MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2013 Certified)

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits (22324)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits (22324)

1 Attempt any TEN of the following:
1 a) Define Conductance and Susceptance related to AC circuit and state their units.
Ans:-
Conductance (G):
It is defined as the real part of the admittance (Y).
It is also defined as the ability of the purely resistive circuit to pass the alternating current.

OR

It is also defined as the ratio of resistance to the square of the impedance.
In general, Conductance, $\mathrm{G}=\frac{R}{Z^{2}}$ siemen. Its unit is siemen (\mathbf{S}).

Susceptance (B):

It is imaginary part of the admittance (Y).
It is defined as the ability of the purely reactive circuit (purely capacitive or purely inductive) to admit alternating current.

OR

$1 / 2$ Mark for definition
$1 / 2$ Mark for unit
It is also defined as the ratio of reactance to the square of the impedance.
In general, Susceptance $(B)=\frac{X}{Z^{2}}$ siemen. Its unit is siemen (\mathbf{S}).
1 b) Draw power triangle for R-L series circuit. Write equation of power in rectangular form.

Ans:

1 Mark for power triangle

1 Mark for equation
$S=P+j Q$
$V I=V I \cos \phi+j$ VIsin ϕ
$I^{2} Z=I^{2} R+j I^{2} X_{L}$
1 c) Express an instantaneous value of an alternating current varying sinusoidally in terms of its maximum value, frequency and time.
Ans:

$$
\mathrm{i}=\mathrm{I}_{\mathrm{m}} \sin (\omega \mathrm{t} \pm \Phi) \mathrm{amp}
$$

where, $\mathrm{i}=$ Instantaneous value
1 Mark for
$\mathrm{I}_{\mathrm{m}}=$ Maximum value equation
$\omega=$ Angular frequency in $\mathrm{rad} / \mathrm{sec}=2 \pi \mathrm{f}$
$\mathrm{f}=$ frequency in cycles/sec or Hz
1 Mark for
$\mathrm{t}=$ time in sec
$\Phi=$ phase angle

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits (22324)

1 d) State relationship between line and phase values of voltage and current in balanced delta connection.
Ans:
Balanced Delta Connection:

$$
\begin{aligned}
\text { Line voltage } & =\text { Phase Voltage } & & 1 \text { Mark } \\
\text { i.e } V_{\mathrm{L}} & =V_{\mathrm{ph}} & & 1 \text { Mark } \\
\text { Line current } & =\sqrt{3}(\text { Phase current }) & & \\
\text { i.e } \mathrm{I}_{\mathrm{L}} & =\sqrt{3} \mathrm{I}_{\mathrm{ph}} & &
\end{aligned}
$$

1 e) Distinguish clearly between loop and mesh.
Ans:
Distinction between Loop \& Mesh:

Sr. No.	Loop	Mesh
1	A loop is any closed path in a circuit, in which no node is encountered more than once	A mesh is a loop that has no other loops inside of it
2	Every loop is not a mesh	Every mesh is a loop
3	Loops are used in a more general way for circuit analysis	Meshes are used to analyze planar circuits

1 f) State the value of internal resistance of (i) Ideal Voltage Source and (ii) Ideal Current Source.

Ans:

Value of Internal Resistance of Ideal Voltage Source $\mathrm{R}_{\mathrm{s}}=0$
Value of Internal Resistance of Ideal Current Source $R_{s}=\infty$

1 Mark for each of any two points $=2$ Marks

1 Mark each

2 Marks for correct statement

2 Attempt any THREE of the following:
2 a) With neat diagram, explain the phasor representation of sinusoidal quantity.
Ans:
Phasor Representation of Sinusoidal Quantity:

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits (22324)

OR Equivalent Figure

When number of waveforms are drawn in the same figure, the complexity of diagram increases and it becomes very difficult to extract the information from the waveforms. Therefore, to extract the same information, simplified alternate approach is preferred, called "Phasor representation of Sinusoidal quantity".
A sinusoidal quantity is represented by a rotating vector or rotating phasor "A" whose length is equal to the amplitude of the quantity " A_{m} ", as shown above. The points on the waveform are represented by the positions of the phasor during rotation drawn from the same reference point. The phasor making an angle of " ωt " with respect to positive x -axis reference, represents the instantaneous value of the quantity at an angle of " $\omega \mathrm{t}$ " from its zero value, as shown above. In fact, the vertical component of the phasor represents the magnitude of the quantity at that particular instant. From the above diagram, it is clear that the vertical component of the phasor is " $A_{m} \sin (\omega t)$ " which is the instantaneous value of the quantity at instant " $\omega \mathrm{t}$ ".
The speed of rotation of the phasor is equal to $\omega \mathrm{rad} / \mathrm{sec}$ where $\omega=2 \pi \mathrm{f}$.
One rotation of the phasor corresponds to one cycle of the alternating waveform as shown in figure.

2 b) For a parallel circuit consisting of an inductive branch (RL) in parallel with a capacitive branch (RC), draw phasor diagram and derive equation for resonant frequency.

Ans:

Parallel Resonance in RL-RC parallel circuit:

1 Mark for phasor diagram

Parallel Resonance for RL-RC Parallel Circuit
The circuit diagram and phasor diagram is as shown in the figure. Under parallel resonance (anti-resonance) condition, the circuit will take an input current (I) in phase with the applied voltage (V). At resonance, the circuit impedance becomes purely resistive in spite of presence of $\mathrm{L} \& \mathrm{C}$ and the circuit power factor becomes unity.

Model Answers

Winter - 2019 Examinations

Subject \& Code: Electrical Circuits (22324)

The admittance of inductive branch is:
$Y_{L}=\frac{1}{Z_{L}}=\frac{1}{R_{L}+j X_{L}}=\frac{1}{R_{L}+j \omega L}=\frac{R_{L}-j \omega L}{R_{L}^{2}+\omega^{2} L^{2}}$
The admittance of capacitive branch is:
$Y_{L}=\frac{1}{Z_{C}}=\frac{1}{R_{C}-j X_{C}}=\frac{1}{R_{C}-j \frac{1}{\omega C}}=\frac{R_{C}+j \frac{1}{\omega C}}{R_{C}^{2}+\frac{1}{\omega^{2} C^{2}}}$
Total admittance of the parallel circuit:

$$
\begin{aligned}
Y & =Y_{L}+Y_{C}=\left[\frac{R_{L}-j \omega L}{R_{L}^{2}+\omega^{2} L^{2}}+\frac{R_{C}+j \frac{1}{\omega C}}{R_{C}^{2}+\frac{1}{\omega^{2} C^{2}}}\right] \\
& =\left[\frac{R_{L}}{R_{L}^{2}+\omega^{2} L^{2}}+\frac{R_{C}}{R_{C}^{2}+\frac{1}{\omega^{2} C^{2}}}\right]-j\left[\frac{\omega L}{R_{L}^{2}+\omega^{2} L^{2}}-\frac{\frac{1}{\omega C}}{R_{C}^{2}+\frac{1}{\omega^{2} C^{2}}}\right]
\end{aligned}
$$

At resonance, $\omega=\omega_{\mathrm{ar}}$ (anti-resonant angular frequency), the reactive term must be zero.
$\therefore\left[\frac{\omega_{a r} L}{R_{L}^{2}+\omega_{a r}^{2} L^{2}}-\frac{\frac{1}{\omega_{a r} C}}{R_{C}^{2}+\frac{1}{\omega_{a r}^{2} C^{2}}}\right]=0$
$\therefore \frac{\omega_{a r} L}{R_{L}^{2}+\omega_{a r}^{2} L^{2}}=\frac{\frac{1}{\omega_{a r} C}}{R_{C}^{2}+\frac{1}{\omega_{a r}^{2} C^{2}}}$
$\therefore \frac{\omega_{a r} L}{R_{L}^{2}+\omega_{a r}^{2} L^{2}}=\frac{\omega_{a r} C}{\omega_{a r}^{2} C^{2} R_{C}^{2}+1}$
$\therefore L \omega_{a r}^{2} C^{2} R_{C}^{2}+L=C R_{L}^{2}+\omega_{a r}^{2} C L^{2}$
$\therefore \omega_{a r}^{2}\left[L C^{2} R_{C}^{2}-C L^{2}\right]=C R_{L}^{2}-L$
$\therefore \omega_{a r}^{2}=\frac{C R_{L}^{2}-L}{\left[L C^{2} R_{C}^{2}-C L^{2}\right]}=\frac{L-C R_{L}^{2}}{\left[C L^{2}-L C^{2} R_{C}^{2}\right]}$

$$
=\frac{1}{L C}\left[\frac{L-C R_{L}^{2}}{L-C R_{C}^{2}}\right]
$$

$\therefore \omega_{a r}=\sqrt{\frac{1}{L C}\left[\frac{L-C R_{L}^{2}}{L-C R_{C}^{2}}\right]} \mathrm{rad} / \mathrm{sec}$
\therefore Anti-resonant frequency $f_{a r}=\frac{\omega_{a r}}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}\left[\frac{L-C R_{L}^{2}}{L-C R_{C}^{2}}\right]} \quad H z$

$$
f_{a r}=\frac{\omega_{a r}}{2 \pi}=\frac{1}{2 \pi \sqrt{L C}} \sqrt{\left[\frac{L-C R_{L}^{2}}{L-C R_{C}^{2}}\right]} H z
$$

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits (22324)
2 c) With the help of neat phasor diagram, derive the relationship between line and phase values of voltage in balanced star connection.
Ans:
Relationship Between Line voltage and Phase Voltage in Balanced Star Connection:
Let $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{Y}}$ and V_{B} be the phase voltages.
$\mathrm{V}_{\mathrm{RY}}, \mathrm{V}_{\mathrm{YB}}$ and V_{BR} be the line voltages.
The line voltages are expressed as:
$\mathrm{V}_{\mathrm{RY}}=\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{Y}}$
$\mathrm{V}_{\mathrm{YB}}=\mathrm{V}_{\mathrm{Y}}-\mathrm{V}_{\mathrm{B}}$
$\mathrm{V}_{\mathrm{BR}}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{R}}$
In phasor diagram, the phase voltages are drawn first with equal amplitude and displaced from each other by 120°. Then line voltages are drawn as per the above equations. It is seen that
 the line voltage $V_{R Y}$ is the phasor sum of phase voltages V_{R} and $-\mathrm{V}_{\mathrm{Y}}$. We know that in parallelogram, the diagonals bisect each other with an angle of 90°.
Therefore in $\triangle \mathrm{OPS}, \angle \mathrm{P}=90^{\circ}$ and $\angle \mathrm{O}=30^{\circ}$.

$$
[\mathrm{OP}]=[\mathrm{OS}] \cos 30^{\circ}
$$

$$
\begin{aligned}
\text { Since }[\mathrm{OP}] & =\mathrm{V}_{\mathrm{L}} / 2 \text { and }[\mathrm{OS}]=\mathrm{V}_{\mathrm{ph}} \\
\therefore \frac{\mathrm{~V}_{\mathrm{L}}}{2} & =\mathrm{V}_{\mathrm{ph}} \cos 30^{\circ} \\
\mathrm{V}_{\mathrm{L}} & =2 \mathrm{~V}_{\mathrm{ph}} \frac{\sqrt{3}}{2} \\
\mathbf{V}_{\mathrm{L}} & =\sqrt{3} \mathrm{~V}_{\mathrm{ph}}
\end{aligned}
$$

Thus Line voltage $=\sqrt{3}($ Phase Voltage $)$
2 d) State the equivalent delta connection for star connection of three resistances R_{1}, R_{2} \& R_{3} with proper equations.
Ans:

(a) Star Circuit

(b) Delta Circuit

$$
\begin{aligned}
& \mathrm{R}_{12}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}{R_{3}} \\
& \mathrm{R}_{23}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}{R_{1}} \\
& \mathrm{R}_{31}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}{R_{2}}
\end{aligned}
$$

1 mark for circuit diagram $+$ 1 mark for each of 3 equations $=4$ Marks

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits (22324)
3 a) For series R-L-C circuit, draw neat circuit diagram. State the conditions for RLC series ckt. Draw phasor diagram and voltage triangle impedance triangle for any 1 condition.
Ans:

Circuit Diagram for R-L-C Series Circuit:

Conditions for R-L-C Series Circuit:

(i) When $\mathbf{X}_{\mathbf{L}}>\mathbf{X}_{\mathbf{C}}$: Phase angle \emptyset is positive and circuit will be inductive. In other words, in such a case, the circuit current I will lag behind the applied voltage V by angle \emptyset.
(ii) When $\mathbf{X}_{\mathbf{L}}<\mathbf{X}_{\mathbf{C}}$: Phase angle \varnothing is negative and circuit will be capactive. In other words, in such a case, the circuit current I leads the applied voltage V by angle \emptyset.
(iii) When $\mathbf{X}_{\mathbf{L}}=\mathbf{X}_{\mathbf{C}}$: The circuit is purely resistive. In other word circuit current I and applied voltage V will be in phase i.e. $\varnothing=0^{\circ}$. The circuit will have unity power factor.
Phasor Diagram, Voltage Triangle \& Impedance Triangle:
(i) Condition $\mathbf{X}_{\mathrm{L}}>\mathbf{X}_{\mathrm{C}}$

(ii) Condition $\mathbf{X}_{\mathrm{L}}<\mathbf{X}_{\mathbf{C}}$

$1 / 2$ Mark for circuit
diagram
$1 / 2$ Mark for
each of 3
circuit
conditions
$=2$ Mark

1 Mark for phasor diagram

1/2 Mark each
for voltage triangle \& impedance triangle for any one condition $=2$ Mark

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits (22324)

3 b) State any four properties of Parallel Resonance.
Ans:

Properties of Parallel Resonance:

1. At resonance, the parallel RLC circuit behaves as purely resistive circuit.
2. At resonance, the Parallel RLC circuit power factor is unity.
3. At resonance, the parallel RLC circuit offers maximum total impedance $\mathrm{Z}=\mathrm{L} / \mathrm{CR}$
4. At resonance, parallel RLC circuit draws minimum current from source, $\left.I=\frac{V}{[L / C R}\right]$
5. At resonance, in parallel RLC circuit, current magnification takes place.

1 Mark for each of any four properties $=4$ Marks
6. The Q-factor for parallel resonant circuit is,

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

7. Parallel RLC resonant circuit is Rejecter circuit.

3 c) With neat labeled diagram, explain unbalanced star connected load.
Ans:
Unbalanced Star connected Load:

1. When the magnitudes and phase angles of three impedances are differ from each other, then it is called as unbalanced load.
2. Phase angles of impedance are not equal.

1 Mark for labeled circuit diagram $+$ 3 Marks for explanation (any 3 points)
3. For unbalanced load, the phase voltage is $\frac{1}{\sqrt{3}}$ of the line voltage.
4. All the voltages are fixed and line currents will not be equal nor will have a 120° phase difference.

3 d) With neat circuit diagram, explain how to convert a practical voltage source into an equivalent practical current source.

Ans:

Conversion of practical voltage source into equivalent practical current source:
Let V_{S} be the practical voltage source magnitude and
Z_{V} be the internal series impedance of the voltage source.
I_{S} be the equivalent practical current source magnitude and
Z_{I} be the internal parallel impedance of current source.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2013 Certified)

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits (22324)

The open circuit terminal voltage of voltage source is $\mathrm{V}_{\mathrm{OC}}=\mathrm{V}_{\mathrm{S}}$
1 Mark for each
equation
The open circuit terminal voltage of current source is $\mathrm{V}_{\text {OC }}=\mathrm{I}_{\mathrm{S}} \times \mathrm{Z}_{1}$
= 4 Marks
Therefore, we get $V_{S}=I_{S} \times Z$

The short circuit output current of voltage source is $\mathrm{I}_{\mathrm{SC}}=\mathrm{V}_{\mathrm{S}} / \mathrm{Z}_{\mathrm{V}}$
The short circuit output current of current source is $I_{S C}=I_{S}$
Therefore, we get $I_{S}=V_{S} / Z_{V}$
Therefore, we get $\mathrm{V}_{\mathrm{S}}=\mathrm{I}_{\mathrm{S}} \times \mathrm{Z}_{\mathrm{V}}$
On comparing eq. (1) and (3), it is clear that $\mathrm{Z}_{\mathrm{I}}=\mathrm{Z}_{\mathrm{V}}=\mathrm{Z}$
Thus the internal impedance of both the sources is same, and the magnitudes of the source voltage and current are related by Ohm's law, $\mathrm{V}_{\mathrm{S}}=\mathrm{I}_{\mathrm{S}} \times \mathrm{Z}$

3 e) Explain the concept of "duality" in electric circuit with one example.

Ans:

Concept of duality:
When the two circuit elements are represented by mathematical equations of similar
1 Mark nature, then these elements are called dual elements of each other.

Examples:

(i) A resistance is represented by mathematical equation based on Ohm's law as, $\mathrm{R}=\mathrm{V} / \mathrm{I}$ and the conductance is represented by $\mathrm{G}=\mathrm{I} / \mathrm{V}$.

1 Mark
(ii) A voltage across an inductance is represented by $\mathrm{v}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$ and the current through a capacitor is represented by $i=C \frac{d v}{d t}$
On comparing the above equations we can form pairs of dual elements or quantities:

Similarly, we can apply this concept to electric circuits and say that when the two circuits are represented by similar mathematical equations, then such circuits are called dual circuits of each other.
Consider a series R-L-C circuit, the voltage equation can be written as:
$\mathrm{v}(\mathrm{t})=\mathrm{R} . \mathrm{i}(\mathrm{t})+\mathrm{L} \frac{d i(t)}{d t}+\frac{1}{C} \int i(t) d t$
Consider a parallel R-L-C circuit, the current equation can be written as:
$\mathrm{i}(\mathrm{t})=\frac{1}{R} \mathrm{v}(\mathrm{t})+\mathrm{C} \frac{d v(t)}{d t}+\frac{1}{L} \int v(t) d t$

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits (22324)

1 Mark

On comparing equations (1) \& (2), it is seen that both the equations are integrodifferential equations of similar kind. Therefore, the two circuits are dual circuits. The dual element pairs are:

$$
\begin{gathered}
\text { Voltage source } \mathrm{v}(\mathrm{t}) \longleftrightarrow \text { Current source } \mathrm{i}(\mathrm{t}) \\
\text { Resistance }(\mathrm{R}) \longleftrightarrow \text { Conductance }(\mathrm{G}=1 / \mathrm{R}) \\
\text { Inductance }(\mathrm{L}) \longleftrightarrow \text { Capacitance }(\mathrm{C}) \\
\text { Series Circuit } \longleftrightarrow \text { Parallel circuit }
\end{gathered}
$$

1 Mark

Examples of duality in electric circuit

- voltage - current
- parallel circuit - series circuit
- resistance - conductance
- voltage division - current division
- impedance - admittance
- capacitance - inductance
- reactance - susceptance
- short circuit - open circuit
- Kirchhoff's Voltage law - Kirchhoff's Current law
- Mesh - Node
- Thevenin's theorem - Norton's theorem

4 Attempt any THREE of the following.

4 a) A series R-L-C circuit has $\mathrm{R}=5 \Omega, \mathrm{~L}=10 \mathrm{mH}$ and $\mathrm{C}=15 \mu \mathrm{~F}$. Calculate:
(i) Resonant frequency
(ii) Q -factor of the circuit
(iii) Bandwidth
(iv) Voltage Magnification.

Ans:

Data Given:

$$
\mathrm{R}=5 \Omega, \mathrm{~L}=10 \mathrm{mH}=10 \times 10^{-3} \mathrm{H}, \mathrm{C}=15 \mu \mathrm{~F}=15 \times 10^{-6} \mathrm{~F},
$$

i) Resonant frequency:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{r}} & =\frac{1}{2 \pi \sqrt{L C}} \\
& =\frac{1}{2 \pi} \sqrt{\frac{1}{10 \times 10^{-3} \times 15 \times 10^{-6}}} \\
& =410.94 \mathrm{~Hz}
\end{aligned}
$$

1 Mark for each bit $=4$ Marks
ii) Quality factor of circuit:

Q factor $=\frac{2 \pi L f_{r}}{R}=\frac{1}{R} \sqrt{\frac{L}{C}}$

Model Answers

Winter-2019 Examinations
Subject \& Code: Electrical Circuits (22324)

$$
\begin{aligned}
& =\frac{2 \pi \times 10 \times 10^{-3} \times 410.93}{5} \\
& =\mathbf{5 . 1 6}
\end{aligned}
$$

iii) Bandwidth:

$$
\begin{aligned}
\text { Bandwidth } & =\frac{f_{r}}{Q \text { factor }} \\
& =\frac{410.94}{5.16}=\mathbf{7 9 . 6 4 ~ H z}
\end{aligned}
$$

iv) Voltage Magnification:

$$
\begin{aligned}
\text { Q factor } & =\frac{1}{R} \sqrt{\frac{L}{C}} \\
& =\frac{1}{5} \sqrt{\frac{10 \times 10^{-3}}{15 \times 10^{-6}}} \\
& =5.16
\end{aligned}
$$

4 b) Explain the "Current Magnification" in parallel resonant circuit consisting of inductive branch (RL) in parallel with a pure capacitor (C). Derive equation for it.
Ans:
Current Magnification in Parallel Resonant (RL\|C) Circuit:

Current Magnification:

The Current Magnification or quality factor or Q-factor of parallel resonant circuit is defined as the ratio of the current circulating between two branches of the circuit to the current taken by the parallel circuit from the source.

Current Magnification $=$ Q-factor $=\frac{\text { Circulating current between } L \text { and } C}{\text { Input current from the source }}=\frac{I_{C}}{I_{r}}$ At parallel resonance, the circulating current is I_{C} and circuit condition is,

$$
\begin{align*}
\mathrm{I}_{\mathrm{C}}-\mathrm{I}_{\mathrm{L}} \sin \emptyset_{L} & =0 \\
\mathrm{I}_{\mathrm{C}} & =\mathrm{I}_{\mathrm{L}} \sin \emptyset_{L} \\
\frac{V}{x_{C}} & =\frac{V}{z_{L}} \times \frac{X_{L}}{z_{L}} \\
Z_{L}{ }^{2} & =X_{L} \times X_{C}=\omega_{r} L \frac{1}{\omega_{r} C}=\frac{L}{C} \tag{1}
\end{align*}
$$

Total circuit input current, $\mathrm{I}_{\mathrm{r}}=\mathrm{I}_{\mathrm{L}} \cos \emptyset_{L}$
If the circuit impedance at resonance is Z_{r}, then

$$
\begin{aligned}
& I_{r}=\frac{V}{z_{r}}=\frac{V}{z_{L}} \times \frac{R}{z_{L}} \\
& \frac{1}{z_{r}}=\frac{R}{z_{L}{ }^{2}}
\end{aligned}
$$

Substituting $\mathrm{Z}_{\mathrm{L}}{ }^{2}$ from eq. (1),

1 Mark for diagram

1 Mark

2 Marks for stepwise derivation

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits (22324)

$$
\begin{gather*}
\frac{1}{Z_{r}}=\frac{R}{\frac{L}{C}}=\frac{C R}{L} \\
Z_{r}=\frac{L}{C R} \ldots \ldots \ldots \tag{2}
\end{gather*}
$$

Now, circulating current $\mathrm{I}_{\mathrm{C}}=\mathrm{V} / \mathrm{X}_{\mathrm{C}}=\frac{V}{\left(\frac{1}{\omega_{r} \mathrm{C}}\right)}=\omega_{r} C V$
and input line current taken by circuit $\mathrm{I}_{\mathrm{r}}=\frac{V}{Z_{r}}=\frac{V}{\left\lfloor\frac{L}{C R}\right]}=\frac{V C R}{L}$
Current Magnification $=\mathrm{Q}$-factor $=\frac{I_{C}}{I_{r}}$
Current Magnification $=$ Q-factor $=\frac{\omega_{r} C V}{\frac{V C R}{L}}=\frac{\omega_{r} L}{R}=\frac{2 \pi f_{r} L}{R}$
The Q-factor of a parallel resonant circuit can also be expressed in term of L and C . Neglecting resistance R, the resonance frequency is given by;

$$
\mathrm{f}_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{L C}}
$$

Now,

$$
\text { Current Magnification }=\text { Q- factor }=\frac{2 \pi f_{r} L}{R}=\frac{2 \pi L}{R} \times \frac{1}{2 \pi \sqrt{L C}}=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

4 c) Draw waveform of three-phase voltages. Draw phasor diagram for these voltages. Write equations for instantaneous values of these voltages. Express these voltages in polar form.
Ans:

(Treated as reference)

The equations of three-phase voltages can be represented by,

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{R}}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} \\
& \mathrm{v}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin}\left(\omega \mathrm{t}-120^{\circ}\right) \\
& \mathrm{v}_{\mathrm{B}}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin}\left(\omega \mathrm{t}-240^{\circ}\right)=\mathrm{V}_{\mathrm{m}} \operatorname{Sin}\left(\omega \mathrm{t}+120^{\circ}\right)
\end{aligned}
$$

Polar Form:

Let V be the RMS value of the phase voltage, $\mathrm{V}=\frac{V_{m}}{\sqrt{2}}$
$\mathrm{V}_{\mathrm{R}}=\mathrm{V} \angle 0^{\circ}$
$V_{Y}=V \angle-120^{\circ}$
$\mathrm{V}_{\mathrm{B}}=\mathrm{V} \angle-240^{\circ}=\mathrm{V} \angle 120^{\circ}$

1 Mark for waveform

1 Mark for phasor diagram

1 Mark for equations

1 Mark for polar form

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits (22324)

4 d) State and explain "Reciprocity theorem".
Ans:

Reciprocity theorem :

Reciprocity Theorem states that in any bilateral network if a voltage source V in one branch, say branch ' A ', produces a current I in another branch, say branch ' B ', then if the voltage source V is moved from the branch A to the branch B , it will cause the same current I in the first branch ' A ', where the voltage source has been replaced by a short circuit.

Steps for Solving a Network Utilizing Reciprocity Theorem:
Step 1: Firstly, select the branches, say A and B, between which reciprocity has to be established.
Step 2: The current I_{1} in the branch B is obtained using any conventional network analysis method, when the source is in the branch A.
Step 3: The voltage source is moved to branch B.
Step 4: The current I_{2} in the branch A, where the voltage source was existing earlier, is calculated.
Step 5: It is seen that the current I_{1} obtained in the previous connection, i.e., in step 2 and the current I_{2} which is calculated when the source is moved to branch B i.e. in step 4 , are equal to each other.

The limitation of this theorem is that it is applicable only to single source networks and not in the multi-source network. The network where reciprocity theorem is applied should be linear and consist of resistors, inductors, capacitors and coupled circuits. The circuit should not have any time-varying elements.

5 Attempt any TWO of the following:

2 Marks for statement

2 Marks for explanation

5 a) A coil having resistance of 5Ω and an inductance of 0.2 H is connected in parallel with a series combination of 10Ω resistor and $80 \mu \mathrm{~F}$ capacitor. If supply voltage is 230 $\mathrm{V}, 50 \mathrm{~Hz}$, determine:

1) Total circuit impedance
2) Total current taken by the circuit
3) Power factor of the circuit
4) Branch currents
5) Power consumed by the circuit

Ans:

Data Given: Branch I: $\mathrm{R}_{1}=5 \Omega$ and $\mathrm{L}=0.2 \mathrm{H}$
Branch II: $\mathrm{R}_{2}=10 \Omega$ and $\mathrm{C}=80 \mu \mathrm{~F}=80 \times 10^{-6} \mathrm{~F}$

$$
\mathrm{V}=230 \mathrm{~V}, \quad \mathrm{f}=50 \mathrm{~Hz}
$$

(i) Total circuit impedance (Z):

Inductive reactance $X_{L}=2 \pi f L$

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits (22324)

$$
=2 \times \pi \times 50 \times 0.2 \quad 1 / 2 \text { Mark for }
$$

$$
\mathrm{X}_{\mathrm{L}}=62.83 \Omega
$$

Capacitive reactance $\mathrm{X}_{\mathrm{C}}=1 /(2 \pi \mathrm{fC})$

$$
\begin{aligned}
& X_{\mathrm{C}}=1 /\left(2 \pi \times 50 \times 80 \times 10^{-6}\right) \\
& \mathbf{X}_{\mathbf{C}}=\mathbf{3 9 . 7 9 \boldsymbol { \Omega }}
\end{aligned}
$$

$1 / 2$ Mark for
Branch 1 Impedance $Z_{1}=(5+\mathrm{j} 62.83) \Omega=\mathbf{6 3 . 0 3} \angle \mathbf{8 5 . 4 5}{ }^{\circ} \Omega$
Branch 2 Impedance $Z_{2}=(10-\mathrm{j} 39.79) \Omega=\mathbf{4 1 . 0 3} \angle-75.89^{\circ} \Omega$
Since impedances are in parallel, total circuit impedance is given by,

$$
\begin{aligned}
\mathrm{Z}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}} & =\frac{\left(\mathbf{6 3 . 0 3 \angle 8 5 . 4 5 ^ { \circ }) (\mathbf { 4 1 . 0 3 } \angle - \mathbf { 7 5 . 8 9 } { } ^ { \circ })}\right.}{(5+\mathrm{j} 62.83)+(10-\mathrm{j} 39.79)} \\
& =\frac{\mathbf{2 5 8 6 . 1 2 \angle 9 . 5 6 ^ { \circ }}}{(15+\mathrm{j} 23.04)}=\frac{2586.12 \angle 9.56^{\circ}}{27.49 \angle 56.3^{\circ}}
\end{aligned}
$$

1 Mark for Z
\therefore Total circuit impedance $Z=94.07 \angle-47.37^{\circ} \Omega$
(ii) Total current (I) :

Total Current (I): $\mathrm{I}=\mathrm{V} / \mathrm{Z}=\frac{230 \angle 0^{0}}{94.07 \angle-47.37^{\circ}}$

$$
=2.44 \angle 47.37^{0} \mathrm{~A}=(1.65+\mathrm{j} 1.80) A
$$

Angle between V and I is $\{0-47.37\}=-47.37^{\circ}$
(iii) Power factor of the circuit $(\cos \phi)$:
$\cos \phi=\cos \left(-47.37^{\circ}\right)=\mathbf{0 . 6 8}$ leading
(iv) Branch Currents:

Branch current $\mathrm{I}_{1}=\mathrm{V} / \mathrm{Z}_{1}=\frac{230 \angle 0^{0}}{63.03 \angle 85.45^{\circ}}=\mathbf{3 . 6 5} \angle-\mathbf{8 5 . 4 5}{ }^{\circ} \mathbf{A}$
Branch current $\mathrm{I}_{2}=\mathrm{V} / \mathrm{Z}_{2}=\frac{230 \angle 0^{\circ}}{41.03 \angle-75.89^{\circ}}=\mathbf{5 . 6 1} \angle 75.89^{\circ} \mathrm{A}$
(v) Power consumed by the circuit:

1 Mark for I

1 Mark for pf
$1 / 2$ Mark for each branch current
$=1$ Mark
1 Mark for P
$\mathrm{P}=\mathrm{V} \times \mathrm{I} \times \cos \phi=230 \times 2.44 \times 0.68$
$\mathbf{P}=381.62$ watt
5 b) Using mesh analysis, find current in 5Ω resistor in the network shown in Fig. 5(b).

Fig. No. 5 (b)

Ans:

A) Converting current source of $5 \mathrm{~A}, 4 \Omega$ into equivalent voltage source:

Emf of voltage source $\mathrm{V}=\mathrm{I} \times \mathrm{R}=5 \times 4=20$ volt
Internal resistance of voltage source $=$ internal resistance of current source

$$
=4 \Omega
$$

1 Mark

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits (22324)
B) Modified circuit:

Replacing current source with equivalent voltage source, the modified circuit diagram is as shown below. The mesh currents can be marked as shown.

C) Mesh Analysis:

By applying KVL to Mesh 1 :

$$
\begin{align*}
& 20-(4+3) \mathrm{I}_{1}-5\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=0 \\
& 20-12 \mathrm{I}_{1}+5 \mathrm{I}_{2}=0 \\
& 12 \mathrm{I}_{1}-5 \mathrm{I}_{2}=20 \ldots . \tag{1}
\end{align*}
$$

By applying KVL to Mesh 2 :

$$
\begin{align*}
& 10-5\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)-1 \mathrm{I}_{2}=0 \\
& 10-6 \mathrm{I}_{2}+5 \mathrm{I}_{1}=0 \\
&-5 \mathrm{I}_{1}+6 \mathrm{I}_{2}=10 \ldots \tag{2}
\end{align*}
$$

Expressing eq.(1) and (2) in matrix form,

$$
\left.\begin{aligned}
& \therefore \Delta=\left[\begin{array}{cc}
12 & -5 \\
-5 & 6
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{1} \\
\mathrm{I}_{2}
\end{array}\right]=\left[\begin{array}{l}
20 \\
10
\end{array}\right] \\
& -5
\end{aligned}-5 \right\rvert\,=72-(25)=47 .
$$

By Cramer's rule,

$$
\begin{aligned}
& \mathrm{I}_{1}=\frac{\left|\begin{array}{cc}
20 & -5 \\
10 & 6
\end{array}\right|}{\Delta}=\frac{(20 \times 6)-10 \times(-5)}{47}=\frac{120+50}{47}=\mathbf{3 . 6 2 ~ A} \\
& \mathrm{I}_{2}=\frac{\left|\begin{array}{rr}
12 & 20 \\
-5 & 10
\end{array}\right|}{\Delta}=\frac{(12 \times 10)-20 \times(-5)}{47}=\frac{120+100}{47}=4.68 \mathrm{~A}
\end{aligned}
$$

Current flowing through resistance of $5 \Omega=I_{2}-I_{1}=4.68-3.62$

$$
=\mathbf{1 . 0 6 ~} \mathrm{A} \text { in the direction of } \mathrm{I}_{2}
$$

1 Mark for
Eq. (1)

1 Mark for Eq. (2)

1 Mark for Eq. in matrix form

1 Mark

5 c) Find the current in 5Ω resistor in the network shown in Fig. 5(c) by using Thevenin's theorem.

Fig. No. 5 (c)
Ans:

1) Determination of Thevenin's equivalent voltage $\mathbf{V}_{\mathbf{T h}}$:

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits (22324)

Thevenin's voltage V_{Th} is the open circuit voltage between load terminals A \& B. It is seen that it is the voltage across capacitor.

The net impedance across 100 V source is given by,

$$
\begin{aligned}
\mathrm{Z} & =3+(\mathrm{j} 2) \|(6-\mathrm{j} 4)=3+\frac{(j 2)(6-j 4)}{j 2+6-j 4}=3+\frac{8+j 12}{6-j 2}=3+\frac{14.42 \angle 56.31^{\circ}}{6.32 \angle-18.43^{\circ}} \\
& =3+2.28 \angle 74.74^{\circ}=3+0.6+\mathrm{j} 2.2=(\mathbf{3 . 6}+\mathbf{j} 2.2) \boldsymbol{\Omega}=\mathbf{4 . 2 2} \angle \mathbf{3 1 . 4 3}{ }^{\circ} \boldsymbol{\Omega}
\end{aligned}
$$

The total current $\mathrm{I}=\mathrm{V} / \mathrm{Z}=\frac{100 \angle 30^{\circ}}{4.22 \angle 31.43^{\circ}}=23.7 \angle-1.43^{\circ} \mathrm{A}$
The capacitor current $\mathrm{I}_{2}=\mathrm{I} \frac{Z_{1}}{Z_{1}+Z_{2}}=\left(23.7 \angle-1.43^{\circ}\right) \frac{j 2}{j 2+6-j 4}$

$$
\begin{aligned}
& =\left(23.7 \angle-1.43^{\circ}\right) \frac{2 \angle 90^{\circ}}{6.32 \angle-18.43^{\circ}} \\
& =7.5 \angle 107^{\circ}=(-2.2+\mathrm{j} 7.17) \mathrm{A}
\end{aligned}
$$

Thevenin's voltage $\mathrm{V}_{\mathrm{Th}}=(-\mathrm{j} 4) \mathrm{I}_{2}=\left(4 \angle 90^{\circ}\right)\left(7.5 \angle 107^{\circ}\right)$

$$
\mathbf{V}_{\mathrm{Th}}=30 \angle 197^{\circ} \text { volt }=(-28.69-\mathrm{j} 8.77) \text { volt }
$$

2) Determination of Thevenin's Equivalent Impedance \mathbf{Z}_{Th} :

It is the impedance seen between the open circuited terminals A \& B with all internal independent voltage sources replaced by short circuit and all internal independent current sources by open circuit.

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{Th}} & =(-\mathrm{j} 4) \|\{6+(3 \| \mathrm{j} 2)\} \\
& =(-\mathrm{j} 4)\left\|\left\{6+\left(\frac{3 \times 2 \angle 90^{\circ}}{3+j 2}\right)\right\}=(-\mathrm{j} 4)\right\|\left\{6+\left(\frac{6 \angle 90^{\circ}}{3.606 \angle 33.7^{\circ}}\right)\right\} \\
& =(-\mathrm{j} 4)\left\|\left\{6+\left(1.66 \angle 56.3^{\circ}\right)\right\}=(-\mathrm{j} 4)\right\|\{6+0.92+\mathrm{j} 1.38\} \\
& =(-\mathrm{j} 4)\|\{6.92+\mathrm{j} 1.38\}=(-\mathrm{j} 4)\|\left\{7.056 \angle 11.28^{\circ}\right\} \\
& =\frac{\left(4 \angle-90^{\circ}\right)\left(7.056 \angle\left\langle 11.28^{\circ}\right)\right.}{(-j 4+6.92+j 1.38)}=\frac{28.224 \angle-78.72^{\circ}}{7.4 \angle-20.74^{\circ}} \\
& \mathbf{Z}_{\mathbf{T h}}=\mathbf{3 . 8 1 4} \angle-\mathbf{5 7 . 9 8} \mathbf{x i}^{\circ} \boldsymbol{\Omega}=(\mathbf{2 . 0 2}-\mathbf{j 3 . 2 3}) \boldsymbol{\Omega}
\end{aligned}
$$

3) Thevenin's Equivalent Circuit:

1 Mark for Thevenin's Eq. circuit

1 Mark for I_{L}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2013 Certified)

Model Answers
Winter-2019 Examinations
Subject \& Code: Electrical Circuits (22324)

The current in 5Ω resistor is given by,

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}=\frac{V_{T h}}{\left(Z_{T h}+R_{L}\right)}=\frac{30 \angle 197^{\circ}}{(\mathbf{2 . 0 2}-\mathbf{j 3 . 2 3 + 5)}}=\frac{30 \angle 197^{\circ}}{(\mathbf{7 . 0 2 - \mathrm { j } 3 . 2 3)}}=\frac{30 \angle 197^{\circ}}{7.73 \angle-24.71^{\circ}} \\
& \mathbf{I}_{\mathbf{L}}=\mathbf{3 . 8 8} \angle \mathbf{2 2 1 . 7 1} \boldsymbol{A}
\end{aligned}
$$

6 Attempt any TWO of the following:
6 a) For a series R-L-C circuit consisting of $\mathrm{R}=5 \Omega, \mathrm{~L}=0.01 \mathrm{H}$ and $\mathrm{C}=10 \mu \mathrm{~F}$ supplied with $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, determine:
i) Circuit impedance
ii) Circuit current
iii) Circuit power factor
iv) Active power
v) Reactive power
vi) Apparent power

Ans:
Data Given: $\mathrm{R}=5 \Omega, \quad \mathrm{~L}=0.01 \mathrm{H}, \quad \mathrm{C}=10 \mu \mathrm{~F}=10 \times 10^{-6} \mathrm{~F}$

$$
\mathrm{V}=230 \mathrm{~V}, \quad \mathrm{f}=50 \mathrm{~Hz}
$$

(i) Circuit Impedance:

1 Mark for each bit
$=6$ Marks

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=2 \times \pi \times 50 \times 0.01=3.142 \Omega \\
& \mathrm{X}_{\mathrm{c}}=\frac{1}{2 \pi \mathrm{fC}}=\frac{1}{2 \times \pi \times 50 \times 10 \times 10^{-6}}=318.31 \Omega \\
& \mathrm{Z}=\mathrm{R}+\mathrm{j}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)=5+\mathrm{j}(3.142-318.31) \\
& \mathrm{Z}=(\mathbf{5}-\mathbf{j} \mathbf{3 1 5 . 1 6 8}) \boldsymbol{\Omega}=\mathbf{3 1 5 . 2 1} \angle \mathbf{- 8 9 . 1 ^ { \circ }} \mathbf{\Omega}
\end{aligned}
$$

(ii) Circuit current:

Circuit current $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{Z}}=\frac{230 \angle 0^{\circ}}{315.21 \angle-89.1^{\circ}}=\mathbf{0 . 7 3} \angle \mathbf{8 9 . 1}{ }^{\circ} \mathbf{A}$
(iii) Circuit power factor:

Circuit Power factor angle $\phi=89.1^{\circ}$ leading
Circuit power factor $\cos \phi=\cos \left(89.1^{\circ}\right)=\mathbf{0 . 0 1 6}$ (leading)
(iv) Active Power (\mathbf{P}):

$$
\begin{aligned}
\mathrm{P} & =\mathrm{VI} \cos \phi=230 \times 0.73 \times 0.016 \\
& =\mathbf{2 . 6 8 6 4} \mathbf{~ W}
\end{aligned}
$$

(v) Reactive Power (Q):

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{VI} \sin \phi=230 \times 0.73 \times \sin \left(89.1^{\circ}\right) \\
& =\text { 167.88 VAR }
\end{aligned}
$$

(vi) Apparent Power (S):

Apparent Power $=\mathrm{S}=\mathrm{VI}=230 \times 0.73=167.9 \mathrm{VA}$
6 b) A star connected capacitive load is supplied from $3 \phi, 415 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. If the line current is 15 A and total 3ϕ power taken from supply is 30 kW , find:
(i) Power factor
(ii) Resistance in each phase.
(iii) Capacitance in each phase

Ans:

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits (22324)
Data Given: $\mathrm{V}_{\mathrm{L}}=415 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}, \mathrm{I}_{\mathrm{L}}=15 \mathrm{~A}, \mathrm{P}=30 \mathrm{~kW}=30000 \mathrm{~W}$
In Star connection,
$\mathrm{V}_{\mathrm{L}}=\sqrt{ } 3 \times \mathrm{V}_{\mathrm{Ph}}$ and $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{Ph}}$
Therefore, $\mathrm{V}_{\mathrm{Ph}}=\mathrm{V}_{\mathrm{L}} / \sqrt{ } 3=415 / \sqrt{ } 3=\mathbf{2 3 9 . 6}$ Volt.
And $\quad \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{Ph}}=15 \mathrm{Amp}$.
\therefore Impedance per phase, $\mathrm{Z}_{\mathrm{Ph}}=\mathrm{V}_{\mathrm{Ph}} / \mathrm{I}_{\mathrm{Ph}}=239.6 / 15$

$$
\mathrm{Z}_{\mathrm{Ph}}=15.97 \Omega
$$

1 Mark for
i) Power factor:

Total three-phase power is given by,

$$
\begin{aligned}
& \mathrm{P}=3 \mathrm{~V}_{\mathrm{Ph}} \mathrm{I}_{\mathrm{Ph}} \cos \phi \quad \text { Or } \quad \mathrm{P}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi \\
& 30 \times 10^{3}=3 \times 239.6 \times 15 \times \cos \phi
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\cos \phi=30 \times 10^{3} /(3 \times 239.6 \times 15) \\
\therefore \cos \phi=2.78!!!!!!!!!
\end{gathered}
$$

Since maximum value of $\cos \phi=1$, here is data mismatch !!!!!!!!!!!
Assuming total 3ϕ power as 3 kW instead of 30 kW ,

$$
\begin{aligned}
\cos \phi & =3 \times 10^{3} /(3 \times 239.6 \times 15) \\
\cos \phi & =\mathbf{0 . 2 7 8} \text { leading } \\
\phi & =\cos ^{-1}(0.278)=\mathbf{7 3 . 8 4}^{\circ}
\end{aligned}
$$

1 Mark for
$\cos \phi$
1 Mark for ϕ
(NOTE: Examiner is requested to award appropriate marks to the student for any other suitable assumption of data and if attempted to solve)
ii) Resistance in each phase:

Resistance per phase $\left(\mathrm{R}_{\mathrm{ph}}\right)=\mathrm{Z}_{\mathrm{ph}} \mathrm{x} \cos \phi=15.97 \times 0.278$

$$
\mathrm{R}_{\mathrm{ph}}=4.44 \Omega
$$

iii) Reactance in each phase:

Reactance per phase $\left(\mathrm{X}_{\mathrm{ph}}\right)=\mathrm{Z}_{\mathrm{ph}} \mathrm{x} \sin \phi=15.97 \times \sin \left(73.84^{\circ}\right)$

$$
\mathrm{X}_{\mathrm{ph}}=15.34 \Omega
$$

Since capacitive reactance $\mathrm{X}_{\mathrm{C}}=\mathrm{X}_{\mathrm{ph}}=\frac{1}{2 \pi f C}$
1 Mark for
R_{Ph}
1 Mark for
X_{Ph}

Capacitance in each phase $\mathrm{C}=\frac{1}{2 \pi f X_{C}}=\frac{1}{2 \pi(50)(15.34)}=\mathbf{2 0 7 . 5} \times \mathbf{1 0}^{-6} \mathbf{F}$
6 c) Determine the voltage ' V ' across 5Ω resistor in the network shown in Fig. 6(c) using superposition theorem.

Fig. No. 6 (c)
Ans:

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits (22324)
(A) Consider current source of 5 A acting alone:

The 10 V source is replaced by short-circuit (S.C.)

1 Mark for diagram

1 Mark for I_{1}

The total source current of 5 A is divided and then flows through $5 \Omega \& 10 \Omega$.
The current flowing through 5Ω is given by current division formula as,

$$
\mathrm{I}_{1}=5 \times\{10 /(10+5)\}=\mathbf{3 . 3 3 A}(\text { Downward })
$$

(B) Consider voltage source of 10 V acting alone:

The 5A source is replaced by open-circuit (O.C.)

1 Mark for diagram

1 Mark for I_{2}
The current in lower mesh and flowing through 5Ω is given by, $\mathrm{I}_{2}=10 /(10+5)=\mathbf{0 . 6 7}$ A (Upward)
(C) Total current in $\mathbf{5 \Omega}$ resistor:

By Superposition theorem, the current through 5Ω due to both sources, assuming downward current positive and upward current negative, is given by,

$$
\left.\mathbf{I}=\mathrm{I}_{1}-\mathrm{I}_{2}=(3.33-0.67)=2.66 \text { A (Downward }\right)
$$

1 Mark for I
Voltage across 5Ω resistor is given by,
$\mathrm{V}=5(\mathrm{I})=5(2.66)=13.3$ volt
1 Mark for V

