WINTER - 2019 EXAMINATION

| $\begin{array}{l}\text { Subject Name: Electronic Devices And Circuits } \\ \text { Important Instructions to examiners: }\end{array}$ | $\underline{2346}$ |
| :--- | :--- | :--- |

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance. Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
1.		Attempt any FIVE of the following:	10 M
	a	Define following parameter for JFET along with mathematical relation: (i) Transconductance (ii) Amplification factor Ans: 1. Definition of transconductance: It is given by the ratio of small change in drain current $\left(\Delta \mathrm{I}_{\mathrm{D}}\right)$ to the corresponding change in gate to source voltage $\left(\Delta \mathrm{V}_{\mathrm{GS}}\right)$ for a constant drain to source $\left(\mathrm{V}_{\mathrm{DS}}\right)$.Mathematically , the transconductance, $\mathrm{G}_{\mathrm{m}}=\Delta \mathrm{I}_{\mathrm{D}} / \Delta \mathrm{V}_{\mathrm{GS}}$. 2. Definition of amplification factor: It is given by the ratio of small change in drain to source voltage $\left(\Delta \mathrm{V}_{\mathrm{DS}}\right)$ to the corresponding change in gate -to-source voltage $\left(\Delta \mathrm{V}_{\mathrm{GS}}\right)$ for a constant drain current (I_{D}). Mathematically, the amplification factor, $\mu=\Delta \mathrm{VDS} / \Delta \mathrm{VGS}$.	01 M 01 M
	b	Draw the symbol of (i) NPN transistor (ii) PNP transistor Ans: n-p-n transistor p-n-p transistor Fig: Symbol of NPN and PNP transistor	02 M

	g	State Barkhausen criteria for sustained oscillations. Ans: Barkhausen criteria for sustained oscillations: The Barkhausen criteria should be satisfied by an amplifier with positive feedback to ensure the sustained oscillations. The Barkhausen criterion states that: 1. The loop gain is equal to unity, that is $\beta \mathrm{A}_{\mathrm{v}}=1$ and 2. The phase shift around the loop is zero or an integer multiple of 2π : $\angle \beta \mathrm{Av}=2$ π or 0 the product $\beta \mathrm{A}_{\mathrm{v}}$ is called as the "loop gain".	$\begin{aligned} & \mathbf{0 1 M} \\ & 01 \mathrm{M} \end{aligned}$
2.		Attempt any THREE of the following:	12 M
	a	Compare RC integrator and differentiator on the basis of: (i) Circuit diagram (ii) O / P voltage equation (iii) Time constant condition (iv) Output voltage waveform for square wave input. Ans: Table: Comparison RC integrator and differentiator	04 M
	b	Draw and describe working of negative clamper with neat circuit diagram and input /output waveforms. Ans: Fig: Negative Clamper	02 M

		For negative clamper it is required to clamp the input signal waveform negatively at 0 V . Here the diode is forward biased during positive half cycle of the input signal. And as the diode conducts-capacitor gets charged (up to peak value of input supply). During the negative half cycle, the diode is reverse biased and does not conduct and the output voltage become equal to the sum of the input voltage and the voltage stored across the capacitor.	02 M
	c	Derive the relation between α and β of transistor. Ans. The relation between α and $\boldsymbol{\beta}$ of transistor: Common base current gain, $\alpha=(\mathrm{Ic} / \mathrm{Ie})$ Common emitter current gain, $\beta=(\mathrm{Ic} / \mathrm{Ib})$ From transistor current relations, $\mathrm{Ie}=\mathrm{Ic}+\mathrm{Ib}$ $\alpha=\mathbf{I c} / \mathbf{I e}$ $\alpha=\mathrm{Ic} /(\mathrm{Ic}+\mathrm{Ib})$ Dividing numerator and denominator by Ib $\alpha=(\mathrm{Ic} / \mathrm{Ib}) /((\mathrm{Ic} / \mathrm{Ib})+(\mathrm{Ib} / \mathrm{Ib}))$ ie, $\alpha=\beta / \beta+1$ $\boldsymbol{\beta}=\mathbf{I} \mathbf{c} / \mathbf{I b}$ $\alpha=\mathrm{Ic} /(\mathrm{Ie}-\mathrm{Ic})$ Dividing numerator and denominator by Ie $\beta=(\mathrm{Ic} / \mathrm{Ie}) /((\mathrm{Ie} / \mathrm{Ie})-(\mathrm{Ic} / \mathrm{Ie}))$ ie, $\beta=\alpha / 1-\alpha$	02 M 02 M
	d	Draw VI characteristics of UJT and show its operating regions on it. Ans: Static Emitter-Characteristic For a UJT Fig: VI characteristics of UJT	04 M
3.		Attempt any THREE of the following:	12 M
	a	Compare class A, class B, power amplifiers on the basis of : (i) Current flow in terms of cycle (ii) Efficiency (iii)Distortion (iv)Place of Q point Ans:	

	R_{2} constitute a voltage divider that divides the supply voltage to produce the base bias voltage (V_{B}). Voltage Divider Bias Circuit are normally designed to have the voltage divider current $\left(\mathrm{I}_{2}\right)$ very much larger than the transistor base current $\left(\mathrm{I}_{\mathrm{B}}\right)$. In this circumstance, V_{B} is largely unaffected by I_{B}, so V_{B} can be assumed to remain constant. Referring to Fig. $V_{B}=\frac{V_{C C} \times R_{2}}{R_{1}+R_{2}}$ With V_{B} constant, the voltage across the emitter resistor is also a constant quantity, $V_{E}=V_{B} \cdot V_{B E}$ This means that the emitter current is constant, $I_{E}=\frac{V_{B} \cdot V_{B E}}{R_{E}}$ The collector current is approximately equal to the emitter current, so I_{C} is held at a constant level. the transistor collector voltage is, $V_{C}=V_{C C}-\left(I_{C} R_{C}\right)$ The collector-emitter voltage is, $V_{C E}=V_{C}-V_{E}$ V_{CE} can also be determined as, $V_{C E} \approx V_{C C}-I_{C}\left(R_{C}+R_{E}\right)$ Clearly, with I_{C} and I_{B} constant, the transistor collector-emitter voltage remains at a constant level. Fig: Voltage Divider Bias Circuit	02 M
d	Draw single stage BJT CE amplifier and describe function of each component used in it. Ans: Common emitter amplifier circuit elements and their functions: 1. Biasing Circuit/ Voltage Divider The resistances R1, R2 and RE used to form the voltage biasing and stabilisation	

		circuit. The biasing circuit needs to establish a proper operating Q-point otherwise; a part of the negative half cycle of the signal may be cut-off in the output. 2. Input Capacitor (C1) The capacitor C 1 is used to couple the signal to the base terminal of the BJT. If it is not there, the signal source resistance, Rs will come across R2 and hence, it will change the bias. C1 allows only the AC signal to flow but isolates the signal source from R2 3. Emitter Bypass Capacitor (CE) An Emitter bypass capacitor CE is used parallel with RE to provide a low reactance path to the amplified AC signal. If it is not used, then the amplified AC signal following through RE will cause a voltage drop across it, thereby dropping the output voltage. 4. Coupling Capacitor (C2) The coupling capacitor C 2 couples one stage of amplification to the next stage. This technique used to isolate the DC bias settings of the two coupled circuits. Fig: Single Stage BJT CE amplifier	02 M 02 M
4.		Attempt any THREE of the following:	12 M
	a	Compare BJT and JFET on the basis of : (i) Signal controlling in terms of voltage or current (ii) Input resistance (iii) Thermal stability (iv) Switching speed Ans: Comparison of BJT with JFET Table: Comparison of BJT with JFET	04 M

		As there is a voltage drop in the series resistance Rseries the unregulated voltage is also decreased along with it. The amount of voltage drop depends on the current supplied t the load Rload. The value of the voltage across the load depends on the Zener diode and the transistor base emitter voltage Vbe. Thus, the output voltage can be written as Vout $=$ Vzener + Vbe $=$ Vin - I R series The output remains nearly a constant as the values of Vzener and Vbe are nearly constant. This condition is explained below. When the supply voltage increases, the output voltage and base emitter voltage of transistor increases and thus increases the base current Ibase and therefore causes an increase in the collector current Icoll (Icoll = β.Ibase). Thus, the supply voltage increases causing an increase in supply current, which intern causes a voltage drop i the series resistance R series and thereby decreasing the output voltage. This decrease will be more than enough to compensate for the initial increase in output voltage. Thus, the output remains nearly a constant. The working explained above happens in reverse if the supply voltage decreases. When the load resistance Rload decreases, the load current Iload increases due to the decrease in currents through base and collector Ibase and Icoll. Thus, there will not be any voltage drop across Rseries and the input current remains constant. Thus, the output voltage will remain constant and will be the difference of the supply voltage and the voltage drop in the series resistance. It happens in reverse if there is an increase in load resistance.	02 M
5.		Attempt any TWO of the following:	12 M
	a	Draw circuit diagram of Zener diode as voltage regulator and describe its operation for: (i) Variable input voltage and constant load resistance. (ii) Constant input voltage and variable load resistance. Ans: Fig: Zener diode as voltage regulator Variable input voltage and constant load resistance: Here the load resistance is kept fixed and the input voltage varies within the limits. As the input voltage increases, the input current also increase .this increases the current through Zener diode, without affecting the current .the increase in input current will also increase the voltage drop across series resistance, thereby keeping the load voltage as constant. On the other hand, if the input voltage is decreased, the input current also decreases .as a result of this, the current through Zener will also decreases. Consequently, the voltage across series resistance will be reduced. Thus the load voltage and load current remains constant. Constant input voltage and variable load resistance: Here the input voltage is kept fixed and the load resistance varies. The variation	02 M 02 M

	c	Draw input and output characteristics for CE configuration of BJT and show different operating regions on it. Ans. 1/P characteristics CE configuration Fig: Input characteristics for CE configuration of BJT Fig: Output characteristics for CE configuration of BJT	03 M $03 \mathrm{M}$
6.		Attempt any TWO of the following:	12 M
	a	Compare CB, CE configurations of BJT on the basis of : (i) Current gain (ii) Voltage gain (iii) Input impedance (iv) Output impedance (v) Applications (vi) Phase shift Ans:	

It is this behavior of the JFET which causes it to behave as a constant current source.
Case III Next, let us add the voltage source at the gate terminal such that the gate is negative w.r.t source i.e. $\mathrm{V}_{\mathrm{GS}}=-$ ve while V_{DS} is +ve. In this case, the device behaves in a way very-similar to that in Case II, but for a lower value of V_{DS}. This means that the pinch-off and the saturation occur quite earlier and are decided by the negative potential applied at the gate i.e. more negative the V_{GS}, earlier the pinch-off due to which earlier will be the saturation, reducing $\mathrm{I}_{\mathrm{DSS}}$ (Figure 3). As the phenomenon continues, it is seen that a condition arises wherein the saturation level of the drain-to-source current I $\neg \mathrm{DS}$ occurs right for a value of 0 mA . This means that there is no current flow through the device and essentially the device will turn OFF. The value of V_{DS} for which this happens will be nothing but the negative pinch-off voltage i.e. $V_{D S}=-V_{P}$.

The circuit of class B push-pull amplifier shown in the above figure clears that both the transformers are center-tapped. When no signal is applied at the input, the transistors T_{1} and T_{2} are in cut off condition and hence no collector currents flow. As

| | no current is drawn from V_{CC}, no power is wasted. When input signal is given, it is
 applied to the input transformer $\mathrm{T}_{\mathrm{r} 1}$ which splits the signal into two signals that are
 180° out of phase with each other. These two signals are given to the two identical
 transistors T_{1} and T_{2}. For the positive half cycle, the base of the transistor T_{1} becomes
 positive and collector current flows. At the same time, the transistor T_{2} has negative
 half cycle, which throws the transistor T_{2} into cut-off condition and hence no collector
 current flows. | $\mathbf{0 2 ~ \mathbf { M }}$ |
| :---: | :--- | :--- | :--- |

