MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code: 22529

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. 1
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
1.	(a) Ans.	Attempt any FIVE of the following: Draw equivalent circuit of alternator. $\mathrm{E}=$ Induced emf $\mathrm{V}=$ Terminal voltage $\mathrm{R}_{\mathrm{a}}=$ Armature resistance $X_{L}=$ Leakage reactance $X_{0}=$ Armature reaction reactance	$\begin{gathered} 10 \\ 2 \mathrm{M} \end{gathered}$ Correct diagram $2 M$

WINTER - 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)
Subject Code:
22529

	$\begin{aligned} & X_{s}=\text { Synchronous reactance } \\ & R_{a}+j x_{s}=Z_{s} \\ & R_{a}+j\left(X_{L}+X_{a}\right)=Z_{s} \end{aligned}$	
(b) Ans.	Define impedance diagram and reactance diagram. Impedance diagram: Impedance diagram is the simplified equivalent circuits of single line or one line diagrams of power system in which all components are represented by their equivalent circuit. Reactance diagram: The reactance diagram is the simplified equivalent circuit of power system in which the various components of power system are represented by their reactance. or Reactance diagram is the simplification of impedance diagram in which resistive components, capacitive parameters of tr. Line, magnetizing circuit of transformer, rotating machines and impedance of protective element of the machines are neglected and is used only for fault current calculation is called reactance diagram.	2M Each definitio n 1M
(c) Ans.	List out factors affecting proximity effect. Factors affecting proximity effect: 1. Conductor size (diameter of conductor) 2. Frequency of supply current. 3. Distance between conductors. 4. Permeability of conductor material	$2 \mathrm{M}$ Any two factors 1M each
(d) Ans.	State the impact of inductance and resistance on transmission line performance. Impact of inductance on transmission line: 1) It causes $I X_{L}$ drop in transmission line which affects regulation. 2) It is the only parameter which decides power transmission capacity of line i.e. if inductance decreases power transmission capacity increases. Impact of resistance on transmission line: 1) It causes voltage drop, so it affects regulation. 2) It causes $I^{2} R$ loss which affects efficiency and temperature rise. 3) Whatever power loss occurs in transmission line is only due resistive parameter. 4) Though value of resistance is very small, it causes losses,	2M Impact of inductan ce any one 1M Impact of resistanc e any one 1M

WINTER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis (Elective-I)
Subject Code:
22529

		temperature rise\& poor voltage regulation so it cannot be neglected	
	(e) Ans.	Give the expression for ABCD constant of T model. Expression for ABCD constants of T model: $\begin{gathered} A=D=1+\frac{\mathrm{YZ}}{2} \\ B=Z\left(1+\frac{\mathrm{YZ}}{4}\right) \\ C=Y \end{gathered}$	$\begin{gathered} \hline 2 \mathrm{M} \\ \\ \text { 1/2Mfor } \\ \text { each } \\ \text { constant } \end{gathered}$
	(\mathbf{f}) Ans.	Determine ABCD constant of short transmission line having impedance $(20+\mathrm{j} 50) \Omega$. ABCD constants of short transmission line having impedance $20+\mathrm{j}$ 50 ohm are as follows: $\mathrm{A}=1$ $\mathrm{B}=\mathrm{Z}=20+\mathrm{j} 50 \boldsymbol{\Omega}$ $\mathrm{C}=0$ $\mathrm{D}=1$	$\begin{gathered} \hline 2 \mathrm{M} \\ \\ \begin{array}{c} 1 / 2 M \text { for } \\ \text { each } \\ \text { constant } \end{array} \end{gathered}$
	(g) Ans.	Recall $X \& Y$ coordinates for centre of sending and circle diagram. X and Y co-ordinates for centre of sending end circle diagram are as follows: $\begin{aligned} & X-\text { co }- \text { ordinate }=\frac{\mathrm{DV}_{S}^{2}}{\mathrm{~B}} \cos (\beta-\alpha) \ldots \mathrm{MW} \\ & Y-\text { co }- \text { ordinate }=\frac{\mathrm{DV}_{\mathrm{S}}^{2}}{\mathrm{~B}} \sin (\beta-\alpha) \ldots . \mathrm{MVAR} \end{aligned}$	$2 \mathrm{M}$ 1M for each
2	(a)	Attempt any THREE of the following: Develop a reactance diagram for structure of power system (Refer Fig.1) considering generator as base.	$\begin{gathered} 12 \\ 4 M \end{gathered}$

(ISO/IEC - 27001-2005 Certified)
WINTER - 2019 EXAMINATION
MODEL ANSWER

Subject: Power System Analysis (Elective-I)
 Subject Code:
 22529

WINTER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis (Elective-I)
Subject Code:
22529

WINTER - 2019 EXAMINATION
MODEL ANSWER

Subject: Pow	System Analysis (Elective-I) Subject Code: 22	22529
(c) Ans.	3ϕ transmission line with impedance $32.9 \angle 72.35 \Omega / \mathrm{ph}$ and admittance $\mathbf{j} 2.827 \times 10^{-4} \angle 90 \Omega / \mathrm{ph}$ delivers load of 35 MW , 132 KV, 0.8 P.F. lag. Use π method and determine ABCD constants. $\begin{aligned} & \mathrm{Z}=32.9 \angle 72.35 \frac{\Omega}{\mathrm{ph}} \\ & \mathrm{Y}=2.827 \times 10^{-4} \angle 90 \mathrm{mho} / \mathrm{ph} \end{aligned}$ By using π method $\begin{aligned} & \mathrm{A}=1+\frac{\mathrm{YZ}}{2} \\ &=1+\frac{\left(2.827 \times 10^{-4} \angle 90\right)(32.9 \angle 72.35)}{2} \\ &= 1+\frac{9.300 \times 10^{-3} \angle 162.35}{2} \\ &= 1+\left(4.65 \times 10^{-4} \angle 162.35\right) \\ &= 1-4.431 \times 10^{-4}+\mathrm{j} 1.409 \times 10^{-4} \\ &= 0.999+\mathrm{j} 1.409 \times 10^{-4} \\ &= 0.999+\angle 8.08 \times 10^{-3} \\ & \mathrm{~A}=\mathrm{D}=1+\frac{\mathrm{YZ}}{2}=0.999+\angle 8.08 \times 10^{-3} \\ & \mathrm{~B}=\mathrm{Z}=32.9 \angle 72.35^{0} \Omega / \\ & \mathrm{C}=\mathrm{Y}\left(1+\frac{\mathrm{YZ}}{4}\right) \\ &=2.827 \times 10^{-4} \angle 90\left(1+\frac{\left(2.827 \times 10^{-4} \angle 90\right)(32.9 \angle 72.35)}{4}\right) \end{aligned}$	4M 1M for each constant s

WINTER - 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code:
22529

WINTER - 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)
Subject Code:
22529

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Then \(\mathrm{I}_{\mathrm{S}}=\frac{|\mathrm{A}|\left|\mathrm{V}_{\mathrm{S}}\right|}{\mathrm{B}}(\angle \alpha+\delta-\beta)-\frac{\left|\mathrm{V}_{\mathrm{R}}\right|}{\mathrm{B}}-\angle \beta\) \\
The conjugates of \(\mathrm{I}_{\mathrm{S}}\) are
\[
\mathrm{Is}^{*}=\frac{|\mathrm{A}|\left|\mathrm{V}_{\mathrm{S}}\right|}{\mathrm{B}}(\angle \beta-\alpha-\delta)-\frac{\left|\mathrm{V}_{\mathrm{R}}\right|}{\mathrm{B}} \angle \beta
\] \\
The complex power/phase at the sending end are
\[
\begin{gathered}
\mathrm{S}_{\mathrm{S}}=\mathrm{P}_{\mathrm{S}}+j a s=\mathrm{V}_{\mathrm{S}} \mathrm{I}_{\mathrm{S}}^{*} \\
\mathrm{~S}_{\mathrm{S}}=\left|\mathrm{V}_{\mathrm{S}}\right| \angle \delta\left[\frac{|\mathrm{A}|\left|\mathrm{V}_{\mathrm{S}}\right|}{|\mathrm{B}|}(\beta \angle \alpha-\delta)-\frac{\left|\mathrm{V}_{\mathrm{R}}\right|}{|\mathrm{B}|} \angle \beta\right] \\
\mathrm{S}_{\mathrm{S}}=\frac{|\mathrm{A}|\left|\mathrm{V}_{\mathrm{S}}\right|^{2}}{|\mathrm{~B}|}(\angle \beta-\alpha)-\frac{\left|\mathrm{V}_{\mathrm{R}}\right|\left|\mathrm{v}_{\mathrm{S}}\right|}{|\mathrm{B}|}(\angle \beta+\delta) \\
\mathrm{P}_{\mathrm{S}}=\frac{|\mathrm{A}|\left|\mathrm{V}_{\mathrm{S}}\right|^{2}}{|\mathrm{~B}|} \cos (\beta-\alpha)-\frac{\left|\mathrm{V}_{\mathrm{R}}\right|\left|\mathrm{v}_{\mathrm{S}}\right|}{|\mathrm{B}|} \cos (\beta+\delta) \\
\mathrm{Q}_{\mathrm{S}}=\frac{|\mathrm{A}|\left|\mathrm{V}_{\mathrm{S}}\right|^{2}}{|\mathrm{~B}|} \sin (\beta-\alpha)-\frac{\left|\mathrm{V}_{\mathrm{R}}\right|\left|\mathrm{v}_{\mathrm{S}}\right|}{|\mathrm{B}|} \sin (\beta+\delta)
\end{gathered}
\] \\
The above equation is the sending end side complex power.
\end{tabular} \& 1M
\[
1 M
\] \\
\hline 3. \& (a) Ans. \& \begin{tabular}{l}
Attempt any THREE of the following: \\
Summerise the role of power system engineer. \\
Role of power system engineer: \\
i. On the planning side he or she has to make decisions on how much electricity to generate \\
ii. For operation of the power system he has to plan for generation of electricity where, when and by using what fuel. \\
iii. He has to plan for expansion of the existing grid system and also for new grid system. \\
iv. He coordinated operation of a vast and complex power network, so as to achieve a high degree of economy and reliability. \\
v. He has to be involved in constructional task of great magnitude both in generation and transmission. \\
vi. He has to solve problem of power shortages./ outage of line \\
vii. He has to evolve strategies for energy conservation and load management. \\
viii. For solving the power system problems he has to update with
\end{tabular} \& 12
4 M

Any
four
roles $1 M$
each

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis (Elective-I)
Subject Code: 22529

WINTER - 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)
Subject Code:
22529

	$\begin{aligned} & \Psi \mathrm{a}=2 \times 10^{-7} \cdot \mathrm{I}_{\mathrm{a}} \cdot \mathrm{l}_{\mathrm{n}}\left\{\frac{1}{\mathrm{ra}^{\mathrm{I}}} \frac{1}{\mathrm{D}}\right\} \frac{\mathrm{wbT}}{\mathrm{~m}} \\ &=2 \times 10^{-7} \cdot \mathrm{I}_{\mathrm{a}} \cdot \mathrm{l}_{\mathrm{n}}\left(\frac{\mathrm{D}}{\mathrm{ra}^{1}}\right) \frac{\mathrm{H}}{\mathrm{~m}} \\ & \therefore \mathrm{~L}_{a}=\frac{\Psi_{\phi}}{\mathrm{I}_{\phi}}=2 \times 10^{-7} \mathrm{l}_{\mathrm{n}}\left(\frac{\mathrm{D}}{\mathrm{ra} \mathrm{a}^{1}}\right) \frac{\mathrm{H}}{\mathrm{~m}} \end{aligned}$ Inductance per conductor or inductance/ phase $\begin{gathered} \mathrm{L}_{a}=2 \times 10^{-7} \mathrm{l}_{\mathrm{n}}\left(\frac{\mathrm{D}}{\mathrm{r}^{1}}\right) \frac{\mathrm{H}}{\mathrm{~m}} \\ \mathrm{~L}_{a}=0.2 \mathrm{l}_{\mathrm{n}}\left(\frac{\mathrm{D}}{\mathrm{r}^{1}}\right) \frac{\mathrm{mH}}{\mathrm{Km}} \end{gathered}$	$1 M$
(c) Ans.	Define Generalised circuit constants. For Generalized circuit, Generalized Equations can be written as: $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{AV}_{\mathrm{R}}+\mathrm{BI}_{\mathrm{R}} \\ & \mathrm{I}_{\mathrm{S}}=\mathrm{CV}_{\mathrm{R}}+\mathrm{DI}_{\mathrm{R}} \end{aligned}$ Generalized Circuit Constant: 1) $\mathrm{A}=\frac{V_{s}}{V_{R}}$ when $\mathrm{I}_{\mathrm{R}}=0$ It is the ratio of the voltage impressed at the sending end to the voltage at the receiving end when the receiving end is open circuited. It is a dimension less quantity. 2) $\mathrm{B}=\frac{V_{s}}{I_{R}} ; \mathrm{V}_{\mathrm{R}}=0$ It is the volt impressed at the sending end to current of receiving end when receiving end is short circuited. It is known as Transfer impedance. Its unit is in ohms. 3) $\mathrm{C}=\frac{I_{s}}{V_{R}} ; \mathrm{I}_{\mathrm{R}}=0$ It is defined as the ratio sending end current to the receiving end voltage when receiving end is open circuited. It is known as Transfer admittance and its unit mho. 4) $\mathrm{D}=\frac{I_{S}}{I_{R}} ; \mathrm{V}_{\mathrm{R}}=0$ It is the ratio of amperes impressed at the sending end to the ampere at the receiving end when the receiving end is short circuited. It is a pare quantity.	4M Each definitio n 1M

WINTER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis (Elective-I) Subject Code: 22529			
	(d) Ans.	A 200 kV line with $\mathrm{GCC} \mathrm{A}=0.86 \angle 7^{0}, \mathrm{~B}=300 \angle 75^{0} \Omega$. Determine real power at unity P.F. that can be received if voltage at both end is maintained at 200 kV . Given data $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{R}}=200 \mathrm{KV}, \mathrm{~A}=0.86 \angle 7^{\circ}, \mathrm{B}=300 \angle 75^{\circ}$ Then for unity power factor $Q_{R}=0$ $\therefore \mathrm{Q}_{\mathrm{R}}=\left\|\mathrm{V}_{\mathrm{S}}\right\|\left\|\mathrm{V}_{\mathrm{R}}\right\| /\|\mathrm{B}\| \operatorname{Sin}(\beta-\delta)-(\|\mathrm{A}\| /\|\mathrm{B}\|)\left\|\mathrm{V}_{\mathrm{R}}\right\|^{2} \operatorname{Sin}(\beta-\alpha)$ Substituting all values we get $\begin{aligned} & 0=(200) X(200) / 300 \operatorname{Sin}(\beta-\delta)-\left((0.86)(200)^{2} / 300\right) \operatorname{Sin}(75-7) \\ & 0=133.33 \operatorname{Sin}(\beta-\delta)-106.32 \\ & \operatorname{Sin}(\beta-\delta)=0.797 \\ & \beta-\delta=52.88^{0} \end{aligned}$ Substituting this is in equation of P_{R} we get $\begin{aligned} & \mathrm{P}_{\mathrm{R}}=\left(\left\|\mathrm{V}_{\mathrm{S}}\right\|\left\|\mathrm{V}_{\mathrm{R}}\right\| /\|\mathrm{B}\|\right) \operatorname{Cos}(\beta-\delta)-(\|\mathrm{A}\| /\|\mathrm{B}\|)\left\|\mathrm{V}_{\mathrm{R}}\right\|^{2} \operatorname{Cos}(\beta-\alpha) \\ & =\{(200)(200) / 300\} \operatorname{Cos}(52.88)-\left\{0.86 \times(200)^{2} / 300\right\} \operatorname{Cos}(75-7) \\ & =80.46-(114.67)(0.37) \\ & \mathrm{P}_{\mathrm{R}}=38.03 \mathrm{MW} . \\ & \quad \text { Unity power at receiving end is } 38.03 \mathrm{MW} \end{aligned}$	4M $1 M$ $1 M$ 1M $1 M$
4.	(a) Ans.	Attempt any THREE of the following: Give the stepwise procedure for drawing circle diagram at receiving end.	$\begin{gathered} 12 \\ \mathbf{4 M} \end{gathered}$

WINTER - 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)
 Subject Code:
 22529

WINTER - 2019 EXAMINATION MODEL ANSWER
Subject: Power System Analysis (Elective-I) \quad Subject Code: 22529

WINTER - 2019 EXAMINATION
MODEL ANSWER
Subject: Power System Analysis (Elective-I)
Subject Code:
22529

WINTER - 2019 EXAMINATION

MODEL ANSWER

Subject: Power System Analysis (Elective-I)
Subject Code:
22529

	$\begin{aligned} & B=Z=20+j 62.83=65.94 \angle 72.34^{\circ} \Omega \\ & \begin{aligned} & C=Y\left(1+\frac{Y Z}{4}\right)=314 \times 10^{-12} \angle 90^{0}\left[1+\frac{\left(\left(314 \times 10^{-12} \angle 90^{0}\right)(20+j 62.83)\right.}{4}\right] \\ &=3.14 \times 10^{-10} \angle 90^{0} S \end{aligned} \end{aligned}$	1M
(d) Ans.	Derive the condition for maximum power at sending end. Condition for maximum power at SENDING end. For a simple two bus power system represented as $G C C$ of Transmission line $A \angle \alpha, B \angle B$ As the sending end side active power is given by, $P_{S}=\frac{\|A\|\left\|V_{S}\right\|^{2}}{\|B\|} \cos (\beta-\alpha)-\frac{\left\|V_{S}\right\|\left\|V_{R}\right\|}{\|B\|} \cos (\beta+\delta)$ For given system ABCD remains constant and maintaining voltages at sending end as well as receiving end constant, P_{S} varies with load angle δ. For max value of P_{S} differentiate above eq. w.r.t. ' δ ' and equate it to zero. $\begin{gathered} \therefore \frac{d P_{s}}{d \delta}=\frac{d}{d \delta}\left[\frac{\|A\|\left\|V_{S}\right\|^{2}}{\|B\|} \cos (\beta-\alpha)-\frac{\left\|V_{S}\right\|\left\|V_{R}\right\|}{\|B\|} \cos (\beta+\delta)\right]=0 \\ \therefore \frac{d P_{s}}{d \delta}=\frac{\left\|V_{S}\right\|\left\|V_{R}\right\|}{\|B\|} \frac{d}{d \delta} \cos (\beta+\delta)=0 \\ \sin (\beta+\delta)=0 \\ \beta+\delta=\sin ^{-1}(0)=0 \\ \beta+\delta=0 \\ \hline \end{gathered}$	4 M $1 M$ $1 M$ $1 M$ $1 M$

WINTER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis (Elective-I)
Subject Code:
22529

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(e) \\
Ans.
\end{tabular} \& \& \begin{tabular}{c}
4M \\
\\
\\
\(1 M\) \\
\(1 M\) \\
\hline \(1 M\) \\
\hline \(1 M\)
\end{tabular} \\
\hline 5. \& (a)
Ans. \& \begin{tabular}{l}
Attempt any TWO of the following: \\
Determine Inductance \& Capacitance of \(3 \phi\) line operating at 50 Hz and conductors are arranged at corners of symmetrical triangle with side 3.4 m \& diameter of each conductor is 0.8 cm . \\
Given \(\mathrm{D}=3.4 \mathrm{~m}\)
\[
\begin{aligned}
\& \quad \mathrm{d}=0.8 \mathrm{~cm} \quad \mathrm{r}=0.4 \mathrm{~cm}=0.4 \times 10^{-2} \mathrm{~m} \\
\& \therefore \text { Inductance } \mathrm{L}=2 \times 10^{-7} \log \frac{\mathrm{D}}{\mathrm{r}^{1}} \\
\& \mathrm{r}^{1}=0.7788 \times 10^{-2} \times 0.4 \mathrm{~m} \\
\& \mathrm{r}^{1}=0.7788 \times 4 \times 10^{-3} \mathrm{~m}
\end{aligned}
\]
\end{tabular} \& 12
\(6 \mathbf{M}\)

$1 M$

\hline
\end{tabular}

WINTER - 2019 EXAMINATION
MODEL ANSWER
Subject: Power System Analysis (Elective-I) Subject Code: 22529

	$\therefore \mathrm{L}=\frac{2 \times 10^{-7} \log ^{3.4}}{0.7788 \times 4 \times 10^{-3}} \quad \therefore L=6.075 \times 10^{-7} \mathrm{H} / \mathrm{m}$ 2) $\mathrm{C}=\frac{2 \pi \epsilon}{\log \frac{\mathrm{D}}{\mathrm{r}^{1}}}$ $=\frac{2 \pi 8.85 \times 10^{-12}}{\log \frac{3.4}{0.7788 \times 4 \times 10^{-3}}}$ $\mathrm{C}=830 \times 10^{-11} \mathrm{~F} / \mathrm{m}$	1M $1 M$ 1M 1M
(b) Ans.	A 3ph 132kV transmission line delivers 40 MVA at 0.8 pf lag. Draw receiving end circle diagram and determine sending end voltage for $A=0.98 \angle 3^{0}, B=140 \angle 78^{0}$. $\mathrm{V}_{\mathrm{R}}=132 \mathrm{Kv}$ Load-40MVA, 0.8 pf $\begin{aligned} & \mathrm{A}=0.98 \angle 3^{0} \\ & \mathrm{~B}=140 \angle 78^{0 .} \end{aligned}$ $\begin{aligned} \mathrm{X} \text { coordinates } & =\frac{-\mathrm{AVR}^{2}}{\mathrm{~B}} \cos (\beta-\alpha) \\ & =\frac{-0.98 \times 132^{2}}{140} \cos (78-3) \\ & =31.57 \mathrm{MW} \end{aligned}$ $\begin{aligned} \text { Y coordinates } & =\frac{- \text { AVR }^{2}}{\mathrm{~B}} \sin (\beta-\alpha) \\ & =\frac{-0.98 \times 132^{2}}{140} \sin (78-3) \\ & =117.81 \mathrm{MVAR} \end{aligned}$	6M

WINTER - 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I) Subject Code: 22529

WINTER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis (Elective-I) \quad Subject Code: 22529
(c) $\quad \mathrm{A} 3 \phi$ line has following parameters $\mathrm{A}=\mathrm{D}=0.9 \angle 0 . \mathbf{4}^{0}, \mathrm{~B}=99 \quad \mathbf{6 M}$ $\angle 76.86^{0}$ load angle is 9^{0}. If sending end and receiving end voltages are maintained at 22 kV , calculate sending end complex power, active power and reactive power.
Ans. Given,
$\mathrm{A}=0.9, \mathrm{D}=0.9$
$\mathrm{B}=99, \quad \mathrm{Vs}=\mathrm{V}_{\mathrm{R}}=220 \mathrm{~V}$

$$
\alpha=0.4, \quad \beta=76.86 \quad \& \quad \delta=9^{0}
$$

1) Complex power at sending end:

$$
\begin{aligned}
\mathrm{Ss} & =\left|\frac{\mathrm{D}}{\mathrm{~B}}\right|\left|\mathrm{V}_{\mathrm{S}}\right|^{2} \angle \beta-\alpha-\frac{\left|\mathrm{V}_{\mathrm{S}}\right|\left|\mathrm{V}_{\mathrm{R}}\right|}{|\mathrm{B}|} \angle \beta+\delta \\
& =\left|\frac{0.9}{99}\right||220|^{2} \angle[76.86-0.4]-\frac{|220|^{2}}{|99|} \angle 76.86+9^{0} \\
& =440 \angle 76.46-488.89 \angle 85.86
\end{aligned}
$$

$$
103.01+\mathrm{i} 427.77-(95.29+\mathrm{j} 487.61)
$$

$$
\mathrm{Ss}=67.72-\mathrm{i} 60 \mathrm{MVA}
$$

2) Active Power:

$$
\begin{aligned}
\operatorname{Ps} & =\left|\frac{\mathrm{D}}{\mathrm{~B}}\right|\left|\mathrm{V}_{\mathrm{s}}\right|^{2} \cos (\beta-\alpha)-\frac{\left|\mathrm{V}_{\mathrm{S}}\right|\left|\mathrm{V}_{\mathrm{R}}\right|}{|\mathrm{B}|} \cos (\beta+\delta) \\
& =\left|\frac{0.9}{99}\right||220|^{2} \cos (76.86-0.4)-\left|\frac{220^{2}}{99}\right| \cos \left(76.86+9^{0}\right) \\
& =103.01-35.29=67.71 \mathrm{MW} \\
& \operatorname{Ps}=67.71 \mathrm{MW}
\end{aligned}
$$

3) Reactive power at sending end:

WINTER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis (Elective-I) \quad Subject Code: 22529

WINTER - 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)
Subject Code:
22529
(b) State the necessity of reactive power compensation equipment. List out the devices used for reactive power compensation and give application of each device.
Ans.

Necessity of reactive power compensation equipment :

i. Due to reduction in reactive power flow there is reduction in tr. Line current \& reduction in line losses. So to improve the performance efficiency of system improves power transmission becomes more economical.
ii. Due to reduction in line losses heating of line reduces thereby ageing of insulation reduces $\&$ life of equipments, cable or line increases.
ii. Wear - tear of the switchgear equipment reduces due to reduction in operation.
v. By local provision of reactive power KVA load on the line reduces and hence additional load can be connected or additional power can be transmitted without any additional generating equipment or resource. That means loading capacity of line/generator increases.
So to main balance in $\mathrm{Qs} \& \mathrm{Qr}$ reactive power compensation is required

Or

Most of the power system components are to be operated with voltage profile of 15%. But during power transfer a voltage drop of less than 10% occurs which is due to flow of reactive power. Moreover reactive currents contribute for $I^{2} \mathrm{R}$ losses in the system.
ii. Most of the loads absorb lagging Vars to supply the magnetizing current of equipment such as transformers, induction motors etc. At any moment the maximum Vars which can be transferred over the line are fixed by voltage profile.
iii. At peak loads the Vars demanded by the loads greatly exceeds Vars which can be transmitted over the lines. Flow of reactive power through the line causes voltage drop in the line and varies the voltage profile at important buses. Therefore additional equipment is necessary to generate lagging Vars at load centers to meet the reactive power requirements.
iv. At light loads the lagging Vars produced by the lines are much larger than required by load. This surplus lagging Vars must be absorbed by additional equipment to keep voltage profile within limits. If it is not done the system voltage at some of the buses is

WINTER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis (Elective-I) Subject Code: 22529

	likely to become higher then nominal value. Devices for reactive power compensation 1. Shunt compensation equipments - Shunt reactor, shunt capacitor\& static var system 2. Series compensation equipments - Series reactors 3. Synchronous compensation equipments - Synchronous condenser	Any 3 device with applicati on 1M each
(c) Ans.	Prove that AD-BC =1 Consider two terminal pair network with parameters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ is connected to an ideal voltage source with zero internal impedance at one end and at the other end is short ckted. To represent this condition in equation form we get Now connect above ideal source at the receiving end and short circuited the sending end. Now $V_{s}=A V_{p}+B I_{R}$	6M

WINTER - 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)
 Subject Code: 22529

