

Model Answer

Subject Name: Automobile Component Design

Subject Code:

22558

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Su	Answer	Mark
No	b		ing
•	Q.		Sche
	N.		me
-			10
1		Attempt any FIVE of the following:	10
	Α	State different modes of failure of automobile components.	02
		Answer:	
		1. Failure of automobile components in Tension	
		2. Failure of automobile components in Shear	02
		3. Failure of automobile components in Bending	mark
		4. Failure of automobile components in compression	S
		5. Failure of automobile components (Gears) pitting	For
		6. Failure of automobile components(Gears) Scoring	Any
		7. Failure of automobile components due to abrasive wear	four
		8. Failure of automobile components due to corrosive wear	
		9. Failure of automobile components due to fatigue	
		10. Failure of automobile components due to crushing	
	В	Define the terms.	02
		(i)Factor of safety (ii)working stress	
		Answer:	
		(i) Factor of Safety: Factor of safety is defined as the ratio of the maximum stress to	01
		the working stress or design stress. Mathematically,	
		Maximum Stress	
		Factor of Safety = $\frac{1}{\text{Working or design stress}}$	
		In Case of Ductile Material,	
		Factor of Safety = <u>Yield Point Stress</u>	
		Working or Design Stress	

Model Answer

Subject Name: Automobile Component Design

Subject Code: 22558

	 In case of Brittle Material , Factor of Safety = Ultimate Stress Working or Design Stress (ii) Working Stress: It is defined as the ratio of actual axial load and the original cross section of the specimen 	
	Working stress = $\frac{\text{Actual axial load}}{\text{Original cross section area}}$	01
С	State and justify material for leaf spring.	02
An s	Answer: Leaf spring:- Material:- Plain carbon steel having 0.9 to 1.0% carbon. Justification: - The leaves are heat treated after forming processes. The heat treatment of spring steel produces greater strength and therefore greater load capacity, greater range of deflection and better fatigue properties	01 01
D	List the functions of cylinder block	02
	 Answer: The cylinder block has the following functions: The main functions of the cylinder block are maintaining the engine's stability and lubrication while withstanding a variety of temperatures and loads. Transferring oil to all parts of the engine, lubricating all the critical components, via a number of oil galleries Organizing and determining the position of various parts, Ensuring the standard accuracy of the main components, Accommodating cooling water, adjusting the temperature difference, Placing lubricating oil channels and distributing lubricating oil, the sealing of cylinder block and cylinder head will make the pressure reach the ideal effect, and the power generated by airframe can be transmitted through the follower part. 	02 (Any Two)
Ε	State and justify material for push rod.	02
	 Answer: Material:- 1018 steel tubing Push rods are typically made of 1018 steel tubing, which is not strong enough for springs that have more than 400 psi of open pressure, or engines that exceed 7,000 rpm. Pushrods made of 4130 or 4140 Chromoly which is a chrome-alloy steel with a medium carbon content and . 8% - 1.1% molybdenum for strength. Pushrods made of 4130 or 4140 Chromoly tubing are much stronger 	02
 F	Describe aesthetics in automobile component design .	02
	Answer: Aesthetics in automobile Design - The appearance should contribute to the performance of the product, thought the extent of	

G

2

A

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) WINTER - 2019 EXAMINATION

Model Answer 22558 Subject Code: Subject Name: Automobile Component Design contribution varies from product to product for example chromium plating of automobiles components improves the corrosion resistance along with the appearance. Similarly the aerodynamic shape of the car improves the performance the performance as 02 well as gives the pleasing appearance lesser air resistance resulting in the lesser fuel consumption. The appearance should reflect the function of the product for example. The aerodynamic shape of the car increases the speed. Sketch the method to reduced stress concentration in cylindrical members with holes. 02 Answer: The methods of reducing stress concentration in cylindrical members with shoulders hole, subjected to tensile load. 02 (a) Poor (b) Preferred Figure. Methods of reducing stress concentration in cylindrical members with holes. Attempt any THREE of the following: 12 List basic design requirement of connecting rod. 04 Answer: In designing a connecting rod for I.C. engine, the following points should be taken into consideration : 04 Strength to withstand the high inertia forces. (Anv Minimum mass to minimise the inertia forces. Four) • Provide sufficient bearing area to prevent undue wear. High speed reciprocation without noise. Rigid construction to withstand mechanical distortion. State any two uses of each of the following. 04 **Stress-strain diagram (i)** (ii) S-N curve

Answer: (i)

B

- 1. Stress-strain diagram is used to find out strength, elasticity, stiffness, ductility of material.
- 2. From stress-strain diagram, elongation of material is found out.

Stress-Strain diagram:(Any Two)

- 3. It is used to find out yield points for material in tension/compression test.
- 4. It is used to find out toughness.

(ii) S-N curve: (Any Two)

- 1. It is used to study the effect of fatigue of material. 2. It is used to find the Effect of Loading on Endurance Limit—Load Factor.
- 3. It is used to find out Effect of Surface Finish on Endurance Limit-Surface Finish Factor.

02

Model Answer

22558

Subject Code:

Subject Name: Automobile Component Design

Subject Name: Automobile Component Design

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) WINTER - 2019 EXAMINATION

Model Answer

Subject Name: Automobile Component Design

Subject Code:

		 at fulcrum. The boss is provided with a 3mm thick phosphor bronze bush to take up the wear. 4. One end of rocker arm has a forked end to receive roller. 5. The outside diameter of the eye at the forked end is also taken as twice the diameter of pin. The diameter of roller is slightly larger (at least 3mm more) than the diameter of eye at the forked end. The radial thickness of each eye of the forked end is taken half the diameter of pin. Some clearance about 1.5mm must be provided between the roller and the eye at the forked end so that roller can move freely. The pin should, therefore be checked for bending. 6. The other end of rocker arm (i.e. tappet end) is made circular to receive the tappet which is a stud with a lock nut. The outside diameter of the circular arm is taken as twice the diameter of the stud. The depth of section is also taken twice the diameter of stud. 		
3		Attempt any THREE of the following:	12	
	A An s	Describe the design procedure for front axle. Answer: Front axles are subjected to both bending and shear stresses. Thus the maximum bending moment = W l, Nm where, W = The load on one wheel, N l = The distance between the centre of wheel and the spring pad, m We know that, the portions projected after the spring pads are subjected to combined bending and torsion. We know that, the portions projected after the spring pads are subjected to combined bending and torsion. Fig. 27.2. Loads on front axle. The magnitude of the torque = $R \delta$, Nm. where, R = the resistance to motion, N δ = The drop from the spindle axis to the centre of the section, m	04	
			01	

Model Answer

22558

Subject Code:

Subject Name: Automobile Component Design

Model Answer

22558

Subject Code:

Subject Name: Automobile Component Design

B	Explain design procedure for fully floating rear axle.	04
	Answer: Note: Credit should be given to sketch if drawn	
	Design procedure of a fully floating rear axle:	
	The rear axle is designed on the basis of shaft design. By using the torsional equation,	
	$T_{RA} = \sigma_s$	
	$\frac{1}{I_{RA}} = \frac{1}{r}$	01
	$Whara = T_{r,r} - T_{orgue}$ transmitted by rear axle shaft	
	$T_{RA} = Torque transmitted by real axie shaft.T_{RA} = Te \ x \ G1 \ x \ Gd$	
		01
	Te = Engine Torque.	
	$G_1 = Maximum gear Ratio in Gear Box$	
	Gd = Final gear reduction in differential	
	$J_{RA} = Polar moment of inertia.$	
	$= \pi/32 \times d^4$ (for Solid shaft)	01
	$=\frac{\pi}{22}(d_o^4 - d_i^4)$ (for Hellow 1.69)	UI
	32(for Hollow shart)	
	σ_s = Torsional shear stress.	
	r = distance from neutral axis to outer most fiber.	
	r = d/2 (for Solid shaft)	
	$r = d_o/2$ (for Hollow shaft)	
	After simplifying the equations,	
	$T_{RA} = \frac{\pi}{\pi} \sigma_s d^3$	
	16For solid shaft	
	$T_{-1} = \frac{\pi}{2} \sigma d^3 (1 - k^4)$	
	$T_{RA} = \frac{16}{16} \frac{\sigma_s a_o (1 - \kappa)}{16}$ For hollow shaft	01
	$k = \frac{d_i}{d_i}$	
	$\kappa = \frac{1}{d_o}$	
	d _i = Inner diameter of shaft	
	d _o = Outer diameter of shaft	
	From these equations, we can find out the diameter of rear axle of shaft.	

Subject Name: Automobile Component Design

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) WINTER - 2019 EXAMINATION

Model Answer

Subject Code:

Model Answer

Subject Name: Automobile Component Design

3. Free length of spring

1. Mean diameter of spring coil 01 D = Inside diameter of spring + Diameter of spring wire Since the diameter of spring wire is obtained from maximum spring load, therefore maximum Twisting moment on the springs. $T = W X \frac{D}{2}$ And we also know that Maximum twisting moment $T = \frac{\pi}{16} X \tau X d^{3} \dots (1)$ From these equations Mean diameter and Diameter wire is calculated. Now considering Wahl's stress factor (k), We know that spring index $C = \frac{D}{d}$ And Wahl's stress factor $k = \frac{4C-1}{4C-4}$ We know that maximum shear stress (τ) , 01 $\tau = K X \frac{8 W C}{\pi d^2} \dots (2)$ From this equation diameter of wire is calculated and Larger values of diameter of wire (d) is selected. 2. Number of turns of the coil We know that deflection of the spring(δ), 01 $\delta = \frac{8 W D^3 . n}{G d^4}$ from this equation number of turns are calculated. Taking the ends of the springs as squared and ground, the total number of turns, n' = n + 2

Subject Name: Automobile Component Design

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) WINTER - 2019 EXAMINATION

Model Answer

Subject Code:

	4. Pitch of the coil			
	We know that pitch of the coil			
	_ Free length			
D	Explain the terms of preferred number and s	tandardization.		
	Answer:			
	1) Preferred number: (02 marks)	a) are standard avidalines fo	n abaasing awast	
	product dimensions within a given set of cor	es) are standard guidennes io	d on the use of	
	geometric progressive to develop a set of nu	mbers Preferred numbers are	e used to specify	
	the specification because a company may ma	nufacture different models of	of same product.	
	There are four basic series , denoted by R5 , R1	0, R20, R40 which increases	in steps of 58%,	
	26%, 12%, 6% respectively.		-	
	Each series has its own series factor given below	ν,		
	Series	Series Factor]	
	R5	$10^{1/5} = 1.58$		
	R10	$10^{1/10} = 1.26$		
	R20	$10^{1/20} = 1.12$		
	R40	$10^{1/40} = 1.06$	-	
		10 100]	
	Standardization: (01 mark)			
	It is defined as obligatory norms to which	various characteristics of a	product should	
	conform. The characteristics include material	s, dimensions and shape of	the component,	
	method of testing and method of marking, packing	ing and storing of the product.		
	Advantages of Standardization:- (Any two-0	1 mark)		
	1. Interchangeability of product or element is po	ossible.		
	2. Mass production is easy.			
	A Reduction in labour cost			
	5. Limits the variety of size and shape of produc	et.		
	6. Overall reduction in cost of production.			
	7. Improves overall performance, quality and ef	ficiency of product.		
	8. Better utilization of labour, machine and time			
Ε	Explain the maximum principal stress theory	· · ·		
	Answer:			
	Statement: According to this theory, the failu	are occurs at a point in a m	ember when the	
	maximum normal stress in a bi-axial stress system	n reaches the limiting strength	of the material in	

Model Answer

Subject Name: Automobile Component Design

Subject Code: 22558

		a simple tension test.	
		The maximum or normal stress in a bi-axial stress system is given by,	
		σ	02
		$\sigma_{t1} = \frac{g_{t1}}{FS}$, for ductile materials	•=
		σ	
		$=\frac{\partial u}{\partial F}$, for brittle materials	
		$\sigma_{\rm eff}$ = Yield point stress in tension as determined from simple tension	
		test, and	0.2
		$\sigma = \text{Ultimate stress}$	02
		o _u	
		Brittle materials which are relatively strong in shear but weak in tension or compression, this	
		theory are generally used.	
4		Attempt any TWO of the following:	12
		Describe the diameter of rear axle shaft for fully floating type with following data-	06
		Engine Power = 60 kW at 3000 rpm	
	Α	Gear Box Ratio = 4.5:1, 2.5:1, 1.6:1, 1:1 ;	
		Differential reduction = 5:1	
		f_s for shaft = 70 N/mm ²	
		Answer:	
		2	
		$P = 60 \text{ kW} = 60 \text{ X} \ 10^3 \text{ W}$	
		N = 3000 rpm,	
		Max gear ratio, $G_1 = 4.5 : 1$,	
		Differential reduction, $G_d = 5:1$	
		Now the Torque transmitted by the engine T_e :	
		$\mathbf{P} = \frac{2\pi NT_e}{2\pi NT_e}$	
		60	
		P X 60	
		\therefore T _e = $\frac{1}{2} \frac{1}{2} \frac$	
		60 X 10 ³ X 60	
		$=$ $\frac{2 X \pi X 3000}{2 X \pi X 3000}$	
		= 190.98 Nm	
		$= 190.98 \times 10^3 \text{ Nmm}$	02
		Now Torque transmitted by rear shaft T _{ra} :	
		$\mathbf{T_{ra}} = \mathbf{T_e} \mathbf{X} \mathbf{G_1} \mathbf{X} \mathbf{G_d}$	
		\therefore T _m = 190.98 X 10 ³ X 4 5 X 5	
		\therefore T _{ra} = 4297.05 X 10 ³ Nmm	02
		Let	

Model Answer

Subject Name: Automobile Component Design

Subject Code:

	d = diameter of rear axle	
	$Tra = \frac{\pi}{16} X fs X d^3$	
	: 4297.05 X $10^3 = \frac{\pi}{16}$ X 70 X d ³	
	:. $d^3 = 312638.51$	
	$\therefore \qquad \mathbf{d} = 67.87 \mathbf{mm} \mathbf{Say} 68 \mathbf{mm}$	02
В	A multi disc clutch has 5 plates having 4 pairs of active friction surface if the intensity of pressure is not to exceed 0.127N/mm ² . Find the power transmitted at 500 r.p.m. The outer and inner raddi of friction surfaces are 125 mm and 75 mm respectively. Assume uniform wear and take coefficient of friction =0.3.	06
	Answer:	
	Given: $n_1 + n_2 = 5$, $n = 4$, $p = 0.127$ N/mm ² , N = 500 rpm, $r_1 = 125$ mm, $r_2 = 75$ mm, $\mu = 0.3$.	
	We know that for uniform wear $p.r = C$ (a constant).	
	Since the intensity of pressure is maximum at inner radius r2,	
	p. $r_2 = C$ or $C = 0.127 \times 75 = 9.525 \text{ N/mm}$	
	axial force required to engage the clutch,	
	$W = 2 \pi C (r_1 - r_2)$	
	$\therefore W = 2 \pi X 9.525 (125 - 75)$ $\therefore W = 2992.36 N$	01
	Mean radius of friction surface, $r_1 + r_2$	
	$\mathbf{R} = \frac{r_1 + r_2}{2},$	
	$R = \frac{125+75}{2}$	
	$R = 100^{2} mm = 0.1 m$	01
	We know that torque transmitted,	
	$I = n.\mu. W.R$ T = 4 X 0 3 X2992 36 X0 1	
	T = 359.08 Nm	02
		02
	\therefore Power Transmitted, $2\pi NT$	
	$P = -\frac{1}{60}$	
	$\therefore P = \frac{2 X \pi X 500 X 359.08}{60}$	
	$\therefore P = 18801.38 W$	
	$\therefore P = 18.801 \text{ kW}$	02

Model Answer

22558

Subject Code:

Subject Name: Automobile Component Design

С	Design the piston pin with following data – Maximum pressure on piston = $4N/mm^2$, Diameter of piston = 70mm, Allowable stresses due to bearing and bending and shearing are given 30 N/mm ² ,80 N/mm ² and 60 N/mm ² respectively.	06
	Answer: Dia. of piston = D = 70 mm. Max. pressure = Pmax = 4 N/mm ² Bearing pressure Pb = 30 N/mm ² Bending stress = σ b = 80 N/mm ² Shearing stress = τ = 60 N/mm ² Maximum gas load,	
	$W = \frac{\pi}{4} D^2 \times P_{max}$	
	$W = \frac{1}{4} \times 10^{-1} \times 4$ $W = 15.39 \times 10^{3} N$	
An s	1. Design the piston pin on the basis of bearing pressure Let, d_{po} = outer dia. of piston pin l_p = length of piston pin in small end of connecting rod l_p = 0.45xD = 0.45x70 l_p = 31.5 mm	01
	$F = d_{po} \times l_p \times P_b$ $d_{po} = \frac{15.3938 \times 10^3}{31.5 \times 30}$ $d_{po} = 16.29 \text{mm}$ $d_{po} = 17 \text{mm}$	
	2. Designing the piston pin on the basis of bending. 'Bending moment 'M' is calculated as $M = F \ge \frac{D}{8}$ $M = \frac{15.3938 \times 10^3 \times 70}{100}$	01
	$M = 134.69 \text{ x } 10^3 \text{ N-mm}$	1/2

5

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) WINTER - 2019 EXAMINATION

Model Answer

22558

Subject Code:

Subject Name: Automobile Component Design

We know that, $M = \frac{\pi}{32} x \sigma_b x (d_{po})^3$ 134.69 x 10³ = $\frac{\pi}{32} x \sigma_b x (17)^3$ $\sigma_b = 279.2589 \text{ N/mm}^2$ $1/_{2}$ The induced bending stresses are greater than permissible bending stress 80N/mm2 hence redesign is necessary. Now redesign value of d_{po} $M = \frac{\pi}{32} x \sigma_b x (d_{po})^3$ 134.69 x 10³ = $\frac{\pi}{32} x 80 x (d_{po})^3$ $d_{po} = 25.79 \text{ mm}$ d_{po} = 26 mm 01 c) Designing piston pin on the basis of shear stress, due to double shear. $F = 2x\pi/4(Dpo)^2 x \tau$ $15.39 \ge 10^3 = 2 \ge \pi/4 \ge 26^2 \ge \tau$ $T = 14.49 \text{ N/mm}^2$ The induced shear stresses are less than permissible shear stress. Hence design is safe. d) The total length of piston pin is taken as $1/_{2}$ $L_{pt} = 0.9D = 0.9x70 = 63mm$ 3. Designing piston pin on the basis of shear stress. $1/_{2}$ $F = \frac{2 \pi}{4} x (d_{po})^2 x \tau$ $15.39 \times 10^3 = \frac{2 \pi}{4} \times (26)^2 \times \tau$ $\tau = 14.49 \text{ N/mm}^2$ The induced shear stresses are less than permissible shear stress. Hence Design is safe 4. The total length of piston is taken as $1/_{2}$ Lpt = 0.9 D = 0.9 x 70 = 63 mm $1/_{2}$ Attempt any TWO of the following: 12 State functions and name suitable materials for connecting rod. Select suitable cross-06 Α section for connecting rod with justification.

Model Answer

Subject Name: Automobile Component Design

Subject Code:

	Answer:	
	Functions of connecting rod: A connecting rod, also called a con rod, is the part of a piston engine which connects the piston to the crankshaft. Together with the crank, the connecting rod converts the reciprocating motion of the piston into the rotation of the crankshaft. The connecting rod is required to transmit the compressive and tensile forces from the piston, and rotate at both ends.	02
An s	 Material for connecting rod: 1. There are some materials that are commonly used in connecting rods such as alloys of steel, aluminum and titanium. Mostly connecting rods are made by forged steel. It is widely use because it has high tensile and compressive strength. 2. Titanium is used in making connecting rods, since very long time but when it comes to lightweight of connecting rod, aluminum is preferred. Titanium is the most costly material among steel and aluminum. Another demerit of titanium is their fatigue life. Aluminum is also used for a long time. 3. Most of the connecting rods are made of steel but aluminum can also be used to manufacture connecting rods because of its light weight and it can also absorb high impact shock but its durability will be suffered. Titanium can also be used because it has good strength but it is expensive. 	02
	 Cross – Section of connecting rod: 1. The I-section of the connecting rod is used due to its lightness and to keep the inertia forces as low as possible. It can also withstand high gas pressure. 2. Sometimes a connecting rod may have rectangular section. For slow speed engines, circular sections may be used. 	02
В	State functions and materials for front axle. Draw proportionate diagram of front axle showing cross-section at different positions.	06
An s	 Answer: The functions of front axle : (<i>Any 02</i>) 1) It supports the weight of front part of the vehicle. 2) It facilitates steering. 3) It absorbs shocks which are transmitted due to road surface irregularities. 4) It withstands cornering forces and braking torque etc. 5) If front axle is live, it transmits engine torque. 6) If front axle is live, it withstands torque reaction, driving thrust. Material: It is usually a steel drop forging having 0.4 % carbon steel or 1-3 % nickel steel. 	02 02
		02

Model Answer

Subject Code:

Subject Name: Automobile Component Design SPRING SEATS SECTION AT AA SECTION AT BB Conventional front axle С Explain basic automobile component design procedure 06 Answer: Following procedure is carried out for designing any machine element: 1. Need: - First of all, make a complete statement of the problem, indicating the need, aim or purpose for which the machine is to be designed. **2.** Mechanisms: - Select the possible mechanism or group of mechanisms which will give the desired motion. **3.** Analysis of forces: - Find the forces acting on each member of the machine and the energy transmitted by each member. **4.** Material selection: - Select the material best suited for each member of the machine. 06 5. Design of elements (Size and Stresses):- Find the size of each member of the machine by considering the force acting on the member and the permissible stresses for the material used. 6. Modification: - Modify the size of the member to agree with the past experience and judgment to facilitate manufacture. The modification may also be necessary by consideration of manufacturing to reduce overall cost. 7. Detailed drawing: - Draw the detailed drawing of each component and the assembly of the machine with complete specification for the manufacturing processes suggested. 8. Production: - The component, as per the drawing, is manufactured in the workshop. Attempt any TWO of the following: 12 6 Define stress concentration. State its causes. Explain different methods to reduce stress 06 Α concentration with suitable examples. Answer: Stress Concentration: Whenever a machine component changes the shape of its cross section, the simple stress distribution no longer holds good and neighbourhood of the discontinuity is different. This irregularity in the stress distribution caused by abrupt changes 02 of form is called stress concentration. OR Whenever there is a change in cross section of machine components, it causes high localized

Model Answer

Model Answer

Model Answer

22558

Subject Code:

Subject Name: Automobile Component Design

Answer: **Design procedure of propeller shaft:** The propeller shaft is designed on the basis of torsional shear stress. By using the torsional equation, 01 $\frac{T_p}{I_p} = \frac{\sigma_s}{r}$ Where, $T_p = Torque transmitted by propeller shaft.$ $Tp = Te \times G1$ 01 Te = Engine Torque. G1 = Maximum gear Ratio in Gear Box Jp = Polar moment of inertia. $= \pi/32 \ge d^4$ (for Solid shaft) $=\frac{\pi}{22}(d_o^4-d_i^4)$(for Hollow shaft) 01 σ_s = Torsional shear stress. r = distance from neutral axis to outer most fibres. r = d/2 (for Solid shaft) An $r = d_o/2$ (for Hollow shaft) S After simplifying the equations, 01 $T_p = \frac{\pi}{16} \sigma_s d^3$ For solid shaft $T_p = \frac{\pi}{16} \sigma_s d_o^3 (1 - k^4)$ For hollow shaft 01 $k = \frac{d_i}{d_o}$ 01 di = Inner diameter of shaft do = Outer diameter of shaft From these equations, we can find out the diameter of propeller shaft. A truck spring has 10 numbers of leaves. The spring supports are 1185 mm apart and 06 С central (support) is 85 mm wide. The load on the spring is 20 kN and take permissible

Model Answer

Subject Name: Automobile Component Design

Subject Code:

	stress of 300 N/mm ² . Determine the thickness of the leaves If the width of spring is 85mm.	
	n = 10, $2L_1 = 1185$ mm, $1 = 85$ mm, $2W = 20 \times 10^3$ N, $f_F = 300$ N/mm ² , $b = 85$ mm, It is usual to provide two full length leaves and the rest graduated leaves as let t = thickness of leaves $n_f = 02$. Now,	01
	$W = 10 X 10^3 N$	UI
	we know that effective length of the spring,	
	$2L = 2L_1 - 1 = 1185 - 85 = 1100 \text{ mm}$	01
	$\therefore L = \frac{1100}{2} = 550 \text{ mm}$	
	And number of graduated leaves	01
An s	$n_g = n - n_F = 10-2 = 08$	
	assuming that the leaves are not initially stressed therefore maximum stress or bending stress for full length leaves (f_F)	
	$300 = \frac{18 W L}{b.t^2 (2n_g + 3n_f)}$	
	$=\frac{18 \ X \ 10 \ X \ 10^3 \ X \ 550}{85 \ X \ t^2 \ (2X8+3X2)}$	
	$t^2 = 176.47$	
	t = 13.28 mm	03
	t = 14 mm	