WINTER – 19 EXAMINATION Model Answer

Subject Code:

22541

Subject Name: control system

MAHARASHTF (Autonomous) (ISO/IEC - 2700

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub Q.	Answer	Marking Scheme
No	N.		
•			
Q. 1		Attempt any <u>five</u> of the following:	10-Total Marks
	a)	Define Linear time invariant control system.	2M
	Ans:	Linear Time Invariant Control System: Linear Time Invariant Control System are those in which parameters of the system are independent of time that is not varying with time and are constants. OR A system is said to be Time Invariant if its input output characteristics do not change with time.	Any one 2M
	b)	Draw and express mathematical equation of step and ramp test input.	2M
	Ans:	a) Step input : $r(t)$ A 0 T $T(t) = A \text{ for } t \ge 0$ $= 0 \text{ for } t < 0$ OR $R(S) = \frac{A}{S^2}$	Diagram and expression 0.5 M each
		Ramp input:	

		OR $(5) = \frac{A}{S^3}$	
c)	Draw the location of poles in S-plane for system.	stable and marginally stable control	2M
Ans:	(Note: Any one stable plot and marginal		2M
	Stability Condition	Location of Closed loop poles in S plane	
	Absolutely Stable	$\begin{array}{c c} & & & & \\ & & & \times & \times \\ & & -a_2 & -a_1 & 0 \\ & & & j\omega \end{array}$	
	Absolutely Stable	$\xrightarrow{\mathbf{x} \mathbf{a}_1} \mathbf{j} \boldsymbol{\omega}_1 \mathbf{\sigma}$ $\xrightarrow{-\mathbf{a}_1} \mathbf{z} \mathbf{j} \boldsymbol{\omega}_2$	
	Marginally Stable or Critically Stable	jω × jω ₁ −−−→ σ × −jω ₂	
	Marginally Stable or Critically Stable	$ \begin{array}{c} \downarrow j \omega \\ $	
d)	Draw and express the output of ON-OFF	controller.	2M
Ans:	Note: Output for any other relevant input ca	n be considered.	Output-1M

MAHARASHTI (Autonomous) (ISO/IEC - 2700 SOARD OF TECHNICAL EDUCATION rified)

	Expression: Controlled sp Position of Controller OFF Position of Position of Controller OFF Position of Position of Controller OFF Position OF	Expression-1M
e)	Define servo system and list the elements / blocks required in servo ststem.	2M
Ans:	Servo System: Servo systems are automatic feedback control system which works on error signals with output in the form of mechanical position, velocity or accelerations. Elements/Blocks require:	Definition-1M
	 Error detector Servo amplifier Servo motor 	Elements/block- 1M
f)	 Error detector Servo amplifier 	
f) Ans:	1. Error detector 2. Servo amplifier 3. Servo motor Write the order of control system for: (i) $\overrightarrow{T_{P}} = c + c + c + c + c + c + c + c + c + c$	1M

Ans:	Note: Any 2 rele	event point 1M each		
71113.	Sr. No.	DC motor	DC servo Motor	
	1	High Inertia	Low inertia	
	2	Diameter of the armature is more and its length is less	Diameter of the armature is less and its length is more	2M
	3	Comparatively Less torque	High Starting torque	
	4	Performance in load variation is good	Performance in load variation is poor	
	5	Less speed accuracy	Speed accuracy is better	
2	Attempt any THE	REE of the following:		12-Total Marks
a)	Find the transfer $ \sim$ $E_i(t)$	function of Refer Figure No.3	$E_o(t)$	4 M
		Fig.No. 3		
Ans:	$Ei(t) = i(t)R + [1 / Take Laplace transforms Ei(s) = I (s) [R + 1]$ Output across induce transforms Eo(t) = L[di(t) / dt] Take Laplace transforms Hence, Eo (s) = LS Divide equation (2) $\frac{Eo(t)}{Ei(t)} = \frac{LS}{I(s)[R - 1]}$	C] $\int [i(t)] dt + L[di(t) / dt].$ sform, / SC + SL] (1) actor]. sform, S I(s) (2)) by (1) $\frac{1}{S} I(s) + \frac{1}{sc} + SL$		Equation1-1M Equation2-1M Final Answer- 2M
	$\frac{Eo(t)}{Ei(t)} = \frac{LS}{\left[R + \frac{1}{SC}\right]}$ For a given TF, 7	$\frac{Eo(t)}{Ei(t)} = \frac{\text{LC S}}{[\text{S}^2\text{LC} + \text{RG}]}$	² CS + 1]	

	(ii) Zeroes,(iii) Type of the system and(iv) Characteristic equation.	
Ans:	I. Poles: We can get poles from equations in the denominator ie s(s+2)(s+7)=0 Therefore poles are S=0, s= -2,s= -7	1M each
	S=0, S=-2, S=-7 II. Zeros:	
	We can get zeros from equation in the numerator So for $(s+4)$ equation we can get roots by comparing it with zero. $(s + 4) = 0$ So zeros i.e. roots of the equation are $s = -4$	
	III. Type of the system: To determine the type of the system, it is require to bring G(s)H(s) into time constant form. $G(s)H(s) = \frac{4(1+0.25s)}{s*2*7(1+0.5s)(1+0.14s)}$	
	$G(s)H(s) = \frac{0.286(1+0.25s)}{s(1+0.5s)(1+0.14s)}$ Comparing it with standard time constant form we get	
	$\frac{\text{Type of the system is 1.}}{\text{IV. Characteristic equation:}}$ $\text{Standard equation is-1+G(s)H(s)=0}$ $1+s(s+2)(s+7)=0$ $1+(s^{2}+2s)(s+7)=0$ $1+S^{3}+2s^{2}+7s^{2}+14s=0$ $S^{3}+9s^{2}+14s+1=0$	
c)	Explain the working of variable reluctance type stepper motor with neat diagram.	4M
Ans:		Diagram-1.5M
	The variable reluctance stepper motor is characterized by the fact that there is no permanent magnet either on rotor or stator. The rotor is made of soft iron stamping of variable reluctance and carries no windings as shown in the figure. The stator is also made up of soft iron stampings and is of salient poles type and carries stator windings.	
		Explanation- 2.5M

MAHARASHTI (Autonomous) (ISO/IEC - 2700

O/IEC - 2700	tified)	
	As shown in the figure, when phase A is energized through supply, the rotor moves to the position in which the rotor teeth align themselves with the teeth of phase A. In this position the reluctance of the magnetic circuit is minimum. After this if phase A is deenergised and phase B is energized by giving proper supply to its winding (not shown in fig.), the rotor will rotate through an angle in a clockwise direction so as to align its teeth with those of phase B. After this, deenergising phase B and energizing phase C will make the rotor rotate by another angle in clockwise direction. Thus, by sequencing power supply to the phases the rotor could be made to rotate by a step of 15 ^o each time. The direction of rotation could be reversed by changing the sequence of supply to the phase, that is, for anticlockwise rotation, supply should be given in the sequence of ACB.	
d)	Obtain the rise time (t _r), damping ratio (ζ) , settling time (t _s) and maximum peak overshoot (M _p) for a unity feedback control system with open – loop T.F., $G(s) = \frac{1}{S(S+1)}$	4M
Ans:	Open loop Transfer Function $G(s) = \frac{1}{s(s+1)}$ Standard form of closed loop T.F. $\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)H(s)}$ $\frac{C(s)}{R(s)} = \frac{1}{\frac{1}{s(s+1)}}$ $\frac{C(s)}{R(s)} = \frac{1}{s(s+1)+1}$ $\frac{C(s)}{R(s)} = \frac{1}{s^2+s+1}$ Standard representation of a TF of a second order system is, $\frac{C(s)}{R(s)} = \frac{\omega n^2}{s^2 + 2\varepsilon \omega ns + \omega n^2}$ Comparing the two expression $\omega n^2 = 1$ $\omega n = 1$ $2\varepsilon \omega n = 1$ $\varepsilon = \frac{1}{2}$	1M each

SOARD OF TECHNICAL EDUCATION

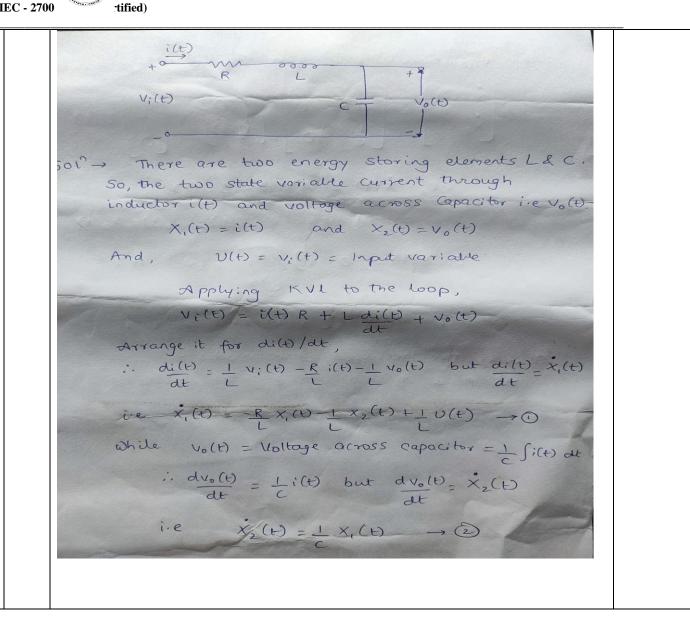
tified)

MAHARASHTI (Autonomous) (ISO/IEC - 2700

(EC - 2700		
		$\omega d = \omega n \sqrt{1 - \varepsilon^2}$	
		$\omega d = 1 * \sqrt{1 - 0.5^2}$	
		$\omega d = 0.866 rad/sec$ $\sqrt{1 - \varepsilon^2}$	
		$\theta = \tan^{-1}(\frac{\sqrt{1-\varepsilon^2}}{\varepsilon})$	
		$\theta = \tan^{-1}(\frac{\sqrt{1 - 0.5^2}}{0.5})$ $\theta = \tan^{-1}(\frac{0.866}{0.5})$	
		$\theta = \tan^{-1}(\frac{0.866}{0.5})$	
		$\theta = \tan^{-1}(1.73)$ $\theta = 59.970^{0}$	
		$ heta = 1.0466 \ rad \pi - heta$	
		$Tr = \frac{\pi - \theta}{\omega d}$ $Tr = \frac{\pi - 1.0466}{0.866}$	
		$Tr = \frac{1}{0.866}$ $Tr = 2.42sec$	
		$Ts = \frac{4}{\varepsilon \omega n}$	
		$Ts = \frac{4}{0.5 * 1}$	
		Ts = 8sec	
		$Mp = e^{\frac{-\pi\varepsilon}{\sqrt{1-\varepsilon^2}}}$ $Mp = e^{\frac{-\pi*0.5}{\sqrt{1-0.5^2}}}$	
		$Mp = e^{-1.81}$	
		Mp = 0.163	
Q.3		Attempt any THREE of the following:	12-Total Marks
		Obtain the differential equation and output equation into standard form of state space representation of the following circuit.	
	a)	Refer Figure No.4	4M
		+ the R L L Vo(t) Vi(t) C T Vo(t)	
	Ans:	$\mathbf{v}_{i}(t)$	

$$TF = \frac{V_0(S)}{V_l(S)} = \frac{1}{LCS^2 + RCS + 1}$$
Taking inverse LT and cross-multiplying,

$$LC \frac{d^2}{dt^2} V_0(t) + RC \frac{d}{dt} V_0(t) + V_0(t) = V_i(t)$$
Imput = $V_i(t) = u(t)$


$$Output = V_0(t)$$
Therefore, first state variable $x_1 = V_0(t)$
Second state variable $x_2 = \frac{d}{dt} V_0(t) = \frac{1}{LC} V_0(t)$
 $x_2 = \frac{d^2}{dt^2} V_0(t) = \frac{1}{LC} V_i(t) - (\frac{R}{L}) \frac{d}{dt} V_0(t) - \frac{1}{LC} V_0(t)$
 $x_2 = \frac{1}{LC} u(t) - \frac{R}{L} x_2 - \frac{1}{LC} x_1$
SSR:

$$\frac{\ddot{x} = AX + BU}{Y = CX + DU}$$
IM
 $\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{1}{LC} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{LC} \end{bmatrix} u$
 $Y = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
OR
There are two energy storing elements L and C so the two state variables are current through inductor i(1) and voltage across capacitor i.e. v_0(1).

SOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 2700

MAHARASHTI

MAHARASHTI (Autonomous) (ISO/IEC - 2700 SOARD OF TECHNICAL EDUCATION :tified)

	The Equations (1) & (2) give required state equations. $ \begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \end{bmatrix} = \begin{bmatrix} -R \\ L \\ -L \\ -L \\ -L \\ -L \\ -L \\ -L \\ $	
b)	i.e. $Y(t) = C \times (t)$ and $D = [0]$ This is the required state model. As $n=2$, it is a second order system. Define time constant. Draw the time response of first order and control system	4M
Ans:	for step input. Definition: Time Constant of a system is defined as the time required by the system output to reach 63.2% of its final value during the first attempt. Time response of first order control system to a unit step: $v_0^{(t)}$	Definitition-2M First Order-2M
	Time response of second order control system to a unit step:	Second Order- 2M

	Ta I	t		
	T _p	Г <u>s</u>	-	
c)	Calculate the range of K or value with T.F. $T(S) = \frac{K}{S^3 + 18S^2 + 77S + K}$	es K for stability of fe	edback control syst	tem 4M
Ans:				
	Characteristic equation: 1 - $S^3 + 18S^2 + 77S + K=0$	$\vdash G(S)H(S) = 0$		Routh's array 3 M
	Routh's array:			
	S ³	1	77	
	S^2	18	K	
	S	$\frac{1386-K}{18}$	0	
	S ⁰	K	0	
	To satisfy the condition for			
		K > 0,		
	Or, $1386 - K > 0$, 1389	$\frac{1386 - K}{18} > 0$ $0 > K$		
	Therefore, the range of K	for the system to be sta	ble is,	Range 1 M
		0 < K < 1386		
d)	Describe the function of D.C. ser	vo system with block	diagram.	4M
-				

MAHARASHTF (Autonomous) (ISO/IEC - 2700

		+ DC motor	Explanation-2M
		Ve amplifier Va MLoad	
		$ \begin{array}{c} \downarrow \\ \downarrow \\ \partial_{\theta_{B}} \end{array} \xrightarrow{=} \\ \hline \\ $	
		Explanation :	
		1) The standard block diagram of servo system consists of error detector, amplifier,	
		motor as controller, load whose position is to be changed.	
		2) Servo systems is to be divided into two type a) DC servo systems b) AC servo	
		system3) DC servo system consists of potentiometer as error detector, DC amplifier, DC	
		motor, DC gear system and the DC load whose position is to be changed.	
		4) In DC servo system potentiometer has two input i.e one is reference input and	
		another is actual load position. Potentiometer finds the error between two positions.	
		The error signal between two positions is given to DC amplifier which amplifies the	
		error. Output of DC amplifier is given to DC motor & finally DC motor changes the position of DC load. In this way servo system is used to change the load position	
		with help of motor & error detector.	
		Attempt any THREE of the following :	
Q.4			12-Total Marks
Q.4		Attempt any THREE of the following :	12-Total Marks
Q.4	a)	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative	12-Total Marks 4M
Q.4	-	Attempt any THREE of the following :	4M
Q.4	a) Ans:	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative	
Q.4	-	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative	4M
Q.4	-	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative	4M
Q.4	-	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative	4M
Q.4	-	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative feedback. Block diagram: (for negative feedback system)	4M
Q.4	-	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative feedback. <u>Block diagram:</u> (for negative feedback system) <u>R(s)</u> <u>C(s)</u>	4M
Q.4	-	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative feedback. Block diagram: (for negative feedback system) R(s) Y E(s)	4M
Q.4	-	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative feedback. <u>Block diagram:</u> (for negative feedback system) <u>R(s)</u> <u>C(s)</u>	4M
Q.4	-	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative feedback. $\underline{Block \ diagram:} (for negative feedback system)$ $R(s) \xrightarrow{E(s)} G(s) \xrightarrow{F(s)} C(s)$	4M
Q.4	-	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative feedback. $\underline{Block \ diagram:} (for negative feedback system)$ $R(s) \xrightarrow{E(s)} G(s) \xrightarrow{F(s)} C(s)$	4M
Q.4	-	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative feedback. $\underline{Block \ diagram:} (for negative feedback system)$ $R(s) \xrightarrow{E(s)} G(s) \xrightarrow{F(s)} C(s)$	4M
Q.4	-	Attempt any THREE of the following : Derive the transfer function of closed loop control system with negative feedback. $\underline{Block \ diagram:} (for negative feedback system)$ $R(s) \xrightarrow{E(s)} G(s) \xrightarrow{F(s)} C(s)$	4M

MAHARASHTF (Autonomous) (ISO/IEC - 2700

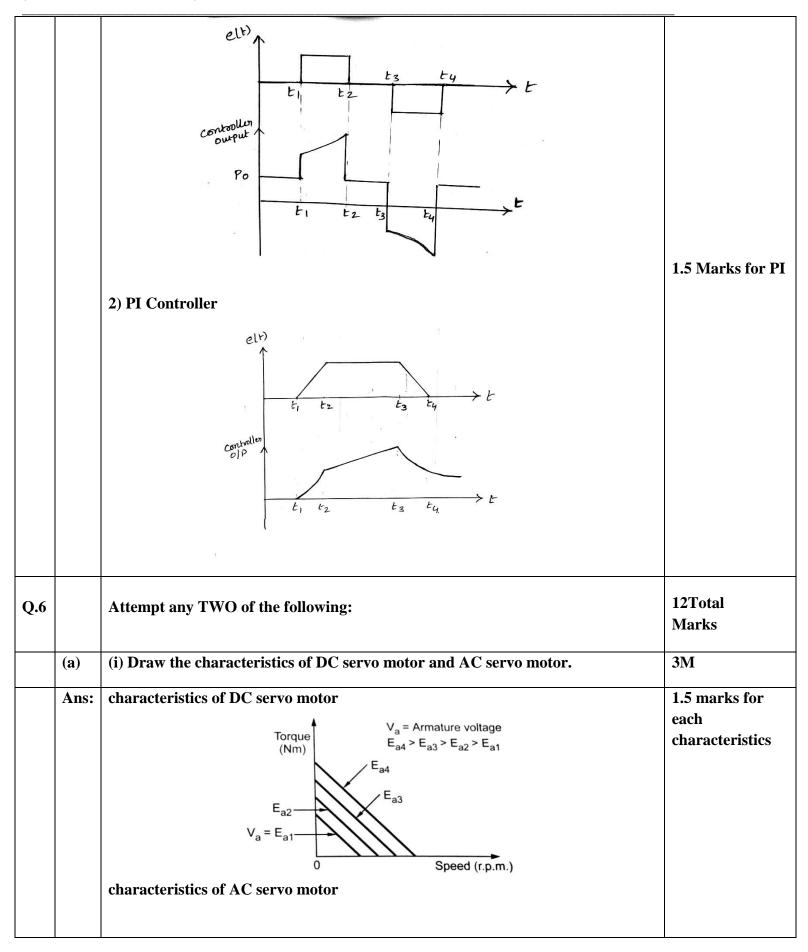
b)	Describe the effect of damping on second order control system.	4M
	$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)*H(s)}$	
	Transfer Function:	
	$C(s) \frac{[1+G(s)H(s)]}{G(s)} = R(s)$	
	$\frac{C(s)}{G(s)} = R(s) \cdot C(s) H(s)$ $C(s) \{\frac{1}{G(s) + H(s)}\} = R(s)$	
	$\frac{C(s)}{G(s)} = R(s) - C(s) H(s)$	
	Substitute for E(s) & B(s) in [.I.]	
	E(s) = R(s) - B(s) (for negative feedback) [.I.]	
	$B(s) = C(s) \ge H(s)$	
	$C(s) = E(s) \times G(s)$	
	$E(s) = \frac{C(s)}{G(s)}$	
	$G(s) = \frac{C(s)}{E(s)}$	
	Derivation:	

MAHARASHTI (Autonomous) (ISO/IEC - 2700

Ans:			ping in response of			Each-1M
	N 0.	Range of ζ	Type of close loop poles	Nature of response	System Classification	
	1	$\zeta = 0$	Purely imaginary	Oscillations with constant amplitude & frequency	Undamped	
	2	0 < ζ < 1	Complex Conjugates with negative real parts	Damped Oscillations	Underdamped	
	3	$\zeta = 1$	Real, Equal and Negative	Critical & Pure exponential	Critically damped	
	4	1 < ζ < d	Real, equal & Negative	Purely exponential slow and sluggish	Over damped	
c)	Write two a	dvantage	s and two specifi	cations of freque	ncy response anal	ysis. 4M
Ans:	from the ope	lute and re en loop fre	equency response		p system can be f using the method	aavantages
	Nyquist stability criteria 2. The transfer function of complicated systems can be found out practically by frequency response test when it is difficult to find transfer function by writing					
	differential e 3. Frequenc available lab	equations. y response poratory eq	e test are simple juipment.	and can be done	e practically by th	e readily
	loop system 5. Due to th	can be obt	tained experiment elation between f	ally. Frequency response	se of a system and he frequency respo	d its step
	frequency re	esponse Mesponse.			im value of maging the second se	specification
	 2. Resonant Frequency w_r : This is the frequency at which the resonance peak M_r occurs. 3. Bandwidth: It is defined as the range of frequency at which the magnitude of 					
	frequency response drops to 70.7% of its zero frequency value or 3 dB from the zero frequency value.					
	4. Cut-off Rate: It is the slope of the log-magnitude curve near the cut-off frequency. 5. Phase Margin (Φ_{pm}): The phase margin indicates how much the system angle can					
	be increased 6. Gain Ma	to cause t argin:It is	he system to beco the amount of g	ome unstable from	a stable condition. can be allowed to	
	before the s	vstem hecc				
	before the sy 7. Cut off f frequency re	requency:	It is defined a	s the frequency	at which the mag	nitude of

Ans:	Circuit of op-amp based	ction on ri time and m oot. on on rise	se time and akes respon	se fast.	- o e.	Circuit Diagram-2M Effects 1M each
e)	 2) It improves the damping and reduces overshoot. Draw the stability of control system where characteristic equation is given as s⁵+6s⁴+15s³+30s²+44s+24=0 using Routh's Stability Criteria. 					4M
		4M				
	Character	istic equation	on: $s^{5}+6s^{4}+1$	$5s^3 + 30s^2 + 44s + 24$	=0	
	Character	-	on: s ⁵ +6s ⁴ +1 outh's array		=0	
	Character	-			=0	
		R	outh's array	:	=0	
	S ⁵	R	outh's array	44	=0	
A nc.	S^5 S^4	R 1 6	outh's array	:: 44 24	=0	
Ans:	$\frac{S^5}{S^4}$	R 1 6 10	outh's array		=0	
Ans:		R 1 6 10 6	15 30 40 24	44 24 0 0	=0	

			S	12	0	0	_		
			S ⁰	24	0	0	_		
		No sign change in							
		for marginal stabili $A(S) = 6S^2 + 24$					uation.		
		$A(S) = 6S^{2} + 24 = 0, or \ S^{2} + 4 = 0, or \ S^{2} = -4$ $or \ S_{1,}S_{2,} = \sqrt{-4} = \pm 2j$							
		It shows that two marginally stable.	poles	are on the	e imaginary	axis and the	erefore the system is		
Q.5		Attempt any <u>TWC</u>	<u>)</u> of the	following	:			12Total M	
	a)	Derive the transfer function of given system using block reduction rules, Refer Figure No. 5.						6M	

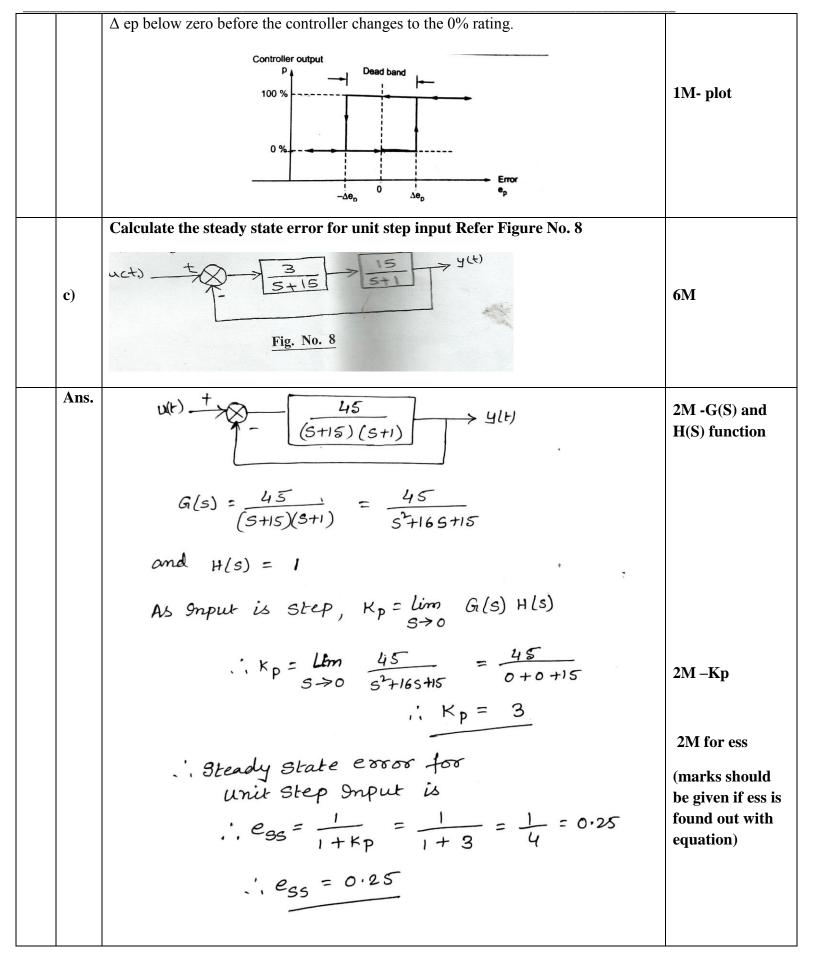

$\begin{array}{c} 50.\\ 50.\\ 50.\\ 50.\\ \\ 50.\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	4marks for block reduction
$R(s) = \frac{G_{1}G_{3}(G_{2} + G_{4})}{I + G_{3}H_{1}} = C(s)$ After simplification $T(s) = \frac{C(s)}{R(s)} = \frac{G_{1}G_{2}G_{3} + G_{1}G_{3}G_{4}}{I + G_{3}H_{1} + G_{1}G_{2}G_{3} + G_{1}G_{3}G_{4}}$	2 marks for simplification
$G(s) - H(s) = \frac{10}{s(s+1)(s+5)}$ and find the stability based on gain and phase margin.	6M
Put s =j ω , then $G(j\omega)H(j\omega) = \frac{2}{j\omega(1+j\omega)(1+0.2j\omega)}$ (in time constant form) Magnitude plot: Factors: 1. K=20 $ M = 20 \log 2 = 6.02 \text{ dB}$ It is a straight line of magnitude 6 dB parallel to X axis(0 dB slope). 2. Pole at origin 1/s : It is a straight line of magnitude +20 dB at origin and a constant slope -20 dB/decade cutting X axis at $\omega = 1$ 3. $1/(1+s) = 1/(1+j\omega)$	3 Marks for explanation
	$R_{1}^{(5)} = \frac{G_{1}G_{3}(G_{2} + G_{4})}{1 + G_{3}H_{1}} = C(5)$ $R_{1}^{(5)} = \frac{G_{1}G_{3}(G_{2} + G_{4})}{1 + G_{3}H_{1}} = C(5)$ $R_{1}^{(5)} = \frac{G_{1}G_{3}(G_{2} + G_{4})}{1 + G_{3}H_{1}} = C(5)$ $A_{3}^{4}ten \ Simplification$ $T(5) = \frac{G(5)}{R(5)} = \frac{G_{1}G_{2}G_{3} + G_{1}G_{3}G_{4}}{1 + G_{3}H_{1} + G_{1}G_{2}G_{3} + G_{1}G_{3}G_{4}}$ $T(5) = \frac{G(5)}{R(5)} = \frac{10}{s(s+1)(s+5)} \text{ and find the stability based on gain and phase margin.}$ Put s = j ω , then $G(j\omega)H(j\omega) = \frac{2}{j\omega(1+j\omega)(1+0.2j\omega)}$ (in time constant form) Magnitude plot: Factors: 1. K=20 M =20 log 2 = 6.02 dB It is a straight line of magnitude 6 dB parallel to X axis(0 dB slope). 2. Pole at origin 1/s : It is a straight line of magnitude +20 dB at origin and a constant slope -20 dB/decade cutting X axis at $\omega = 1$

/00		eu)						
	frequenc	$y \omega c_1 =$	1 rad/s	ec.				
	4. $1/(1+0.2s) = 1/(1+0.2j\omega)$							
	T ₂ =0.2 Corner frequency $\omega c_2 = 1 / T_2 = 1/0.2 = 5$ rad/sec.							
	The plot is a straight line of constant slope of -20 dB / dec from corner							•
	frequency	$\omega c_2 =$	5 rad/se	ec.				
	5.Resultant							
			v addin	g algebric	ally individu	ual magnitude	es at origin.	
			-		0+0 = 26 dB	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	6.Resultant		-					
		-	•		/dec unto exe	-1 rad/aaa		
		•		-	-	$c_1 = 1$ rad/sec.		
	At $\omega c_1 = 1$	l rad/se	c, anoth	er line of	slope -20 dE	B/dec is added	l, so the	
	new slope	is -20 -	+(-20) =	= -40 dB /d	lec.			
	At $\omega c_2 = 5$	5 rad/se	c, anoth	er line of	slope -20 dE	B/dec is added	l, so the	
	new slope	is -40 -	+(-20) =	= -60 dB /d	lec.			
	Phase plot	:						
		a i	ø .	a . a				
	Resultant Ø	$= \varphi_1 +$	• Ø ₂ +	$\emptyset_3 + \emptyset_4$				
	$\emptyset_1 =$	0 ° Ø ₂	2 = -9	$0^{\circ} \emptyset_{3} =$	$-tan^{-1}(a$	ϕ) $\phi_4 =$	$-tan^{-1}(0)$	2ω)
			-			1		1
		<u>ω</u> 0.1	•\$ 1	•	Φ 3 -5.71°	0 4	0	
		0.1	0	-90° -90°	-3.71 -45°	-1.14° -11.3°	-96.85° -146.3°	
		5	0	-90°	-45 -78.69°	-11.3 -45°	-140.3 -213.69°	
		10	0	-90°	-84.28°	-43 -63.4°	-237.68°	
		100	0	-90°	-89.42°	-87.1°	-266.52°	
	From the p	hase pl	ot					
	ω_{gc} =1.3 rad	/sec,	$\omega_{pc} = 2$.4 rad/sec,				

G.M =11dB, $PM=21^{0}$ The system is stable in Nature.

Ans:	1) PID controller	1.5 Marks for PID
	2) PI Controller e(t) o Fig. No.7	
	1) PID controller $e^{(4)}$ fig. No. 6	
	 3. Composite controllers i)Proportional +Integral (PI)controller ii)Proportional +Derivative (PD)controller iii)Proportional +Integral +Derivative (PID)controller (ii) Draw the controller output for give error signal. 	3M
	 2. Continuous Mode i)Proportional (P)controller ii)Derivative (D)controller iii)Integral (I)controller 	
Ans:	1. Discontionus Mode i)ON-OFF controller	1M Each
(c)	(i) List the controller of controllers.	3M
	$\frac{1}{10}$	3 Marks for Bode Plot

SOARD OF TECHNICAL EDUCATION


tified)

MAHARASHTF (Autonomous) (ISO/IEC - 2700

		(Nm) E ₂₂ E ₂₁ E ₂₄ E ₂₃ E ₂₃	voltage $_{23} > E_{22} > E_{21}$ Speed (r.p.m.)	
Ans:	(ii) Compare A	C servo motor and DC servo m	otor.	3M
	Sr.No	DC servo motor	AC servo motor	3Marks for any
	1	Deliver High power output	Low power output 1/2W to 100W	3 points
	2	High efficiency	Efficiency is less about 5 to20%	
	3	Frequent maintenance required due to commutator.	Due to absence of commutator maintenance is less.	
	4	More problems of stability.	Less problems of stability.	
	5	Brushes produce radio frequency noise.	No radio frequency noise.	
	6	Noisy operation.	Relatively stable and smooth operation.	
	7	Amplifiers used have a drift.	A.C. Amplifiers used have no drift.	
	8	Linear response	Non- Linear response	
	9	Supply is given to armature	Supply is given to stator.	
(b)	(i) Compare P a	nd D controller.		2M
Ans:	SR.No	Proportional control action	Derivative control action	2 marks for any 2 points
		In P control ,the output proportional to the error	-	
		2 If error is Zero, the outp	but If error is Zero or constant,	1

 			is a constant equal to Po	output is zero	
		3	$p(t) = K_p e(t) + p(0)$	$p(t) = K_d \frac{d}{dt} e(t)$	
		4	P (%) Saturation Proportional response Gain G2 < G ₁ (r) (Proportional bands) (Proportional bands) (Proportional bands)	Controller p(t) 50% -ve 0 +ve de(t) (%/sec) p	
		5	Produces offset	Does not produce offset	
		6	Moderate stability	More stable	
		7	Moderate response speed	Fast	
		8	Does not introduce zero at origin of s-plane	Introduces zero at origin of s-plane	
	(ii) Write	e one advanta	ges and application of ON –	-	2M
Ans:	Advanta	ge:			1 M-1 advantage
	1.Simples 2. Econo	st mode of cor mical	ntroller		
	3. Often u	used if its limi	tations are well within the tole	rance	
	Applicati Used in,	ion:			
	1.Room h	neaters			1 M-1
	2.Refrige	rators ontrol of wate	r toplza		Application
	4. Air cor				
	(iii) Expl	ain neutral z	one with plot in ON – OFF c	ontroller.	2M
Ans:	Neutral 2	Zone: In prac	ctical implementation of the tw	wo – position controller, there is	1 M -explanation
	an overla	p as Ep incre	ases through zero or decrease	s through zero. In this span, no	
	change in	controller ou	tput occurs and it is called Ner	utral zone.	
	Fig show	s P versus Ep	for ON-OFF Controller. Unti	l an increasing error changes by	
	Δ ep abov	ve zero, the co	ontroller output will not chang	e state. In decreasing it must fall	

