8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous) (ISO/IEC - 27001-2005 Certified)

WINTER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code 22315
Page 1 of 19

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315

$\begin{gathered} \mathrm{Q} \\ \text { no } \end{gathered}$	$\begin{aligned} & \text { Sub } \\ & \text { q.no. } \end{aligned}$	Answer	marks
	1	Any 5	10
1	a	$\begin{aligned} & \text { Given: Pressure }=800 \mathrm{~mm} \mathrm{Hg} \\ & 760 \mathrm{~mm} \mathrm{Hg}=101.325 \mathrm{kPa} \\ & 800 \mathrm{~mm} \mathrm{hg}=\mathbf{1 0 6 . 6 6} \mathbf{~ k P a} \\ & 760 \mathrm{~mm} \mathrm{Hg}=14.7 \mathrm{psi} \\ & 800 \mathrm{~mm} \mathrm{hg}=\mathbf{1 5 . 4 7} \mathbf{~ p s i} \end{aligned}$	1 1
1	b	Raoult'slaw:It states that at a given temperature, the equilibrium partial pressure of a component of a solution in the vapour is equal to the product of the mole fraction of the component in the liquid phase and the vapour pressure of the pure component. $\mathrm{p}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}} \cdot \mathrm{x}_{\mathrm{A}}$ Ideal gas equation is $\mathrm{PV}=\mathrm{nRT}$ Where $\mathrm{P}=$ pressure $\begin{aligned} & \mathrm{V}=\text { Volume } \\ & \mathrm{n}=\text { number of moles } \\ & \mathrm{R}=\text { Universal gas constant } \\ & \mathrm{T}=\text { absolute temperature } \end{aligned}$	1 1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 3 of 19

1	c	Block diagram of evaporation	2
1	d	Stoichiometric coefficient $\begin{aligned} & \mathrm{CO}=1 \\ & \mathrm{H}_{2}=2 \\ & \mathrm{CH}_{3} \mathrm{OH}=1 \end{aligned}$ Weight ratio of CO to $\mathrm{H}_{2}=28 / 4=7$	1 1
1	e	Net Calorific value(NCV): It is the calorific value of the fuel when the water in the combustion products is present in vapour form .	2
1	f	Sensible Heat: Sensible heat is the heat that must be transferred to raise or lower the temperature of a substance or mixture of substance. Latent Heat:It is the heat required to change the phase of a substance at constant temperature and pressure.	1 1
1	g	Force : A push or a pull is called force. It is the product of force and acceleration $\mathrm{F}=\mathrm{M}^{*} \mathrm{a}$ SI unit of force is Newton.	1 1
2		Any 3	12

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 4 of 19

2	a	Basis : 5000 kmol Benzen- Toluene mixture Let X and Y be the mass flow rates of distillate and bottom product respectively Overall Material Balance: $\begin{equation*} X+Y=5000 \tag{i} \end{equation*}$ Material Balance of benzene: $\begin{gathered} (30 / 100) * \mathrm{X}+(10 / 100) * \mathrm{Y}=(40 / 100) * 5000 \\ 0.3 * \mathrm{X}+0.1 * \mathrm{Y}=2000 \end{gathered}$ By solving $\quad X=7500 \mathbf{k g} / \mathbf{h r}$ $Y=-2500 \mathrm{~kg} / \mathrm{hr}$ Mass flow rates of distillate $=\mathbf{7 5 0 0} \mathbf{~ k g} / \mathbf{h r}$---- ans. (a) Mass flow rates of bottom Product $=\mathbf{- 2 5 0 0} \mathbf{~ k g} / \mathbf{h r}$---- ans.(a) Note: The answer is coming in negative.	1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 5 of 19

2	b	Recycling: It is returning back a portion of stream leaving a process unit to the process unit for further processing. Reasons for performing recycling: (any four) 1. Maximum utilization of the valuable reactant 2. Improvement of the performance of the equipment/ operation 3. Utilization of the heat being lost in the exit stream. 4. Better operating conditions of the system 5. Improvement in the selectivity of a product 6. Enrichment of a product Bypass Operation : In these operations, a fraction of the feed stream to a process unit is diverted a with the output stream. - Bypassing is practiced industrially whenever accurate control of the composi	he entra222nc around and co

Model Answer

Subject Title: Industrial Stoichiometry Subject code 22315 Page 6 of 19

		of the process exit stream is expected. - The composition and properties of the product may be varied by varying the that is bypassed.	fraction of th
2	c	Basis - $10 \mathrm{kmol} \mathrm{SO}_{2}$ 100 kmol air Reaction $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{SO}_{3}$ Air fed $=100 \mathrm{kmol}$ $\begin{aligned} \mathrm{O}_{2} \text { in air } & =100 \times(0.21) \\ & =21 \mathrm{kmol} \end{aligned}$ Theorctical requirement of O_{2} $\begin{aligned} 1 \mathrm{Kmol} \mathrm{SO}_{2} & \equiv 0.5 \mathrm{kmol} \mathrm{O}_{2} \\ & =\frac{0.5}{1} \times 10 \\ & =5 \mathrm{kmol} \end{aligned}$	11

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 7 of 19

\begin{tabular}{|c|c|c|c|}
\hline \& \& $\therefore \%$ excess of O_{2} used
$$
\begin{aligned}
& =\frac{\mathrm{O}_{2} \text { in supplied }-\mathrm{O}_{2} \text { theo read }}{\mathrm{O}_{2} \text { theo read }} \\
& =\frac{21-5}{5} \times 100 \\
& =320 \\
& \therefore \% \text { excess air used }=\mathbf{3 2 0 \%}
\end{aligned}
$$ \& 1

1

\hline 2 \& d \& Basis : 1 mol of benzoic acid crystal

$$
\begin{array}{ll}
\text { 1. } \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})----->\mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}_{1}=-393.51 \mathrm{KJ} / \mathrm{mol} \\
\text { 2. } \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})----->\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}_{1}=-285.83 \mathrm{KJ} / \mathrm{mol} \\
\text { 3. } \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}(\mathrm{c})+7.5 \mathrm{O}_{2}(\mathrm{~g})-----> & 7 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta \mathrm{H}^{0} \mathrm{c}=-3226.25 \mathrm{KJ} / \mathrm{mol} \\
4.7 \mathrm{C}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-\ldots--> & \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}(\mathrm{~g}) \\
& \Delta \mathrm{H}^{0} \mathrm{f}=?
\end{array}
$$

$$
\Delta \mathrm{H}^{0} \mathrm{f}=\text { Standard heat of formation of benzoic acid crystal }
$$

$$
\text { Reaction(4) }=7 \times \text { Reaction }(1)+3 \times \text { Reaction (2) }- \text { Reaction }(3)
$$

$$
\Delta \mathrm{H}^{0} \mathrm{f}=7 \times \Delta \mathrm{H}_{1}+3 \mathrm{x} \Delta \mathrm{H}_{2}-\Delta \mathrm{H}^{0} \mathrm{c}
$$

$$
=7 \times(-393.51)+3 \times(-285.83)-(-3226.25)
$$

$$
=(-2754.57)+(-857.49)-(-3226.25)
$$

$$
=-385.11 \mathrm{KJ} / \mathrm{mol} 3612.06
$$

$$
\Delta H^{0} f=-385.11 \mathrm{KJ} / \mathrm{mol} \quad----- \text { ans. }
$$ \& 1

\hline 3 \& \& Any 3 \& 12

\hline 3 \& a \& Basis: 100 kmol air \& 1

\hline
\end{tabular}

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 8 of 19

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 9 of 19

		Let X be the kmol of product obtained per hour Acetic acid formed $=0.5926 \mathrm{X} \mathrm{kmol} / \mathrm{hr}$ Acetaldehyde unreacted $=0.1481 \mathrm{X} \mathrm{kmol} \mathrm{hr}$ From reaction , $1 \mathrm{kmol} \mathrm{CH}_{3} \mathrm{CHO} \equiv 1 \mathrm{kmol} \mathrm{CH}_{3} \mathrm{COOH}$ Acetaldehyde reacted to produce acetic acid $=0.5926 \mathrm{X} \quad \mathrm{x} \quad(1 / 1)=0.5926 \mathrm{X} \mathrm{kmol} / \mathrm{hr}$ Material balance of $\mathrm{CH}_{3} \mathbf{C H O}$ $\mathrm{CH}_{3} \mathrm{CHO}$ fed to reactor $=\mathrm{CH}_{3} \mathrm{CHO}$ reacted $+\mathrm{CH}_{3} \mathrm{CHO}$ unreacted $\begin{aligned} & 100=0.5926 \mathrm{X}+0.1481 \mathrm{X} \\ & \mathbf{X}=\mathbf{1 3 5} \mathbf{~ k m o l} / \mathbf{h r} \end{aligned}$ Acetaldehyde reacted $=0.5926(135)=80 \mathrm{kmol} / \mathrm{hr}$ $\%$ conversion of $\mathbf{C H}_{3} \mathbf{C H O}=(\mathbf{8 0} / 100) \times 100=\mathbf{8 0} \%$	1
3	d	$\begin{aligned} & \text { Basis: } 1 \mathrm{~mol} \text { of } \mathrm{Na}_{2} \mathrm{CO}_{3} \\ & \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})+\cdots-\cdots-\cdots \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \\ & \Delta \mathrm{H}_{\mathrm{R}}^{\mathrm{o}}=\text { Standard heat of reaction } \\ & =\left[\Sigma \Delta \mathrm{H}_{\mathrm{c}}^{\mathrm{o}}\right] \text { reactant }-\left[\Sigma \Delta \mathrm{H}_{\mathrm{c}}^{\mathrm{o}}\right] \text { product } \\ & =[1 \times(-1410.09)]-[1 \times(-1192.65)+1 \times(-285.83)] \end{aligned}$	1 1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 10 of 19

\begin{tabular}{|c|c|c|c|}
\hline \& \& \[
\begin{aligned}
\& =-1410.09+1478.48 \\
\& =\mathbf{6 8 . 3 9} \mathrm{KJ}
\end{aligned}
\] \& 2 \\
\hline \multicolumn{2}{|l|}{4} \& Any 3 \& 12 \\
\hline 4 \& a \& \[
\begin{aligned}
\& \text { Force }=20 \mathrm{kgf} \\
\& \text { Diameter of piston }(\mathrm{d})=5 \mathrm{~cm} \\
\& \text { Area }=\pi \mathrm{d}^{2} / 4 \\
\& \quad=\pi 5^{2} / 4=19.625 \mathrm{~cm}^{2} \\
\& \text { Pressure }=\text { F/area } \\
\& \quad=20 / 19.625=1.019 \mathrm{kgf} / \mathrm{cm}^{2} \\
\& \\
\& \quad=1.019 * 9.808 * 10^{4} / 1000=\mathbf{9 9 . 9 5} \mathbf{~ k P a}
\end{aligned}
\] \& 1
1
1
1 \\
\hline 4 \& b \& \begin{tabular}{l}
Basis : Gas mixture containing \(0.274 \mathrm{kmol} \mathrm{HCl}, 0.337 \mathrm{kmol} \mathrm{N}_{2}, 0.089 \mathrm{kmol}\) \(\mathrm{O}_{2}\). \\
Total moles of the gas mixture \(=0.274+0.337+0.089=0.7 \mathrm{kmol}\) \\
Mole fraction of \(\mathrm{HCl}\left(\mathrm{X}_{\mathrm{HCl}}\right)=0.274 / 0.7=0.399\) \\
Mole fraction of \(\mathrm{N}_{2}\left(\mathrm{X}_{\mathrm{N} 2}\right)=0.337 / 0.7=0.481\) \\
Mole fraction of \(\mathrm{O}_{2}\left(\mathrm{X}_{\mathrm{O} 2}\right)=0.089 / 0.7=0.127\) \\
(a) Average molecular weight of the Gaseous mixture
\[
\begin{aligned}
\operatorname{Mavg} \& =\Sigma \mathrm{MiXi} \\
\& =\mathrm{M}_{\mathrm{HCl}} \cdot \mathrm{X}_{\mathrm{HCl}}+\mathrm{M}_{\mathrm{N} 2} \cdot \mathrm{X}_{\mathrm{N} 2}+\mathrm{M}_{\mathrm{O} 2} . \mathrm{X}_{\mathrm{O} 2} \\
\& =36.5 \times 0.391+28 \times 0.481+32 \times 0.127 \\
\& \therefore \text { Mavg }=\mathbf{3 1 . 8 0}
\end{aligned}
\]
\end{tabular} \& 1

1

\hline
\end{tabular}

Model Answer

Subject Title: Industrial Stoichiometry
Subject code 22315
Page 11 of 19

		(b)Volume occupied by this mixture	1
4	c	SOLUTION : BASIS : 1000 kg of desired mixed acid. Waste acid, $30 \% \mathrm{H}_{2} \mathrm{SO}_{4}, 35 \% \mathrm{HNO}_{3}$ Block diagram for fortifying waste acid with concentrated acids	1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 12 of 19
Let x, y and z be the kg of waste acid, concentrated sulphuric acid and concentrated nitric acid required to make 1000 kg desired acid.

Overall material Balance:

$$
\begin{equation*}
x+y+z=1000 \tag{i}
\end{equation*}
$$

Material Balance of $\mathbf{H}_{2} \mathrm{SO}_{4}$:

$$
\begin{gather*}
0.3 \mathrm{x}+0.98 \mathrm{y}=0.39 \mathrm{x} 1000 \ldots \text { (ii) } \\
0.3 \mathrm{x}+0.98 \mathrm{y}=390 \\
\quad \mathrm{Y}=(390-0.3 \mathrm{x}) / 0.98 \\
\therefore \quad Y=397.96-0.306 \mathrm{x} \ldots . \tag{iii}
\end{gather*}
$$

Material Balance of HNO_{3} :

$$
\begin{align*}
& 0.35 \mathrm{x}+0.72 \mathrm{z}=0.42 \times 1000 \\
& 0.35 \mathrm{x}+0.72 \mathrm{z}=420 \ldots . . \text { (iv) } \\
& \mathrm{z}=(420-0.35 \mathrm{x}) / 0.72 \\
& \therefore \quad \mathrm{z}=583.3-0.486 \mathrm{x} \ldots \tag{v}
\end{align*}
$$

Put values of y and z from equations (iii) and (v) in eqn (i) and solve for x.

$$
\therefore \mathrm{x}+(397.96-0.306 \mathrm{x})+(583.3-0.486 \mathrm{x})=1000
$$

$$
\therefore \mathrm{x}=90.1 \mathrm{~kg}
$$

We have,

$$
\begin{aligned}
y & =397.96-0.306 \times \\
& =397.96-0.30 \times 90.1 \\
\therefore y & =370.4 \mathrm{~kg}
\end{aligned}
$$

We have,

$$
\begin{aligned}
\mathrm{z}= & 583.3-0.486 \mathrm{x} \\
& =583.3-0.486 \times 90.1 \\
\therefore \mathrm{z} & =539.5 \mathrm{~kg}
\end{aligned}
$$

Amount of waste acid required $=\mathbf{9 0 . 1} \mathbf{~ k g}$
Amount of concentrated sulphuric acid required $=370.4 \mathrm{~kg}$
Amount of concentrated nitric acid require $=539.5 \mathbf{~ k g}$

Model Answer

Subject Title: Industrial Stoichiometry Subject code 22315

Model Answer

Subject Title: Industrial Stoichiometry Subject code

22315
Page 14 of 19

			1
4	e	Classification of fuels: 1. Solid fuel- example: coke, wood, bagasse, charcoal 2. Liquid fuel - example: kerosene, petrol, diesel, methanol 3. Gaseous fuel - example: Acetylene, LPG, biogas,acetylene	4
5		Any 2	12
5	a	Basis: 0.577 mol fr of acetone in.the mixture Mol fr. of butane $=1-0.577=0.423$ Partial pr of butane $=698 \mathrm{~mm} \mathrm{Hg}$ Applying Raoults law to butane Partial pr $=$ Mol fr * vapour pr Vapour pressure $=$ Partial pressure $/ \mathrm{mol} \mathrm{fr}$ $\begin{aligned} & =698 / 0.423 \\ & =\mathbf{1 6 5 0} \mathbf{~ m m ~ H g} \end{aligned}$	2 2 2
5	b		1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 15 of 19

		Basis : $15000 \mathrm{~kg} / \mathrm{hr}$ of weak solution fed to the evaporator. Let $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be the $\mathrm{kg} / \mathrm{hr}$ of water evaporated thick liquor \& Nacl precipitated respectively. Overall Material Balance : Σ Input stream $=\Sigma$ Output stream $15000=\mathrm{X}+\mathrm{Y}+\mathrm{Z}$ Material balance of NaOH $\begin{gathered} \mathrm{NaOH} \text { in feed }=\mathrm{NaOH} \text { in thick liquor } \\ 0.15 \times 15000=0.45 \mathrm{x} \mathrm{Y} \\ \therefore \mathrm{Y}=5000 \mathrm{~kg} / \mathrm{hr} \end{gathered}$ Material balance of NaCl NaCl in feed $=\mathrm{NaCl}$ in thick liquor +NaCl precipitated $\begin{gathered} 0.10 \times 15000=0.02 \mathrm{xY}+\mathrm{Z} \\ \therefore 1500=100+Z \\ \therefore Z=1400 \frac{\mathrm{~kg}}{\mathrm{hr}} \end{gathered}$ We know $\mathrm{X}+\mathrm{Y}+\mathrm{Z}=15000$ $\begin{gathered} \therefore X=8600 \mathrm{~kg} / \mathrm{hr} \\ \therefore \text { Water evaporated }=\mathbf{8 6 0 0} \frac{\mathbf{k g}}{\boldsymbol{h r}} \end{gathered}$ Thick liquor obtained $=\mathbf{5 0 0 0} \mathbf{~ k g} / \mathbf{h r}$ NaCl crystal precipitated $=\mathbf{1 4 0 0} \mathbf{~ k g} / \mathbf{h r}$	1
5	c	Basis 100 mol of ethylene Reaction $\mathrm{IC}_{2} \mathrm{H}_{4}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ Reaction II C2 $\mathrm{H}_{4}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ From reaction I 1 Kmol of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ formed $\equiv 1 \mathrm{Kmol} \mathrm{C}_{2} \mathrm{H}_{4}$ reacted	1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 16 of 19

		$\therefore \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ reacted to from $80 \mathrm{kmol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ $\begin{aligned} & =\frac{1}{1} \times 80 \\ & =80 \mathrm{Kmol} \end{aligned}$ From reaction II 2 kmol of CO_{2} formed $\equiv 1 \mathrm{Kmol}_{2} \mathrm{H}_{4}$ reacted $\therefore \mathrm{C}_{2} \mathrm{H}_{4}$ reacted to form $10 \mathrm{kmol} \mathrm{CO}_{2}$ $\begin{aligned} & =\frac{1}{2} \times 10 \\ & =5 \mathrm{Kmol} \end{aligned}$ $\therefore \mathrm{C}_{2} \mathrm{H}_{4}$ totally reacted $=80+5=85$ $\therefore \%$ conversion of $\mathrm{C}_{2} \mathrm{H}_{4}=\frac{85}{100} \times 100$ $=\mathbf{8 5 \%}$ $\%$ yield of $\begin{aligned} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} & =\frac{80}{85} \times 100 \\ & =\mathbf{9 4 . 1 2 \%} \end{aligned}$	$11 \begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1\end{aligned}$
6		Any 2	12
6	a	Basis : 100 kg of product gases leaving the oxidizer Reaction: $4 \mathrm{HCl}+\mathrm{O}_{2}---\rightarrow 2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Product contains $13.2 \mathrm{~kg} \mathrm{HCl}, 6.3 \mathrm{~kg} \mathrm{O}_{2}, 42.9 \mathrm{~kg} \mathrm{~N}_{2}, 30 \mathrm{~kg} \mathrm{Cl}_{2}$ and 7.6 kg $\mathrm{H}_{2} \mathrm{O}$ Quantity of HCl unreacted $=13.2 \mathrm{~kg}$ We have from reaction : $1 \mathrm{kmol} \mathrm{HCl} \equiv 2 \mathrm{kmol}$ of Cl_{2} $146 \mathrm{kgl} \mathrm{HCl} \equiv 142 \mathrm{~kg} \text { of } \mathrm{Cl}_{2}$ Quantity of HCl reacted to produce 30 kg of $\mathrm{Cl}_{2}=(146 / .142) \times 30=30.85$ kg Material balance of $\mathbf{H C l}$	1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 17 of 19
HCl feed $=\mathrm{HCl}$ reacted +HCl unreacted $=30.85+13.2=44.05 \mathrm{Kg}$
Moles of HCl feed $=(44.05 / 36.5)=1.2068 \mathrm{kmol}$
We have from reaction : $1 \mathrm{kmol} \mathrm{HCl} \equiv 1 \mathrm{kmol}$ of O_{2} $146 \mathrm{kgl} \mathrm{HCl} \equiv 32 \mathrm{~kg}$ of O_{2}

Quantity of O_{2} reacted $=(32 / 146) \times 30.85=6.76 \mathrm{~kg}$
Material balance of $\mathbf{O}_{\mathbf{2}}$
O_{2} feed $=\mathrm{O}_{2}$ reacted $+\mathrm{O}_{2}$ unreacted $=6.76+6.3=13.06 \mathrm{~kg}$
N_{2} charged $=\mathrm{N}_{2}$ in product gas $=42.9 \mathrm{~kg}$
Air charged $=\left(\mathrm{O}_{2}+\mathrm{N}_{2}\right)$ in air charged $=13.06+42.9=55.96 \mathrm{~kg}$
Moles of air charged $=(55.96 / 28.84)=1.94 \mathrm{kmol}$
Theoretical O_{2} required for $1.2068 \mathrm{kmol} \mathrm{HCl}=(1 / 4) \times 1.2068$

$$
=0.3017 \mathrm{kmol}
$$

Theoretical air required $=0.3017 \times(100 / 21)=1.44 \mathrm{kmol}$
$\%$ excess air $=($ Air supplied - Air theoretically required $) /$ Air theoretically required x 100
$=(1.94-1.44) / \mathbf{1 . 4 4} \times 100=34.72$
Composition of Gases Entering the reactor:

Component	Quantity in Kg	Weight \%
$\mathbf{H C l}$	44.05	44.05
O_{2}	13.05	13.05

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 18 of 19

Model Answer

Subject Title: Industrial Stoichiometry
Subject code 22315
Page 19 of 19

