

WINTER-19 EXAMINATION Model Answer

Subject Title: Industrial Stoichiometry

Subject code 22315

Page **1** of **19**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-19 EXAMINATION Model Answer

Subject Title: Industrial Stoichiometry

Subject code 22315

Page **2** of **19**

Q	Sub	Answer	marks
no	q.no.		
	1	Any 5	10
1	а	Given: Pressure = 800 mm Hg	
		760 mm Hg= 101.325 kPa	1
		800 mm hg = 106.66 kPa	
		760 mm Hg= 14.7 psi	
		800 mm hg = 15.47 psi	1
1	b	Raoult'slaw: It states that at a given temperature, the equilibrium partial	
		pressure of a component of a solution in the vapour is equal to the product	1
		of the mole fraction of the component in the liquid phase and the vapour	
		pressure of the pure component.	
		$\mathbf{p}_{\mathrm{A}} = \mathbf{P}_{\mathrm{A}}.\mathbf{x}_{\mathrm{A}}$	1
		Ideal gas equation is	
		PV=nRT	
		Where P= pressure	
		V=Volume	
		n= number of moles	
		R= Universal gas constant	
		T= absolute temperature	

ect Title: I	Title: Industrial Stoichiometry Subject code 22315					
1 0	1 c Feed F Kg/hr Feed F Kg/hr					
	$X_1 \%$ solid \longrightarrow Evaporator					
	Thick liquor Y kg/hr					
	X_2 % solid					
	Block diagram of evaporation					
1 0	1 d Stoichiometric coefficient					
	CO = 1	1				
	$H_2 = 2$					
	$CH_3OH = 1$					
	Weight ratio of CO to $H_2 = 28/4 = 7$	1				
1 6	e Net Calorific value(NCV): It is the calorific value of the fuel when the	he 2				
	water in the combustion products is present in vapour form .					
1 1	Sensible Heat: Sensible heat is the heat that must be transferred to rate	ise or 1				
	lower the temperature of a substance or mixture of substance.					
	Latent Heat: It is the heat required to change the phase of a substance	at 1				
	constant temperature and pressure.					
1 8	Force : A push or a pull is called force. It is the product of force and	1				
	acceleration					
	F=M*a					
	SI unit of force is Newton.	1				
2	Any 3	12				

Subject Title: Indust	rial Stoichiometry	Subject code	22315	Page 6 of 19
	of the process exit stream is expected. - The composition and properties of the p that is bypassed.	product may be varied by	y varying the fr	action of the
2 c	Basis – 10kmol SO ₂ 100 kmol air Reaction SO ₂ + $\frac{1}{2}$ O ₂ = SO ₃ Air fed = 100kmol O ₂ in air = 100 × (0.21) = 21 kmol Theoretical requirement of O ₂ 1 Kmol SO ₂ = 0.5 kmol O ₂			1
	$= \frac{0.5}{1} \times 10$ $= 5 \text{ kmol}$			1

bject Title: Indus	trial Stoichiometry Subject code 22315	Page 7 of 19
	\therefore % excess of O ₂ used	1
	$=\frac{O_2 \text{ in supplied} - O_2 \text{ theo read}}{O_2 \text{ theo read}}$	1
	$=\frac{21-5}{5} \times 100$	
	$= 320$ $\therefore \% \text{ excess air used} = 320\%$	1
2 d	Basis : 1 mol of benzoic acid crystal	
	1. $C(s) + O_2(g)> CO_2(g)$ $\Delta H_1 = -393.51 \text{ KJ/mol}$	
	2. H ₂ (g) +1/2 O ₂ (g)> H ₂ O(l) Δ H ₁ = - 285.83 KJ/mol	
	$3.C_7 H_6O_2(c) + 7.5 O_2(g)> 7CO_2(g) + 3 H_2O(l)$	1
	$\Delta H^0 c = -3226.25 \text{ KJ/mol}$	
	4. $7C(s) + 3 H_2(g) + O_2(g)> C7 H_6O_2(g)$	
	$\Delta H^0 f = ?$ $\Delta H^0 f = Standard heat of formation of benzoic acid crystal$	
	Reaction(4) = 7 x Reaction (1) + 3x Reaction (2) – Reaction (3)	1
	$\Delta H^0 f = 7 x \Delta H_1 + 3 x \Delta H_2 - \Delta H^0 c$	
	= 7 x (-393.51) +3 x (-285.83) – (-3226.25)	1
	= (-2754.57) + (-857.49) - (-3226.25)	
	= -385.11 KJ/mol 3612.06	
	$\Delta H^0 f = -385.11 \text{ KJ/mol} \text{ ans.}$	1
3	Any 3	12
3 a	Basis: 100 kmol air	1

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

ubject Title	: Indus	trial Stoichiometry			Subject code	22315	Page 8 of 1
		Vol% = Mol%					
		Avg. mol.wt of ai	$\mathbf{r} = \mathbf{M}_1 \mathbf{X}_1 + \mathbf{M}_2$	X_2			1
			= 32 * 0.21 +	- 28 * 0.79			
			= 28.84				2
3	b	Steps involved in	solving mater	ial balance with	out chemical	reactions:	4
		1.Assume suitable	basis of calcul	ation as given in j	problem.		
		2. Adopt weight un	nits in case of p	problem of proces	s without cher	mical	
		reaction.					
		3. Draw block diag	gram of proces	S			
		4. Show input and	output streams	5			
		6. Write individua	l material balar	nce			
		7. Solve above two	o algebraic equ	ations			
		8. Get values of tw	o unknown qu	antities.			
	9.Write balances as follows:						
			feed	product	Co	mponent	
					ren	noved	
		Unchanging					
		component					
		Outgoing					
		component					
3	c	Basis: 100 kmol/h	nr acetaldehyd	e charged to reac	tor		
		Reaction :					
		$CH_3CHO + \frac{1}{2}O_2$	2→ CH3	3COOH			1

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Industr	Subject code	22315	Page 9 of 19	
	Let X be the kmol of product obtained per hour Acetic acid formed = $0.5926 \text{ X} \text{ kmol/hr}$ Acetaldehyde unreacted = $0.1481 \text{ X} \text{ kmol hr}$ From reaction , 1 kmol CH ₃ CHO = 1 kmol CH ₃ COOH Acetaldehyde reacted to produce acetic acid = $0.5926 \text{ X} \text{ x} (1/1) = 0.5926 \text{ X} \text{ k}$	kmol/hr		1
	Material balance of CH ₃ CHO			
	CH ₃ CHO fed to reactor = CH ₃ CHO reacted+CH ₃ 100 = 0.5926 X + 0.1481 X	CHO unreacted	1	1
	X = 135 kmol /hr Acetaldehyde reacted = 0.5926 (135) = 80 kmol/ % conversion of CH ₃ CHO = (80/100) x 100 =	/hr = 80 %		1
3 d	Basis: 1 mol of Na ₂ CO ₃ $C_2H_5OH(g) + \rightarrow CH_3CHO(g) + H_2(g)$ $\Delta H^o_R = Standard heat of reaction$	(g)		
	$= [\Sigma \Delta H_{c}^{o}] \text{ reactant } - [\Sigma \Delta H_{c}^{o}] \text{ product}$ $= [1 \text{ x } (-1410.09)] - [1 \text{ x } (-1192.65) + 1 \text{ x } (-285)]$.83)]		1 1

Subject Title	bject Title: Industrial Stoichiometry Subject code 22315			Page 10 o	of 19	
		= -1410.09 + 1478.48			2	
		= 68.39 KJ				
4		Any 3			12	
4	a	Force = 20 kgf				
		Diameter of piston (d)= 5 cm				
		Area = $\pi d^2/4$			1	
		$=\pi 5^2/4 = 19.625 \mathrm{cm}^2$				
		Pressure = F/area			1	
		$= 20/19.625 = 1.019 \text{ kgf/cm}^2$			1	
		= 1.019* 9.808*10 ⁴ /1000 = 99.95 kPa			1	
4	b					
		Basis : Gas mixture containing 0.274 kmol HCl,0.	.337 kmol N ₂ ,0	0.089 kmol		
		O ₂ .				
		Total moles of the gas mixture = $0.274 + 0.337 + 0.337$.089 = 0.7 kmc	bl		
		Mole fraction of HCl (X_{HCl}) = 0.274/0.7 = 0.399				
		Mole fraction of $N_2 (X_{N2}) = 0.337/0.7 = 0.481$				
					1	
		Mole fraction of $O_2(X_{O2}) = 0.089/0.7 = 0.127$				
		(a) Average molecular weight of the Gaseous	mixture			
		$Mavg = \Sigma MiXi$				
		$= M_{HCl} \cdot X_{HCl} + M_N$	$X_{N2} + M_{O2}$	X _{O2}		
		= 36.5 x 0.391 +2	.8 x 0.481 + 32	x 0.127	1	
		∴ Mavg = 31.80				

Subject Title: Industrial Sto	bichiometry	Subject code	22315	Page 11 of 19
(b)Vo T =30	olume occupied by this mixture 03 K P= 405.3 kPa			
	= nRT $V = \frac{nRT}{P}$			1
	$=\frac{0.7 \times 8.3145 \times 303}{405.3}$ = 4.35 m³			1
4 c SOL BAS	UTION : IS : 1000 kg of desired mixed acid. e acid, 30 % H ₂ SO ₄ ,35% HNO ₃ Desire nitric acid Blending	ed mixed acid g		1
Con.s 98%	HNO ₃ 39% H sulph <u>uric acid</u> H ₂ SO ₄ Block diagram for fortifying waste acid wit	2SO4, 42% HN	NO ₃ d acids	

Subject Title: Indus	trial Stoichiometry		Subject code	22315	Page 12 of 19
	Let x, y and z b	e the kg of waste acid, concen	trated sulphuric	acid and	
	concentrated nitric	c acid required to make 1000 k	g desired acid.		
	Overall material	Balance:			
		x + y + z = 1000(i)	i)		
	Material Balance	e of H ₂ SO ₄ :			
		0.3 x + 0.98 y = 0.39 x 100	0(ii)		1
	(0.3 x + 0.98 y = 390			
		$\mathbf{Y} = (390 - 0.$.3 x) / 0.98		
		\therefore Y = 397.96 - 0	0.306 x(iii)		
	Material Balance	e of HNO ₃ :			
	(0.35 x + 0.72 z = 0.42 x 1000			
	(0.35 x + 0.72 z = 420(iv)			
		z = (420 - 0.35)	x)/ 0.72		
		\therefore z = 583.3 – 0	.486 x(v)		1
	Put values of y and	d z from equations (iii) and (v)) in eqn (i) and s	olve for x.	
	$\therefore x + (397.96 - 6)$	(0.306 x) + (583.3 - 0.486 x) =	1000		
		\therefore x = 90.1 kg			
	We have ,	y = 397.96 – 0.306 x			
		= 397.96 - 0.30 x	90.1		
		\therefore y = 370.4 kg			
	We have ,	z = 583.3 - 0.486 x			
		= 583.3 - 0.486 x	90.1		
		\therefore z = 539.5 kg			
	Amount of waste	acid required = 90.1 kg			
	Amount of conce	ntrated sulphuric acid requi	red = 370.4 kg		1
	Amount of conce	ntrated nitric acid require =	539.5 kg	.Ans	

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title:	: Industi	rial Stoichiometry	Subject code	22315	Page 13 of 19
4	d	Basis : 100 Kmol of feed			
		Feed contains 60 kmol A, 30 kmol B and 10 kmc	ol inerts		
		Let X be the kmol of A reacted by reaction :			
		2A + B C			
		From reaction $2 \text{ kmol } A = 1 \text{ kmol } B = 1 \text{ kmol } C$			
		B reacted = $(1/2)^* X = 0.5 X$ km	nol		
		C formed = $(1/2)^* X = 0.5 X$ km	nol		1
		Material Balance of A give			
		A unreacted = $(60 - X)$ kmol			
		Material Balance of Inerts :			
		Inerts in feed $=$ Inert in product $=$ 10 km	mol		
		C formed = $(1/2)^* X = 0.5 X$ kmol			
		B unreacted = $(30 - 0.5 \text{ X})$ kmol			
		Total moles of product stream = $(60-X) + (30-0.5)$	X) + 10=0.5X		
		= 100 - X Kmol			1
		Mole % of A in product stream = 2%			
		Kmol A in product stream			
		Mole % of A = * 1	100		
		Total kmol of product stream			
		60 - X			
		2 = * 100			
		100 - X			
					1
		X = 59.184 kmol = amount of A reac	ted		

Subject Tit	ubject Title: Industrial Stoichiometry			22315	Page 14 of 19
		Kmol A reacted			
		Conversion of A =	* 100		
		Total kmol of A feed			
		59.184			1
		Conversion of A = * 100 = 98.64 %	Ans		
		60			
4	e	Classification of fuels:			4
		1. Solid fuel- example: coke, wood, bagasse,	, charcoal		
		2. Liquid fuel – example: kerosene, petrol, d	iesel, methanol		
		3. Gaseous fuel – example: Acetylene, LPG,	biogas,acetyle	ne	
5		12			
5	а	Basis: 0.577 mol fr of acetone in.the mixture			
		Mol fr. of butane = $1-0.577 = 0.423$ Partial pr of	butane = 698 r	nm Hg	2
		Applying Raoults law to butane			
		Partial pr = Mol fr * vapour pr			2
		Vapour pressure = Partial pressure/ mol fr			
		= 698/0.423			2
		= 1650 mm Hg			
5	b				
		Evaporated 15000kg/hr Feed 15% NaOH 10% NaCl	. Wat	er hick Liquor 5% NaOH	1
		75% H ₂ O	5 N Prec	3% H ₂ O laCl	

(ISO/IEC - 27001 - 2005 Certified)

Subject Title: Indust	rial Stoichiometry Subject code 22315	Page 15 of 19
	Basis : 15000 kg/hr of weak solution fed to the evaporator.	1
	Let X, Y,Z be the kg/hr of water evaporated thick liquor & Nacl precipitated respectively.	
	Overall Material Balance : Σ Input stream = Σ Output stream 15000 = X + Y + Z	1
	Material balance of NaOH NaOH in feed = NaOH in thick liquor $0.15 \ge 15000 = 0.45 \ge Y$ $\therefore Y = 5000 \ge 0.47$	1
	Material balance of NaCl NaCl in feed = NaCl in thick liquor + NaCl precipitated	
	$0.10 \ge 15000 = 0.02 \ge Y + Z$ $\therefore 1500 = 100 + Z$ $\therefore Z = 1400 \frac{kg}{hr}$	1
	We know $X + Y + Z = 15000$ $\therefore X = 8600 \ kg/hr$	
	$\therefore Water evaporated = 8600 \frac{hg}{hr}$ Thick liquor obtained = 5000 kg/hr NaCl crystal precipitated =1400 kg/hr	1
5 c	Basis 100 mol of ethylene	
	Reaction I C ₂ H ₄ + $\frac{1}{2}$ O ₂ \longrightarrow C ₂ H ₄ O	1
	Reaction II $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$	
	$1 \text{Kmol of } C_2 H_4 \text{O formed} = 1 \text{Kmol } C_2 H_4 \text{ reacted}$	

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject Title: Industrial Stoichiometry			Subject code	22315	Page 16 of 19
		\therefore C ₂ H ₄ O reacted to from 80 kmol C ₂ H ₄ O			
		$=\frac{1}{1}\times 80$			
		= 80Kmol			
		From reaction II			1
		2kmol of CO ₂ formed≡ 1Kmol C ₂ H ₄ reacted			
		\therefore C ₂ H ₄ reacted to form 10 kmol CO ₂			
		$=\frac{1}{2} \times 10$			
		= 5Kmol			1
		\therefore C ₂ H ₄ totally reacted = 80 + 5= 85			1
		\therefore % conversion of C ₂ H ₄ = $\frac{85}{100} \times 100$			
		= 85%			1
		% yield of $C_2H_4O = \frac{80}{85} \times 100$			
		= 94.12%			1
6		Any 2			12
6	а	Basis : 100 kg of product gases leaving the oxidizer			
		Reaction : $4HCl + O_2 \rightarrow 2Cl_2 + 2H_2O$			
		Product contains 13.2 kg HCl,6.3 kg O ₂ ,42.9 kg N	N_2 , 30 kg Cl_2 at	nd 7.6 kg	
		H ₂ O			
		Quantity of HCl unreacted = 13.2 kg			
		We have from reaction : 1 kmol HCl \equiv 2 kmol o	of Cl ₂		1
		146 kgl HCl \equiv 142 kg of	f Cl ₂		
		Quantity of HCl reacted to produce 30 kg of Cl_2 =	= (146/.142) x 3	30 = 30.85	
		kg			
		Material balance of HCl			

Subject Title: Industrial Stoichiometry		Subject code	22315	Page 17 of 19	
	HCl feed = HCl react	ed + HCl unreacted = 3	0.85 + 13.2 = 44.0	5 Kg	
	Moles of HCl feed =	(44.05/36.5) = 1.2068 ki	nol		
	We have from reaction	$n: 1 \text{ kmol } \text{HCl} \equiv 1 \text{ km}$	ol of O ₂		1
		146 kgl HCl \equiv 32 k	g of O ₂		
	Quantity of O ₂ react	ed = (32/ 146) x 30.85 =	6.76 kg		
	Material balance of	° O ₂			
	O_2 feed = O_2 reacted	$l + O_2$ unreacted = 6.7	6 + 6.3 = 13.06 k	g	
	N_2 charged = N_2 in pro-	oduct $gas = 42.9 \text{ kg}$			1
	Air charged = $(O_2 + N_2)$ in air charged = $13.06 + 42.9 = 55.96$ kg				
	Moles of air charged =	= (55.96/28.84) =1.94 km	nol		
	Theoretical O ₂ requir	ed for 1.2068 kmol HO	$Cl = (1/4) \times 1.2068$	3	
			= 0.3017 kmo	1	
	Theoretical air requi	red = 0.3017 x (100/2)	l) = 1.44 kmol		
	% excess air = (Air supplied – Air theoretically required)/ Air			Air	1
	theoretically required	d x 100			
	= (1.94 - 1.44)/1.44 x	x 100 = 34.72			1
	Composition of Gases Entering the reactor:				Ĩ
	Component	Quantity in Kg	Weight %		
	HCl	44.05	44.05		
	O ₂	13.05	13.05		

t Title: Industrial Stoichiometry		Subject code	22315	Page 18 of 1	
	N ₂	42.90	42.90		1
	Total	100.00	100.00	_	
6 b	Basis: 100 Kg of col	ke			
	Amount of carbon in	Amount of carbon in coke = $0.9 * 100 = 90$ Kg			
	Amount of $C = 90/1$	2 = 7.5 katom			1
	Reaction : $C + O_2$	> CO ₂			
	From reaction, 1 katom $C = 1$ k	kmol O ₂			
	12 Kg C = 3				
	90 Kg C = $(3$	1			
	O ₂ theoretically requir	red = $(32/12)$ * 90 = 24	0 Kg		1
	O ₂ theoretically requir	red = $240/32 = 7.5$ km	ol		
	Air theoretically requi	1			
	% excess of air = 50%	, D			
	Air actually supplied	= Air theoretically requ	% excess nired (1+)	
	Air actually supplied		1		
	Air actually supplied	100 1 = 53.57 kmol	ans.		
					1
6 c	Basis: 100 Kmol/mir	$n \text{ of } CO_2$			
	Q= Heat added				
	T_2				
	$= n \int Cp dT$				1

Subject Title: Industrial StoichiometrySubject code22315	Page 19	of 19
T ₁ T ₂ = $n \int [21.3655 + 64.2841 \times 10^{-3} \text{ T} - 41.0506 \times 10^{-6} \text{ T}^2 + T_1$ = $n [21.3655 (T_2 - T_1) + 64.2841 \times 10^{-3}/2 (T_2^2 - T_1^2) - 41.0506 \times 10^{-6}/3 (T_2^3 - T_1^3) + 9.7999 \times 10^{-9}/4 (T_2^4 - T_1^4)]$ Where $n = 100 \text{ kmol/min}$, $T_2 = 383 \text{ K}$, $T_1 = 298 \text{ K}$ = $100 [21.3655 (383 - 298) + 64.2841 \times 10^{-3}/2 (383^2 - 298^2) - 41.0506 \times 10^{-6}/2 (282^3 - 208^3) + 0.7909 - 10^{-9}/4 (282^4 - 208^4)]$	1 1 1	
= 330335.5 KJ/min = 5505.6 KJ/s Q = 5505.6 KW Ans.	2	

