

# WINTER – 2019 EXAMINATION MODEL ANSWER

#### Subject: Power System Analysis (Elective-I)

Subject Code:

22529

#### **Important Instructions to examiners:**

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.1
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Q.<br>No | Sub<br>Q.N. | Answer                                                                                                                                                                                                                                                                                                      | Marking<br>Scheme                    |
|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| . 1.     | (a)<br>Ans. | Attempt any FIVE of the following:<br>Draw equivalent circuit of alternator.<br>$R_a \qquad \times_{\mathcal{S}} = \times_{\mathcal{L}} + \times_{\mathcal{Q}}$<br>$E \qquad \qquad$ | 10<br>2M<br>Correct<br>diagram<br>2M |
|          |             | $R_{a} = Armature resistance$ $X_{L} = Leakage reactance$ $X_{o} = Armature reaction reactance$                                                                                                                                                                                                             |                                      |



## WINTER – 2019 EXAMINATION MODEL ANSWER

# Subject: Power System Analysis (Elective-I)

Subject Code:

22529

| (b) 1<br>Ans. 1 | $R_a + jx_s = Z_s$<br>$R_a + j(X_L + X_a) = Z_s$<br>Define impedance diagram and reactance diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| (b) ]<br>Ans. ] | $R_a + j (X_L + X_a) = Z_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| (b) 1<br>Ans. 1 | Define impedance diagram and reactance diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| <b>Ans.</b>     | Define impedance diagram and reactance diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>2M</b>                                              |
|                 | Impedance diagram:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
|                 | Impedance diagram is the simplified equivalent circuits of single line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|                 | or one line diagrams of power system in which all components are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fach                                                   |
|                 | represented by then equivalent circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lucn<br>definitio                                      |
|                 | <b>Reactance diagram:</b> The reactance diagram is the simplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n 1M                                                   |
|                 | equivalent circuit of power system in which the various components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
|                 | of power system are represented by their reactance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
|                 | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
|                 | Reactance diagram is the simplification of impedance diagram in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                 | which resistive components, capacitive parameters of tr. Line,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| 1               | magnetizing circuit of transformer, rotating machines and impedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
|                 | of protective element of the machines are neglected and is used only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |
|                 | for fault current calculation is called reactance diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21/                                                    |
|                 | East out factors affecting proximity effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>2</b> 1 <b>VI</b>                                   |
|                 | 1. Conductor size (diameter of conductor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Any two                                                |
|                 | 2. Frequency of supply current.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | factors                                                |
|                 | 3. Distance between conductors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IM                                                     |
| 4               | 4. Permeability of conductor material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eacn                                                   |
| (d) S           | State the impact of inductance and resistance on transmission line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>2M</b>                                              |
| ] ] ]           | performance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
| Ans.            | Impact of inductance on transmission line:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Impact                                                 |
|                 | 1) It causes $IX_L$ drop in transmission line which affects regulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of                                                     |
|                 | 2) It is the only parameter which decides power transmission capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inductan                                               |
|                 | of fine i.e. if inductance decreases power transmission capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ce any                                                 |
|                 | increases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | one IM                                                 |
|                 | Impact of resistance on transmission line:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                      |
|                 | 1) It causes voltage drop, so it affects regulation.<br>2) It causes $I^2 P$ have which affects $f_{ij}^{C}$ is a single state of the second state o | Impact                                                 |
|                 | <ul> <li>2) It causes 1 K loss which affects efficiency and temperature rise.</li> <li>2) Whatever power loss occurs in transmission line is only due</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0J<br>nosistana                                        |
|                 | resistive parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
| 1 1 1           | (1) There is a standard for the second sec     | one 1M                                                 |
| <b>Ans.</b>     | <ul> <li>Impact of inductance on transmission line:</li> <li>1) It causes IX<sub>L</sub> drop in transmission line which affects regulation.</li> <li>2) It is the only parameter which decides power transmission capacity of line i.e. if inductance decreases power transmission capacity increases.</li> <li>Impact of resistance on transmission line:</li> <li>1) It causes voltage drop, so it affects regulation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Impact<br>of<br>inductan<br>ce any<br>one 1M<br>Impact |



## WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code: 22529

|   |             | temperature rise& poor voltage regulation so it cannot be neglected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
|---|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|   | (e)         | Give the expression for ABCD constant of T model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2M                                |
|   | Ans.        | Expression for ABCD constants of T model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |
|   |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |
|   |             | $A = D = 1 + \frac{YZ}{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2 <b>M</b> for                  |
|   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | each                              |
|   |             | $B = Z \left(1 + \frac{YZ}{T}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | constant                          |
|   |             | × 4 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|   |             | C = Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|   | <b>(f)</b>  | Determine ABCD constant of short transmission line having                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>2M</b>                         |
|   |             | impedance $(20 + j50)\Omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |
|   | Ans.        | ABCD constants of short transmission line having impedance 20 +j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |
|   |             | 50 ohm are as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>1</sup> / <sub>2</sub> M for |
|   |             | A = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | each                              |
|   |             | $\mathbf{B} = \mathbf{Z} = 20 + \mathbf{j} 50 \ \mathbf{\Omega}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | constant                          |
|   |             | C = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|   |             | C = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|   |             | D = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|   | <b>(g</b> ) | Recall X & Y coordinates for centre of sending and circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2M                                |
|   |             | diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |
|   | Ans.        | X and Y co-ordinates for centre of sending end circle diagram are as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114 6                             |
|   |             | Tollows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IM for                            |
|   |             | $X - co - ordinate = \frac{DV_S^2}{COS} cos(\beta - \alpha)$ MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eacn                              |
|   |             | $\frac{B}{B} = \frac{B}{B} = \frac{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
|   |             | $\mathrm{D}\mathrm{V}^2_{\mathrm{c}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|   |             | $Y-co-ordinate = \frac{BVS}{B} \sin(\beta - \alpha) \dots MVAR$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
|   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
| 2 |             | Attempt any THREE of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                |
|   | <b>(a</b> ) | Develop a reactance diagram for structure of power system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>4</b> M                        |
|   |             | (Refer Fig.1) considering generator as base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |
|   |             | $T_1$ $T_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
|   |             | $G$ $\overline{g}$ $\overline{g}$ $\overline{f}$ $f$ |                                   |
|   |             | 10 MVA JE JE 5 MVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
|   |             | 8% 51/VA<br>11 KV / 220 KV 5%<br>6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
|   |             | Fig. 2 (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |
|   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |



| Subject: Power System Analysis (Elective-                                                              | I) Subject Code:                                                                    | 22529        |   |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|---|
| Ans.Assuming generator RATING<br>Base MVA = 10 MVA<br>Base voltage - 11 kV for gen<br>220 kV for trans | G as base<br>nerator side<br>nsmission line side                                    | 1/2 <b>N</b> | Л |
| Calculation of X <sub>pu</sub>                                                                         |                                                                                     |              |   |
| 1) Generator:<br>$X_{pu new} = X_{pu old}$                                                             | = 0.8 pu                                                                            | 1/2N         | 1 |
| 2) Transformer T <sub>1</sub> and T <sub>2</sub> :                                                     |                                                                                     |              |   |
| $X_{pu new} = X_{pu old} X \left( \frac{M}{M} \right)$                                                 | $\left(\frac{VA_{new}}{VA_{old}}\right) X \left(\frac{kV_{old}}{kV_{new}}\right)^2$ | 1/2N         | 1 |
| $= 0.06 \text{ X} \left(\frac{10}{8}\right)$                                                           | $X\left(\frac{11}{11}\right)^2 = 0.075 \text{pu}$                                   | 1/2N         | 1 |
| 3) Motor X <sub>pu new</sub>                                                                           |                                                                                     |              |   |
| $= 0.05 \text{ X} \left(\frac{10}{5}\right)$                                                           | $X\left(\frac{11}{11}\right)^2 = 0.1 \text{ pu}$                                    | 1/2N         | 1 |
| 4) Transmission line X <sub>pu</sub>                                                                   |                                                                                     |              |   |
| $=\frac{X_{actual}}{X_{Base}} = X_{actual}$                                                            | $\frac{MVA_{Base}}{(kV_{Base})^2}$                                                  |              |   |
| $=40 \text{ X} \left(\frac{10}{(110)^2}\right)$                                                        | ) = 0.033  pu                                                                       | 1/2N         | 1 |
| <b>Reactance Diagram:</b>                                                                              |                                                                                     |              |   |
| × 900 \$ 0.075                                                                                         | Tr.line 12<br>0:033 0:075 7<br>0:1 2 X motor                                        | 11           | 1 |
| (17)                                                                                                   | m                                                                                   |              |   |



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

٦

(ISO/IEC - 27001 - 2005 Certified)

| Subje | ct: Powe    | er System Analysis (Elective-I) Subject Code: 22                                                                                                                                                                                                                                                                                                                                                  | 529               |
|-------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|       | (b)<br>Ans. | <b>Define self GMD &amp; Mutual GMD with the help of example.</b><br><b>Self GMD:</b> It is $n^2 th$ root of $n^2$ product terms where n is the no. of                                                                                                                                                                                                                                            | <b>4M</b>         |
|       |             | filaments in a conductor.                                                                                                                                                                                                                                                                                                                                                                         | Fach              |
|       |             | It is the $n^2 th$ root of product of distances of a filament from itself<br>and from other filaments of same conductor.                                                                                                                                                                                                                                                                          | Definitio<br>n 1M |
|       |             | Each set of n product term pertains to a filament and consist of r' $(D_{ii})$ for that filament and $(n - 1)$ distances from that filament to every other filament in conductor A. It is defined as the <i>self-geometric</i> mean distance (self GMD) of conductor A, and is abbreviated as $D_{sA}$ . Sometimes, self GMD is also called <i>geometric mean radius</i> (GMR).                   |                   |
|       |             | <b>Mutual GMD:</b> If conductor A has 'n' no of sub conductor & conductor B has 'm' no of sub conductor, then <i>mn</i> th root of the <i>mn</i> terms, which are the products of all mutual distances from the each filaments of conductor A to m' filaments of conductor B. It is called <i>mutual geometric mean distance</i> (mutual GMD between conductor A and B and abbreviated as $D_m$ . |                   |
|       |             | Similarly,<br>Example let radius of conductor X & Y is = r                                                                                                                                                                                                                                                                                                                                        | Example<br>2M     |
|       |             | Self GMD of conductor X = $\sqrt[4]{D_{11}D_{1'1'}D_{11'}D_{1'1}} = \sqrt[4]{r'x r'x d x d} = \sqrt{r'x d}$                                                                                                                                                                                                                                                                                       |                   |
|       |             | Self GMD of conductor $Y = r'$                                                                                                                                                                                                                                                                                                                                                                    |                   |
|       |             | Mutual GMD between conductor X & Y = $\sqrt{D_{12}D_{1'2}}$<br>= $\sqrt{\left(\frac{d}{d} + D\right)x\left(D - \frac{d}{d}\right)}$                                                                                                                                                                                                                                                               |                   |
|       |             | $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                        |                   |



| Subj | ject: Powe | er System Analysis (Elective-I) Subject Code: 22                                                                            | 2529                       |
|------|------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|
|      | (c)        | 3\$\$\$\$\$3\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                    | 4M                         |
|      | A115.      | $Z = 32.9 \angle 72.35 \frac{\Omega}{ph}$                                                                                   |                            |
|      |            | $Y = 2.827 \text{ x } 10^{-4} \angle 90 \text{ mho/ph}$                                                                     |                            |
|      |            | By using $\pi$ method                                                                                                       |                            |
|      |            | $\mathbf{A} = 1 + \frac{\mathbf{YZ}}{2}$                                                                                    | 1M for<br>each<br>constant |
|      |            | $= 1 + \frac{(2.827 \text{ X } 10^{-4} \angle 90) (32.9 \angle 72.35)}{2}$                                                  | S                          |
|      |            | $= 1 + \frac{9.300 \times 10^{-3} \angle 162.35}{2}$                                                                        |                            |
|      |            | $= 1 + (4.65 \times 10^{-4} \angle 162.35)$                                                                                 |                            |
|      |            | $= 1 - 4.431 \times 10^{-4} + j1.409 \times 10^{-4}$                                                                        |                            |
|      |            | $= 0.999 + j \ 1.409 \ x \ 10^{-4}$                                                                                         |                            |
|      |            | $= 0.999 + \angle 8.08 \ge 10^{-3}$                                                                                         |                            |
|      |            | A = D = 1 + $\frac{\text{YZ}}{2}$ = 0.999 + $\angle$ 8.08 x 10 <sup>-3</sup>                                                |                            |
|      |            | $B = Z = 32.9 \angle 72.35^0 \Omega/$                                                                                       |                            |
|      |            | $C = Y\left(1 + \frac{YZ}{4}\right)$                                                                                        |                            |
|      |            | $= 2.827 \text{ x } 10^{-4} \angle 90 \left( 1 + \frac{(2.827 \text{ x } 10^{-4} \angle 90)(32.9 \angle 72.35)}{4} \right)$ |                            |



# WINTER – 2019 EXAMINATION

| MODEL ANSWER |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Subject: P   | ower System Analysis (Elective-I) Subject Code: 22                                                                                                                                                                                                                                                                                                                                                                                                                       | 529       |  |
|              | $= 2.827 \times 10^{-4} \angle 90 \left( 1 + \frac{9.300 \times 10^{-3} \angle 162.35}{4} \right)$                                                                                                                                                                                                                                                                                                                                                                       |           |  |
|              | $= 2.827 \text{ x } 10^{-4} \angle 90 \text{ (} 1 + 2.325 \text{ x } 10^{-3} \angle 162.35$                                                                                                                                                                                                                                                                                                                                                                              |           |  |
|              | = 2.827 x $10^{-4} \angle 90$ ( 1 + (-2.215 x $10^{-3}$ + j7.049 x $10^{-4}$ ))                                                                                                                                                                                                                                                                                                                                                                                          |           |  |
|              | $= 2.827 \text{ x } 10^{-4} \angle 90 ( 0.997 + \text{j}7.049 \text{ x}10^{-4})$                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|              | $= (2.827 \text{ x } 10^{-4} \angle 90) (0.997 \angle 0.040)$                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |
|              | $= 2.818 \text{ x } 10^{-4} \angle 90.04 \text{ mho}$                                                                                                                                                                                                                                                                                                                                                                                                                    |           |  |
| (d)          | Derive the expression for complex power, active and reactive power at sending end.                                                                                                                                                                                                                                                                                                                                                                                       | <b>4M</b> |  |
| Ans          | Ss=Psties VR<br>GV VS Teansmission ><br>Generation + Load<br>Station SR=PRtieR                                                                                                                                                                                                                                                                                                                                                                                           | 1M        |  |
|              | <ul> <li>Figure shows the single line diagram of a 3Ø transmission line.</li> <li>In the figure two bus system having the sending end bus which is fed by the generator and the receiving end bus which feeds the load.</li> <li>S<sub>R</sub> is the complex power of the receiving end and S<sub>S</sub> is the complex power at the sending end.</li> <li>Using the current I<sub>S</sub> can be expressed in terms of V<sub>R</sub> and V<sub>S</sub> as:</li> </ul> |           |  |
|              | $I_{S} = \frac{D}{B}V_{S} - \frac{1}{B}V_{R} = \frac{A}{B}V_{S} - \frac{1}{B}V_{R}(i)$                                                                                                                                                                                                                                                                                                                                                                                   | 1M        |  |



## WINTER – 2019 EXAMINATION MODEL ANSWER

22529 Subject Code: Subject: Power System Analysis (Elective-I) Then  $I_{S} = \frac{|A||V_{S}|}{R} (\angle \propto + \delta - \beta) - \frac{|V_{R}|}{R} - \angle \beta$ The conjugates of I<sub>S</sub> are *1M*  $Is^* = \frac{|A||V_S|}{B} (\angle \beta - \alpha - \delta) - \frac{|V_R|}{B} \angle \beta$ The complex power/phase at the sending end are  $S_s = P_s + ias = V_s I_s^*$  $S_{S} = |V_{S}| \angle \delta \left[ \frac{|A||V_{S}|}{|B|} (\beta \angle \propto -\delta) - \frac{|V_{R}|}{|B|} \angle \beta \right]$ *1M*  $S_{S} = \frac{|A||V_{S}|^{2}}{|B|} (\angle \beta - \alpha) - \frac{|V_{R}||v_{S}|}{|B|} (\angle \beta + \delta)$  $P_{\rm S} = \frac{|A||V_{\rm S}|^2}{|B|} \cos(\beta - \alpha) - \frac{|V_{\rm R}||v_{\rm S}|}{|B|} \cos(\beta + \delta)$  $Q_{\rm S} = \frac{|A||V_{\rm S}|^2}{|B|} \sin(\beta - \alpha) - \frac{|V_{\rm R}||V_{\rm S}|}{|B|} \sin(\beta + \delta)$ The above equation is the sending end side complex power. Attempt any THREE of the following: 3. 12 Summerise the role of power system engineer. **(a)** 4MRole of power system engineer: Ans. i. On the planning side he or she has to make decisions on how much electricity to generate ii. For operation of the power system he has to plan for generation of electricity where, when and by using what fuel. Any iii. He has to plan for expansion of the existing grid system and also four roles 1M for new grid system. iv. He coordinated operation of a vast and complex power network, each so as to achieve a high degree of economy and reliability. v. He has to be involved in constructional task of great magnitude both in generation and transmission. vi. He has to solve problem of power shortages./ outage of line vii. He has to evolve strategies for energy conservation and load management. viii. For solving the power system problems he has to update with



## WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code: 22529

|             | new technology method.<br>(Note: Any other relative points shall be considered)                                                                                                                                                                                                             |                   |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (b)<br>Ans. | Derive the expression for inductance of 3φ line with symmetrical arrangement.         Inductance of a 3φ with symmetrical spacing.                                                                                                                                                          | 4M                |
|             | $\bigcirc$                                                                                                                                                                                                                                                                                  | 1M for<br>diagram |
|             | Figure shows a $3\phi$ line with conductors a, b and c spaced at corners of an equilateral triangle each side is 'D'. The conductors each of radius 'r'.                                                                                                                                    | 1M                |
|             | The three-conductors occupy the corners of an equilateral triangle. If<br>the $3\phi$ system, then, $\overline{I_a}$ , $\overline{I_b}$ and $\overline{I_1}$ and $\overline{I_c}$ are displayed by $120^0$<br>Flux linkage with a conductor considering fluxes set by all<br>conductors is, |                   |
|             | $\Psi a = 2 \times 10^{-7} \cdot \left[ I_a \cdot l_n \left( \frac{1}{ra^1} \right) + I_b \cdot l_n \left( \frac{1}{D} \right) + I_c \cdot l_n \left( \frac{1}{D} \right) \right] \frac{\text{wb. T}}{\text{m}}$                                                                            |                   |
|             | $= 2 \times 10^{-7} \cdot \left[ I_a \cdot l_n \left( \frac{1}{ra^1} \right) - I_a \cdot l_n \left( \frac{1}{D} \right) \right] \frac{\text{wbT}}{\text{m}}$                                                                                                                                |                   |
|             | $\therefore I_{b} + I_{c} = -I_{a}$                                                                                                                                                                                                                                                         | 1M                |
|             | $= 2 \times 10^{-7} \cdot I_a \cdot I_n \frac{\tan \gamma}{\left\{\frac{1}{D}\right\}} \frac{1}{m}$<br>For a balanced system $I_a + I_b + I_c = 0$<br>$\therefore I_b + I_c = -I_a$                                                                                                         |                   |



## WINTER – 2019 EXAMINATION MODEL ANSWER

22529 Subject Code: Subject: Power System Analysis (Elective-I)  $\Psi a = 2 \ge 10^{-7} \cdot I_a \cdot I_n \left\{ \frac{\frac{1}{ra^{T}}}{\frac{1}{rb}} \right\} \frac{wbT}{m}$ =  $2 \ge 10^{-7} \cdot I_a \cdot I_n \left(\frac{D}{ra^1}\right) \frac{H}{m}$  $\therefore L_a = \frac{\Psi_{\phi}}{I_{\phi}} = 2 \times 10^{-7} l_n \left(\frac{D}{ra^1}\right) \frac{H}{m}$ *1M* Inductance per conductor or inductance/ phase  $\mathbf{L}_a = 2 \ge 10^{-7} \mathbf{l}_n \left(\frac{\mathbf{D}}{\mathbf{r}^1}\right) \frac{\mathbf{H}}{\mathbf{m}}$  $L_a = 0.2 l_n \left(\frac{D}{r^1}\right) \frac{mH}{Km}$ Define Generalised circuit constants. **4M** (c) For Generalized circuit, Generalized Equations can be written as: Ans.  $V_S = AV_R + BI_R$  $I_S = CV_R + DI_R$ **Generalized Circuit Constant:** 1) A =  $\frac{V_s}{V_R}$  when I<sub>R</sub>=0 It is the ratio of the voltage impressed at the sending end to the voltage at the receiving end when the receiving end is open circuited. It is a dimension less quantity. Each 2) B =  $\frac{V_s}{I_R}$ ; V<sub>R</sub>= 0 definitio n 1M It is the volt impressed at the sending end to current of receiving end when receiving end is short circuited. It is known as Transfer impedance. Its unit is in ohms. 3) C =  $\frac{I_s}{V_R}$ ; I<sub>R</sub>= 0 It is defined as the ratio sending end current to the receiving end voltage when receiving end is open circuited. It is known as Transfer admittance and its unit mho. 4) D =  $\frac{I_s}{I_R}$ ; V<sub>R</sub>= 0 It is the ratio of amperes impressed at the sending end to the ampere at the receiving end when the receiving end is short circuited. It is a pare quantity.



| ject: Powe  | er System Analysis (Elective-I) Subject Code: 225                                                                                                                                                                                                                                                                                                                                                  | 529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d)         | A 200 kV line with GCC A = $0.86 \ \angle 7^0$ , B = $300 \ \angle 75^0 \Omega$ .<br>Determine real power at unity P.F. that can be received if voltage at both end is maintained at 200kV.                                                                                                                                                                                                        | <b>4</b> M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ans.        | Given data                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | $V_{S} = V_{R} = 200 \text{ KV}, A = 0.86 \angle 7^{\circ}, B = 300 \angle 75^{\circ}$                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | Then for unity power factor $Q_R = 0$                                                                                                                                                                                                                                                                                                                                                              | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | $\therefore Q_{R} =  V_{S}  V_{R}  /  B  \operatorname{Sin} (\beta - \delta) - ( A  /  B ) V_{R} ^{2} \operatorname{Sin} (\beta - \alpha)$                                                                                                                                                                                                                                                         | 1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | Substituting all values we get                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | $ \begin{array}{l} 0 = (200)X(200)/\ 300\ Sin\ (\ \beta - \delta) - ((0.86)(200)^2/\ 300)\ Sin\ (75 - 7) \\ 0 = 133.33\ Sin\ (\beta - \delta) - 106.32 \\ Sin\ (\beta - \delta) = 0.797 \\ \beta - \delta = 52.88^0 \\ Substituting\ this\ is\ in\ equation\ of\ P_R\ we\ get \\ P_R = (\  V_S  V_R \ /\  B \ )Cos\ (\beta - \delta) - ( A \ /\  B \ ) V_R ^2\ Cos\ (\beta - \alpha) \end{array} $ | 1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | $= \{(200)(200) / 300 \} \cos(52.88) - \{0.86 \times (200)^2 / 300 \} \cos(75-7)$                                                                                                                                                                                                                                                                                                                  | 1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | = 80.46 - (114.67)(0.37)                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | $P_R = 38.03 \text{ MW.}$<br>Unity power at receiving end is 38.03 MW                                                                                                                                                                                                                                                                                                                              | 1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (a)<br>Ans. | Attempt any THREE of the following:<br>Give the stepwise procedure for drawing circle diagram at<br>receiving end.                                                                                                                                                                                                                                                                                 | 12<br>4M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | (d)<br>Ans.<br>(a)<br>Ans.                                                                                                                                                                                                                                                                                                                                                                         | ject: Power System Analysis (Elective-I)Subject Code:225(d)A 200 kV line with GCC A = 0.86 $\angle 7^0$ , B = 300 $\angle 75^9\Omega$ .<br>Determine real power at unity P.F. that can be received if voltage<br>at both end is maintained at 200kV.Ans.Given data<br>$V_S = V_R = 200 \text{ KV}, A = 0.86 \angle 7^0, B = 300 \angle 75^\circ$<br>Then for unity power factor $Q_R = 0$<br>$\therefore Q_R =  V_S  V_R  /  B  Sin (\beta - \delta) - ( A  /  B ) V_R ^2 Sin (\beta - \alpha)Substituting all values we get0 = (200)X(200)'300 Sin (\beta - \delta) - ((0.86)(200)^2 / 300) Sin (75 - 7)0 = 133.33 Sin (\beta - \delta) - 106.32Sin (\beta - \delta) = 0.797\beta - \delta = 52.8^\circSubstituting this is in equation of P_R we getP_R = ( V_S  V_R  /  B )Cos (\beta - \delta) - ( A  /  B ) V_R ^2 Cos (\beta - \alpha)= {(200)(200) / 300} Cos (52.88) - {(0.86 x (200)^2 / 300)} Cos (75-7)= 80.46 - (114.67)(0.37)P_R = 38.03 MW.Unity power at receiving end is 38.03 MW(a)Attempt any THREE of the following:Give the stepwise procedure for drawing circle diagram atreceiving end.$ | ject: Power System Analysis (Elective-I)Subject Code:22529(d)A 200 kV line with GCC A = 0.86 $\angle 7^0$ , B = 300 $\angle 75^0\Omega$ .<br>Determine real power at unity P.F. that can be received if voltage<br>at both end is maintained at 200kV.4MAns.Given data<br>$V_S = V_R = 200 \text{ KV}, A = 0.86 \angle 7^0, B = 300 \angle 75^\circ$<br>Then for unity power factor $Q_R = 0$<br>$\therefore Q_R =  V_S  V_R  /  B  \sin (\beta - \delta) - ( A  /  B ) V_R ^2 \sin (\beta - \alpha)$<br>Substituting all values we get<br>$0 = (200)X(200)/300 \sin (\beta - \delta) - ((0.86)(200)^2 / 300) \sin (75 - 7)$<br>$0 = 133.33 \sin (\beta - \delta) - 106.32$<br>$\sin (\beta - \delta) = 0.797$<br>$\beta - \delta = 52.88^0$<br>Substituting this is in equation of $P_R$ we get<br>$P_R = ( V_S  V_R  /  B ) \cos (\beta - \delta) - ( A  /  B ) V_R ^2 \cos (\beta - \alpha)$<br>$= {(200)(200) / 300 } Cos (52.88) - {0.86 x (200)^2 / 300 } Cos (75 - 7)$<br>$= 80.46 - (114.67)(0.37)$<br>$P_R = 38.03 \text{ MW}.$<br>Unity power at receiving end is $38.03 \text{ MW}$ 1M(a)Attempt any THREE of the following:<br>Give the stepwise procedure for drawing circle diagram at<br>receiving end.12 |











## WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code: 22529

|      | $D_{\rm S} = \sqrt[9]{(0.7788  \rm r)^3 (2r^6)}$                                                                                                            |           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|      | = 1.46r                                                                                                                                                     |           |
| (c)  | A 3 $\phi$ 50 Hz line has resistance of 20 $\Omega$ , inductance 0.2 H and capacitance 1 $\mu$ F. Determine ABCD constants of line considering $\pi$ model. | 4M        |
| Ans. | A 3\$ 50 Hz                                                                                                                                                 |           |
|      | $R = 20 \ \Omega \text{ ph}$                                                                                                                                |           |
|      | L = 0.2 H                                                                                                                                                   |           |
|      | $c = 1  pf = 1 \times 10^{-12}  \text{f}$                                                                                                                   |           |
|      | $X = 2\pi f L = 2\pi \times 50 \times 0.2 = 62.83 \ \Omega.$                                                                                                |           |
|      | $Z = R + jX = 20 + j \ 62.83 = 65.94 \angle 72.34^{o} \Omega$                                                                                               |           |
|      | $Y = jwc = 314 \times 1 \times 10^{-12} \angle 90^0 = 314 \times 10^{-12} \angle 90^0$                                                                      |           |
|      | $Z = 65.94 \angle 72.34^{\circ} \Omega$                                                                                                                     |           |
|      | $Y = 314 \times 10^{-12} \angle 90^{0}$                                                                                                                     |           |
|      | for Nominal $\pi$ – circuit                                                                                                                                 |           |
|      | $A = D = 1 + \frac{YZ}{2}, B = Z, C = Y\left(1 + \frac{YZ}{4}\right)$                                                                                       |           |
|      | $A = \frac{1 + YZ}{2} = 1 + \left[\frac{314 \times 10^{-12} \angle 90^{0} \times 65.94 \angle 72.34^{o}}{2}\right]$                                         |           |
|      | 1 o <sup>-8</sup>                                                                                                                                           | <i>1M</i> |
|      | $A = 1 + \frac{2.07 \times 10^{-5} \ (162.34)}{2}$                                                                                                          |           |
|      | $10^{-8}$ 100 1                                                                                                                                             |           |
|      | $A = 1 + 1.03 \times 10$ 2162.34                                                                                                                            |           |
|      | $A = 0.999 + j \ 3.124 \ \text{x10}^{-9} = 0.999 \ \angle 1.79 \ \text{x10}^{-7}$                                                                           | 1M        |
|      | $A = D = \frac{1 + YZ}{2} = 1 + \left[\frac{314 \times 10^{-12} \angle 90^{0}  x  65.94 \angle 72.34^{\circ}}{2}\right]$                                    | 1M        |
|      |                                                                                                                                                             |           |



## WINTER – 2019 EXAMINATION MODEL ANSWER

22529 Subject Code: Subject: Power System Analysis (Elective-I)  $B = Z = 20 + i 62.83 = 65.94 \angle 72.34^{\circ} \Omega$ *1M*  $C = Y\left(1 + \frac{YZ}{4}\right) = 314 \times 10^{-12} \angle 90^{0} \left[1 + \frac{\left(\left(314 \times 10^{-12} \angle 90^{0}\right)(20 + j \ 62.83\right)\right)}{4}\right]$  $= 3.14 \times 10^{-10} \times 90^{0}$  S Derive the condition for maximum power at sending end. **4M** (**d**) Condition for maximum power at SENDING end. Ans. For a simple two bus power system represented as V3 LS VRLOO *1M* GCC of Transmission line A / B/P. As the sending end side active power is given by, *1M*  $P_{S} = \frac{|A||V_{S}|^{2}}{|B|}\cos(\beta - \alpha) - \frac{|V_{S}||V_{R}|}{|B|}\cos(\beta + \delta)$ *1M* For given system ABCD remains constant and maintaining voltages at sending end as well as receiving end constant,  $P_S$  varies with load angle  $\delta$ . For max value of  $P_S$  differentiate above eq. w.r.t. ' $\delta$ ' and equate it to zero.  $\therefore \frac{dP_s}{d\delta} = \frac{d}{d\delta} \left[ \frac{|A||V_s|^2}{|B|} \cos(\beta - \alpha) - \frac{|V_s||V_R|}{|B|} \cos(\beta + \delta) \right] = 0$  $\therefore \frac{dP_s}{d\delta} = \frac{|V_S||V_R|}{|B|} \frac{d}{d\delta} \cos(\beta + \delta) = 0$ *1M*  $\sin(\beta + \delta) = 0$  $\beta + \delta = \sin^{-1}(0) = 0$  $\beta + \delta = 0$ 



| Subj | ject: Powe  | er System Analysis (Elective-I) Subject Code: 22                                                                                                                                                                                                                                                                                                                                                                                                                              | 2529     |
|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | (e)<br>Ans. | 3\$\overline with GCC A = 0.99\angle 0.08^0, B = 10 + j31.42, C = 2.79 x<br>10 <sup>-4</sup> \angle 90.04^0 supplies load of 35 MW, 132kV, 0.8lag. Determine<br>regulation of line.<br>$given: V_R = 132KV,$<br>$A = 0.99 \angle 0.08, B = (10 + j31.42) \Omega$<br>$load - P_R = 35Mw, 0.8lag$<br>$P_R = \sqrt{3}V_R I_R \cos \phi_R = 35 \times 10^6 = \sqrt{3} X132 \times 10^3 \times I_R \times 0.8$<br>$\therefore I_R = 191.36Amp$<br>$\phi_R = \cos^{-1} 0.8 = 36.86$ | 4M<br>1M |
|      |             | $V_{S} = AV_{R} + BI_{R}$<br>= 0.99\approx 0.08 \times 132 \times $\frac{10^{3}}{\sqrt{3}} \approx 0 + (10 + j31.42) \times 191.36 \approx - 36.86$<br>$V_{s} \ phase = 80.674 \approx 2.68 \ KV$                                                                                                                                                                                                                                                                             | 1M       |
|      |             | $V_{s} \ line = 139.73 \ KV$ Voltage regulation = $\frac{\frac{Vs}{A}V_{RFL}}{V_{RFL}} \times 100$ 139.73                                                                                                                                                                                                                                                                                                                                                                     | 1M       |
|      |             | $=\frac{-132}{0.99} -132$<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1M       |
| 5.   | (a)<br>Ans. | Attempt any TWO of the following:<br>Determine Inductance & Capacitance of 3¢ line operating at 50<br>Hz and conductors are arranged at corners of symmetrical<br>triangle with side 3.4 m & diameter of each conductor is 0.8 cm.<br>Given D = 3.4m                                                                                                                                                                                                                          | 12<br>6M |
|      |             | d = 0.8cm r = 0.4cm = 0.4 x 10 <sup>-2</sup> m<br>∴ Inductance L = 2 x 10 <sup>-7</sup> log $\frac{D}{r^1}$                                                                                                                                                                                                                                                                                                                                                                   | IM       |
|      |             | $r^{1} = 0.7788 \ge 10^{-2} \ge 0.4 \text{ m}$<br>$r^{1} = 0.7788 \ge 4 \ge 10^{-3} \text{ m}$                                                                                                                                                                                                                                                                                                                                                                                | 1M<br>1M |



| Subj | ject: Powe | er System Analysis (Elective-I) Subject Code: 22                                                                                   | 529 |   |
|------|------------|------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|      |            | $\therefore L = \frac{2 \times 10^{-7} \log^{3.4}}{0.7788 \times 4 \times 10^{-3}} \qquad \therefore L = 6.075 \times 10^{-7} H/m$ | 1M  | 1 |
|      |            | 2) $C = \frac{2\pi\epsilon}{\log \frac{D}{r^{1}}}$<br>= $\frac{2\pi 8.85 \times 10^{-12}}{\log r^{-12}}$                           | 1M  | 1 |
|      |            | $\log \frac{100}{0.7788 \times 4 \times 10^{-3}}$                                                                                  | 1M  | 1 |
|      |            |                                                                                                                                    | 1M  | 1 |
|      | (b)        | A 3ph 132kV transmission line delivers 40 MVA at 0.8 pf lag.<br>Draw receiving end circle diagram and determine sending end        | 6N  | 1 |
|      | Ans.       | voltage for A = $0.98 \angle 3^0$ , B = $140 \angle 78^0$ .                                                                        |     |   |
|      |            | $V_{\rm R} = 132 \text{ Kv}$                                                                                                       |     |   |
|      |            | Load = 40MVA, 0.8 pf                                                                                                               |     |   |
|      |            | $A = 0.98 \angle 3^0$                                                                                                              |     |   |
|      |            | $B = 140 \angle 78^{0.}$                                                                                                           |     |   |
|      |            | X coordinates = $\frac{-AVR^2}{B} \cos(\beta - \alpha)$                                                                            |     |   |
|      |            | $=\frac{-0.98 \times 132^2}{140} \cos (78 - 3)$                                                                                    | 1M  | 1 |
|      |            | = 31.57 MW                                                                                                                         |     |   |
|      |            | Y coordinates = $\frac{-AVR^2}{B} \sin(\beta - \alpha)$                                                                            |     |   |
|      |            | $=\frac{-0.98 \times 132^2}{140} \sin (78 - 3)$                                                                                    | 1M  | 1 |
|      |            | = 117.81 MVAR                                                                                                                      |     |   |







| Subj | Subject: Power System Analysis (Elective-I)Subject Code:225 |                                                                                                                                                                                                                                                                                                                                                                                                     | 2529 |
|------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | (c)<br>Ans.                                                 | A 3 $\phi$ line has following parameters A = D = 0.9 $\angle 0.4^{\circ}$ , B = 99<br>$\angle 76.86^{\circ}$ load angle is 9°. If sending end and receiving end voltages<br>are maintained at 22kV, calculate sending end complex power,<br>active power and reactive power.<br>Given,<br>A = 0.9, D = 0.9<br>B = 99, Vs = V <sub>R</sub> = 220V<br>$\alpha$ = 0.4, $\beta$ = 76.86 & $\delta$ = 9° | 6M   |
|      |                                                             | 1) Complex power at sending end:                                                                                                                                                                                                                                                                                                                                                                    |      |
|      |                                                             | $Ss = \left \frac{D}{B}\right   V_s ^2 \angle \beta - \alpha - \frac{ V_s   V_R }{ B } \angle \beta + \delta$                                                                                                                                                                                                                                                                                       |      |
|      |                                                             | $= \left  \frac{0.9}{99} \right   220 ^2 \angle [76.86 - 0.4] - \frac{ 220 ^2}{ 99 } \angle 76.86 + 9^0$                                                                                                                                                                                                                                                                                            | 1M   |
|      |                                                             | = 440 ∠ 76.46 – 488.89 ∠85.86                                                                                                                                                                                                                                                                                                                                                                       |      |
|      |                                                             | 103.01 + i427.77- (95.29 + j487.61)                                                                                                                                                                                                                                                                                                                                                                 |      |
|      |                                                             | Ss = 67.72 - i60MVA                                                                                                                                                                                                                                                                                                                                                                                 | 1M   |
|      |                                                             | 2) Active Power:                                                                                                                                                                                                                                                                                                                                                                                    |      |
|      |                                                             | $Ps = \left \frac{D}{B}\right   V_s ^2 \cos \left(\beta - \alpha\right) - \frac{ V_s   V_R }{ B } \cos \left(\beta + \delta\right)$                                                                                                                                                                                                                                                                 |      |
|      |                                                             | $= \left \frac{0.9}{99}\right   220 ^2 \cos (76.86 - 0.4) - \left \frac{220^2}{99}\right  \cos (76.86 + 9^0)$                                                                                                                                                                                                                                                                                       | 1M   |
|      |                                                             | = 103.01 - 35.29 = 67.71MW                                                                                                                                                                                                                                                                                                                                                                          |      |
|      |                                                             | $\mathbf{Ps} = 67.71\mathbf{MW}$                                                                                                                                                                                                                                                                                                                                                                    | 1M   |
|      |                                                             | 3) Reactive power at sending end:                                                                                                                                                                                                                                                                                                                                                                   |      |



| Subject: Power System Analysis (Elective-I)       Subject Code:       22 |            | 22529                                                                                                                                                                                                                                                       |                                                 |
|--------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                                                          |            | $Qs = \left  \frac{D}{B} \right   V_s ^2 \sin(\beta - \alpha) - \frac{ V_s   V_R }{ B } \sin(\beta + \delta)$ $= \left  \frac{0.9}{99} \right   220 ^2 \sin(76.86 - 0.4) - \frac{ 220 ^2}{99} \sin(76.86 + 9)$ $= 427.77 - 487.61$                          | IM                                              |
|                                                                          |            | $= 59.84$ $\therefore Qs = 59.84 \text{ MVAR}$                                                                                                                                                                                                              | IM<br>12                                        |
| 6.                                                                       | <b>(a)</b> | Attempt any TWO of the following:<br>$3\phi$ line has parameter $A = D = 0.9 \neq 0.4^{\circ}$ B = 99 $\neq 76.86^{\circ}$ sending                                                                                                                          | 12<br>6M                                        |
|                                                                          | Ans.       | end & receiving end voltages are maintained at 200kV. Calculate<br>maximum power supplied at sending end.<br>$A = D = 0.9 \angle 0.4$<br>$B = 99 \angle 76.86^{\circ}$<br>$\therefore \alpha = 0.4$ $\beta = 76.86$<br>$V_{\rm S} = V_{\rm R} = 220 \rm kV$ | IM<br>IM                                        |
|                                                                          |            | For maximum power supplied at sending end condition $P_{max}$ is<br>, $\beta + \delta = 180^0$                                                                                                                                                              | 5 <i>IM</i>                                     |
|                                                                          |            | Now maximum power $P_{max}$ supplied is given by,<br>$P_{max} = \frac{AVs^2}{B} \cos(\beta - \alpha) + \frac{V_s V_R}{B}$                                                                                                                                   | 1M                                              |
|                                                                          |            | $=\frac{0.9 \times 220^2}{99}\cos(76.86 - 0.4) + \frac{220^2}{99}$                                                                                                                                                                                          | <i>2M</i>                                       |
|                                                                          |            | $Ps_{max} = 591.90MW$                                                                                                                                                                                                                                       | 1M                                              |
|                                                                          |            | OR<br>Note : It can be solved by Circle diagram                                                                                                                                                                                                             | Marks at<br>the<br>discretion<br>of<br>examiner |



## WINTER – 2019 EXAMINATION **MODEL ANSWER**

22529 Subject Code: Subject: Power System Analysis (Elective-I) State the necessity of reactive power compensation equipment. **(b)** List out the devices used for reactive power compensation and give application of each device. Ans. Necessity of reactive power compensation equipment : i. Due to reduction in reactive power flow there is reduction in tr. Line current & reduction in line losses. So to improve the Necessit performance efficiency of system improves power transmission becomes more economical. ii. Due to reduction in line losses heating of line reduces thereby ageing of insulation reduces & life of equipments, cable or line increases. ii. Wear – tear of the switchgear equipment reduces due to reduction in operation. v. By local provision of reactive power KVA load on the line reduces and hence additional load can be connected or additional power can be transmitted without any additional generating equipment or resource. That means loading capacity of line/generator increases. So to main balance in Qs & Qr reactive power compensation is required Or Most of the power system components are to be operated with voltage profile of 15%. But during power transfer a voltage drop of less than 10% occurs which is due to flow of reactive power. Moreover reactive currents contribute for I<sup>2</sup>R losses in the system. ii. Most of the loads absorb lagging Vars to supply the magnetizing current of equipment such as transformers, induction motors etc. At any moment the maximum Vars which can be transferred over the line are fixed by voltage profile. iii. At peak loads the Vars demanded by the loads greatly exceeds Vars which can be transmitted over the lines. Flow of reactive power through the line causes voltage drop in the line and varies the voltage profile at important buses. Therefore additional equipment is necessary to generate lagging Vars at load centers to meet the reactive

> iv. At light loads the lagging Vars produced by the lines are much larger than required by load. This surplus lagging Vars must be absorbed by additional equipment to keep voltage profile within limits. If it is not done the system voltage at some of the buses is

power requirements.

**6M** 

*v 3M* 



## WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code: 22529

|   | likely to become higher then nominal value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anv 3         |
|   | Devices for reactive power compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | device        |
|   | 1. Shunt compensation equipments - Shunt reactor , shunt capacitor&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | with          |
|   | static var system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | annlicati     |
|   | 2 Series compensation equipments - Series reactors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on 1M         |
|   | 2. Series compensation equipments – Series reactors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on IM<br>oach |
|   | $(a) \qquad \mathbf{Prove that AD}  \mathbf{BC} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6M            |
| A | Ans. Consider two terminal pair network with parameters A, B, C, D is connected to an ideal voltage source with zero internal impedance at one end and at the other end is short ckted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UW            |
|   | The end and at the other end is short ckted.<br>$E \bigcirc I \bigcirc $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1M            |
|   | To represent this condition in equation form we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|   | $V_s = AV_R + BI_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|   | $I_{R} = \frac{V_{S}}{B} \qquad [: V_{R} = 0]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1M            |
|   | $I_{sc} = \frac{E}{B} \qquad \dots $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>1M</i>     |
|   | Now connect above ideal source at the receiving end and short circuited the sending end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|   | $V_{3} = 0$<br>$V_{3} = 0$<br>C<br>C<br>C<br>D<br>C<br>$T_{R}$<br>C<br>C<br>D<br>C<br>C<br>D<br>C<br>C<br>D<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 1M            |
|   | Now $V_s = AV_p + BI_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |



| Subject: Power System Analysis (Elective-I)       Subject Code: |  | 22529                                                                                                                                                                               |            |  |    |   |
|-----------------------------------------------------------------|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|----|---|
|                                                                 |  | $0 = A.E + B (-I_R)$ $I_R = \frac{AE}{B}$                                                                                                                                           |            |  |    |   |
|                                                                 |  | Since transmission line is a linear, passive bilater<br>$I_s = -I_{Sc} = (V_R + DIR - I_{Sc} = CE + D\left(\frac{AE}{B}\right)$<br>Substituting value of $I_{Sc}$ in above equation | al network |  | 1M | Ţ |
|                                                                 |  | $\frac{-E}{B} = CE - D\frac{AE}{B}$ $\frac{-E}{B} = \left(C - \frac{AD}{B}\right) E$                                                                                                |            |  | 1M | [ |
|                                                                 |  | $\frac{-1}{B} = \frac{BC - AD}{B}$ $AD - BC = 1$                                                                                                                                    |            |  |    |   |