case w	here no voltage is applie	ed to the device i.e. $V_{DS} = 0$	
	and V _{GS} =	0. At this state, the device	will be idle and no curr	rent flows through it i.e. I _{DS}	
	= 0.				
	Ca	ase II-Now consider that th	ne drain terminal of the	device is connected to the	
	positive te	erminal of the battery while	e its negative is connect	ted to the source i.e. $V_{DS} =$	
	+ve. How	ever let the gate terminal r	emain at unbiased state	, which means $V_{GS} = 0$. At	
	this instan	it, the electrons within the	n-substrate of the devic	e start moving towards the	
	drain bein	g attracted by the positive	force exerted by the bat	tery. At the same time, the	
	electron w	also be repelled from the	le source as it is connect	ted to the negative terminal	
	of the volt	age supply. This results in	a net flow of current from	in drain to source	
	Fu the device	rther, it is seen that the inc	crease in v_{DS} i creases i	'a Ohmia ragion Howayar	02 M
	it is to be	at an initial state which ca	n de termeu to de JFET	s Onnie region. However,	
	depletion	regions surrounding the pr	v_{DS} also causes all line in turn (causes the channel width to	
	reduce th	ereby increasing its resist	ance This phenomenon	continues till both of the	
	depletion	regions grow in to an exte	nt wherein they almost	seem to touch each other a	
	condition	referred to as ninch-off	The corresponding value	e of V_{DS} is referred to as	
	pinch-off	voltage, $V_{\rm P}$. Nevertheless	, even in this case, a	narrow channel with high	

current density exists within the device due to which IDS will get saturated to a level of

 I_{DSS} as indicated in Figure 2.

no current is drawn from V_{CC} , no power is wasted. When input signal is given, it is applied to the input transformer T_{r1} which splits the signal into two signals that are 180° out of phase with each other. These two signals are given to the two identical transistors T_1 and T_2 . For the positive half cycle, the base of the transistor T_1 becomes positive and collector current flows. At the same time, the transistor T_2 has negative half cycle, which throws the transistor T_2 into cut-off condition and hence no collector current flows.

