MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Reaction Engineering

Subject code

22512

Page **1** of **23**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-19 EXAMINATION **Model Answer**

Subject title: Chemical Reaction Engineering

Subject code

<u>225</u>12

Page **2** of **23**

Q No.		Answer	Marking
			scheme
-	1	Attempt any FIVE of the following	10
1	a	Definition of activation energy:	2
		It is the minimum energy that the reactant molecules must acquire before	
		reaction takes place to give the product.	
1	b	Definition of fractional change in volume ϵ_A :	2
		It is defined as the change in volume of the system between no conversion and	
		complete conversion of reactant A.	
1	c	Relation between C _A and X _A	
		i) Constant density (volume) System	
		$C_A = C_{A0}(1 - X_A)$	1
		ii) Changing density (volume) system	
		$\frac{C_{\rm A}}{C_{\rm A0}} = \frac{(1-X_{\rm A})}{(1+\varepsilon_{\rm A}X_{\rm A})}$	1
1	d	Diagram of plug flow reactors connected in series-parallel arrangement	2
		$F_{o1}, X = 0$ Branch-1 V_1 V_2 X_2 V_2 X_3 $F_{o2}, X = 0$ V_3 Branch-2 V_3	
1	e	Application of	
		Fluidized bed reactor(any two)	
		Used when good temperature control is required, when catalyst regeneration	¹∕₂ mark

Subject title: Chemical Reaction Engineering Subject code

22512

Page 3 of 23

		has to be done on a continuous basis without shutting down the reactor.	each					
		Used in the production of pthalic anhydride, vinyl acetate, polyethylene,						
		polypropylene, maleic anhydride, in the incineration of solid waste, catalytic						
		cracking of petroleum naphtha						
		Packed bed reactor (any two)						
		Used when high conversion rate per catalyst weight is required.	¹∕₂ mark					
		Used in ammonia synthesis, methanol manufacture, ethylene oxide production,	each					
		sulphuric acid production, styrene production, steam reforming of natural gas						
		etc.						
1	f	Autocatalytic reactions:						
		A reaction in which one of the products of the reaction acts as a catalyst is	1					
		known as an autocatalytic reactions.						
		Eg1. $CH_3COOC_2H_5 + H_2O \rightarrow CH_3COOH + C_2H_5OH$	1 mark					
		Here CH ₃ COOH acts as catalyst	for any 1					
		2. Oxidation of a solution of oxalic acid by an acidified solution of KMnO ₄ .	example					
		$2MnO_4^- + 6H^+ + 5(COOH)_2 \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$						
		Oxalic acid						
		The reaction is very slow at room temp .The reaction is catalyzed by						
		manganese ions(Mn^{2+}) that are not present at start of reaction, hence the rate						
		of reaction is extremely slowOnce reaction starts, Mn^{2+} ions are formed , the						
		rate of reaction speeds up.						
1	g	Application of Batch reactor (any 4):	¹∕₂ mark					
		These are used when relatively small amount of material are to be treated. Also	each					
		to produce different products using same reactor, for testing new products, for						
		the study of reaction kinetics of complex reactions. etc.Used in the production						

WINTER-19 EXAMINATION **Model Answer**

Subject title: Chemical Reaction Engineering

Subject code

22512

Page **4** of **23**

		of pharm	aceuticals, dyes, dye intermediates etc		
2		Attempt any THREE of the following			12
2	a	Differen	nce between order and molecularity of reaction.(4 points)		
		Sr.No.	Molecularity	Order of reaction	each
		1	Molecularity is the number of	Order of reaction is the sum	
			molecules, atoms or ions in a	of exponents of the	
			chemical reaction.	concentration terms	
				involved in the rate	
				equation.	
		2	Molecularity always have an	Order of reaction can have a	
			integer value 1,2,3	fractional value.	
		3	Shows the elementary mechanism	Shows the kinetic	
			or separate steps of a complicated	dependence of the rate on	
			process	the concentration of the	
				reactants.	
		4	Depending upon the value of	Depending upon the value	
			molecularity, reaction can be	of order, the reactions are	
			unimolecular ,bimolecular etc.	termed as first order, second	
				order reactions	
		5	Molecularity is a theoretical	Order of reaction is entirely	
			quantity	an experimental value.	
2	b	For first	order reaction, $-\ln(1-x_A) = kt$		

Subject title: Chemical Reaction Engineering

Subject code

<u>225</u>12

		When $x_A = 0.5$ and $t = 5$ minutes	
		$-\ln(1-0.5) = k *5$	
		K = 0.1386 minutes ⁻¹	2
		When $x_A = 0.75$	
		$-\ln(1-0.75) = 0.1386 *t$	
		t = 10 minutes	2
2	c	Space time:	
		It is the time required to process one reactor volume of feed measured at	1
		specified condition.	
		Mathematical expression:	1⁄2
		$\tau = \frac{1}{s} = \frac{C_{A0V}}{F_{A0}}$	
		Unit	1/
		Unit is unit of time (seconds, minute, etc)	1/2
		Space velocity	
		It is the number of reactor volume of feed at specified conditions which can be	
		treated in unit time.	1
		Mathematical expression:	1/
		$\mathbf{S} = \frac{1}{\tau} = \frac{F_{A0}}{C_{A0V}}$	1/2
		Unit	
		Unit is $time^{-1}$ ($second^{-1}$, $minute^{-1}$ etc)	1/2
2	d	Comparison of MFR and PFR (8 points)	¹∕₂ mark
		1) For any given duty & for all positive reaction orders, size of MFR is	each
		always larger than that of PFR. The volume ratio Vm / Vp increases	
		with reaction order.	

Subject title: Chemical Reaction Engineering Subject code 22512 Page 6 of 23 2) For low values of conversion, reactor size is only slightly affected by type of flow. As conversion approaches zero, volume / size ratio of these reactors approaches unity. The size ratio increases very rapidly at high values of conversion. 3) Design of reactor is affected by density variation during reaction. Expansion (density decrease) during reaction increases the volume ratio, but decreases, the effectiveness of CSTR with respect to PFR. Density increase during reaction has the opposite effect. 4) The performance equation for MFR is $\tau_m \cdot C_{A0}^{n-1} = \left(\frac{C_{A0}V}{F_{A0}}\right) = \frac{X_A (1 + \varepsilon_A \cdot X_A)^n}{k(1 - X_A)^n}$ For PFR $\tau_p. C_{A0}^{n-1} = \left(\frac{C_{A0..}^n V}{F_{A0}}\right)_n = \frac{1}{K} \int_0^{XA} \frac{(1 + \varepsilon A X A)^n}{(1 - X_A)^n} dX_A$ 5) For a given space time, conversion in a PFR is higher than in MFR. 6) It is possible to operate MFR under isothermal conditions whereas with PFR it is difficult. 7) MFR has long residence time compared to PFR. 8) MFR is not suitable for high pressure reactions whereas PFR is suitable. 3 Attempt any THREE of the following 12 3 **Important properties of catalyst** а 1. Porosity: Porosity is defined as the ratio of volume of voids to the total 1 mark volume of catalyst. A catalyst should be highly porous. each for 2. Large surface area: It should have a large surface area per unit mass. any four 3. Selectivity: Selectivity or specificity of a catalyst refers to the property points

Subject title: Chemical Reaction Engineering

Subject code 22512

Page **7** of **23**

			of catalyst to speed up the main reaction in the presence of several side	
			reactions. A catalyst should have high selectivity	
		4.	Activity: Activity is a measure of the accelerating effect that the	
			catalyst has on the rate of given reaction. Activity of catalyst is	
			measured by finding the ratio between the rate constant of a catalysed	
			and uncatalysed reaction. A catalyst should have high activity.	
		5.	Kindling point : Kindling point of a substance is the lowest	
			temperature at which it spontaneously ignites in normal atmosphere	
			without an external source of ignition, such as a flame or spark. A	
			catalyst should have a low kindly point because then only less energy	
			has to be spend to preheat the reaction mixture.	
		6.	Accessibility: The catalyst should be highly accessible.	
		7.	Life and regenerability : A good catalyst should have a long life and it	
			should be regenerable.	
		8.	Thermal / mechanical strength: A catalyst should have adequate	
			thermal / mechanical strength in reaction conditions.	
		9.	Toxicity and cost: A catalyst should be non -toxic and cheap.	
3	b	CA0'=	0.1 mol/l $t_{1/2}$ '= 1152 min	
		CA0''	$= 0.2 \text{ mol/l}$ $t_{1/2}$ '' = 568 min	
		$t_{1/2} =$	$\frac{c_{AO}^{1-n}}{k(n-1)}[(2^{n-1})-1]$	2
		(t _{1/2} '/	$t_{1/2}$ (C _{A0} / C _{A0}) ¹⁻ⁿ	2
		Taking	log and rearranging	
		n = 1-	$(\log (t_{1/2}'/t_{1/2}'') / \log (C_{A0}'/C_{A0}''))$	
		n = 1-(log (1152/568)/(log (0.1/0.2))	
		n=1+	1.02 = 2.02	
I	1	1		

WINTER-19 EXAMINATION **Model Answer**

Subject title: Chemical Reaction Engineering

Subject code

<u>225</u>12

Page **8** of **23**

		Order of the reaction is 2	2
3	c	Integrated rate expression for irreversible unimolecular first order	
		reaction:	
		Consider the reaction $A \rightarrow B$	
		The rate equation is $-r_A = -dC_A / dt = kC_A(1)$	
		In terms of concentration	
		Rearranging - $\frac{dC_A}{C_A} = k dt$	
		Integrating between appropriate limits	2
		$-\int_{C_{AO}}^{C_A}\frac{dC_A}{C_A} = k\int_0^t dt$	2
		$-(\ln C_A / C_{A0}) = kt$	
		-ln <u>Ca</u> Cho Slope k	
		In terms of conversion	
		$C_A = C_{A0}(1 - x_A)$	
		$dC_A = -C_{A0}dx_A$	
		Substituting in (1) and rearranging and integrating	
		x _A t	
		$\int (dx_A / (1 - x_A) = k \int dt$	2
		x _{A0} 0	_
		$-\ln(1-x_A) = kt$	

 $t = CAO \int_0^{X_A} \frac{dX_A}{-r_A}$

Given:

 $X_A = 0.70$, t = 13 min

 $-r_{A} = k.C_{A} = k.C_{A0} (1-X_{A})$

For constant volume batch reactor,

First order chemical reaction is taking place

4

а

12

WINTER-19 EXAMINATION **Model Answer**

Subject title: Chemical Reaction Engineering

Subject code

<u>225</u>12

Page **11** of **23**

		$t = CAO \int_0^{X_A} \frac{dX_A}{\text{k. CA0 (1 - XA)}}$	
		$-\ln(1 - X_A) = kt$	
		$-\ln(1-0.70) = k * 13$	1
		$k = 0.0926 \text{ min}^{-1}$	
		For Plug flow reactor (constant –density system):	
		$\frac{V}{F_{A0}} = \int_{0}^{X_{A}} \frac{dX_{A}}{-r_{A}} = \frac{\tau}{c_{A0}}$ $\tau = C_{A0} \int_{0}^{X_{A}} \frac{dX_{A}}{k.c_{A0.(1-X_{A})}}$ $\tau = \int_{0}^{X_{A}} \frac{dX_{A}}{dX_{A}}$	
		$l = \int_0^1 k \cdot (1 - X_A)$	1.5
		Space time $\tau = \frac{1}{k}(-\ln(1-X_A)) = \frac{1}{0.0926}(-\ln(1-0.7)) = 13 \text{ min.}$	
		Space velocity = $s = 1/\tau = 1/13 = 0.07692 \text{ min}^{-1}$	
		For Mixed flow reactor :	
		$\tau = \frac{C_{A0}.X_A}{(-r_A)}$	
		$\tau = \frac{C_{A0} \cdot X_A}{-r_A} = \frac{C_{A0} \cdot X_A}{k C_{A0} (1 - X_A)}$	
		Space time $\tau = \frac{0.70}{0.0926(1-0.7)} = 25.2$ min.	1.5
		Space velocity = s = $1/\tau = 1/25.2 = 0.03968 \text{ min}^{-1}$	
4	b	Integrated form of rate expression for variable volume zero order	
		reaction	
		Rate equation is $-r_A = -\frac{1}{v}\frac{dN_A}{dt} = \frac{C_{AO}}{1+\varepsilon_A X_A}\frac{dX_A}{dt} = k$	
		$\frac{C_{AO}}{1+\varepsilon_A X_A} \frac{dX_A}{dt} = \mathbf{k}$	
		Rearranging and integrating	

Subject title: Chemical Reaction Engineering

Subject code

<u>225</u>12

		$C_{AO} \int_0^{x_A} \frac{dx_A}{1 + \varepsilon_A X_A} = \mathrm{kt}$ $\frac{c_{AO}}{\varepsilon_A} \ln \left(1 + \varepsilon_A X_A\right) = \mathrm{kt} = \frac{c_{AO}}{\varepsilon_A} \ln \frac{V}{V_0}$	2
		(42 43 +1) uz 20 21/2 Gov EA 20 For EA 20 For EA 20 CA0	2
4	с	Stepwise procedure for differential method of analysis of kinetic data	4
		1)Assume a mechanism and from it obtain a rate equation of the form	
		$-r_A = \frac{-dC_A}{dt} = kf(c)$	
		2) From experiment obtain concentration-time data and plot them.	
		3) Draw a smooth curve through this data.	
		4) Determine the slope of this curve at suitably selected concentration values.	
		These slopes $\left(\frac{-dC_A}{dt}\right)$ are the rates of reaction at these composition.	
		5) Evaluate $f(c)$ for each composition.	
		6) Plot $\frac{-dc_A}{dt}$ vs $f(c)$ for each composition. If we get a straight line through	
		origin; the rate equation is consistent with the data. If not, then another rate	
		equation should be tested.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION **Model Answer**

Subject title: Chemical Reaction Engineering

Subject code

<u>225</u>12

Page **14** of **23**

		For 2^{nd} MFR, $\frac{C_2}{C_1} = \frac{1}{(1 + k\tau_2)}$	
		$C_2 = \frac{C_1}{1 + k\tau_2}(2)$	
		Substituting C_1 from equation (1) into equation (2)	
		$C_2 = \frac{C_0}{1 + k\tau_1} * \frac{1}{(1 + k\tau_2)} \dots \dots (3)$	
		Since all the MFR's are of equal size, $\tau_1 = \tau_2 = \tau_i = \tau_N = \tau$	
		Therefore equation (3) becomes $C_2 = \frac{C_0}{1+k\tau} * \frac{1}{(1+k\tau)} = \frac{C_0}{(1+k\tau)^2}$	
		$\frac{C_2}{C_0} = \frac{1}{(1+k\tau)^2}$	
		For Nth reactor $\frac{C_N}{C_0} = \frac{1}{(1+k\tau)^N}$ (4)	
		$\mathbf{C}_{\mathrm{N}} = \mathbf{C}_0 \; (1 - \mathbf{X}_{\mathrm{A}\mathrm{N}})$	
		$\frac{C_N}{C_0} = 1 - X_{AN} \dots \dots$	2
		Substituting (5) in (4)	2
		1- $X_{AN} = \frac{1}{(1+k\tau)^N}$	
		$X_{AN} = 1 - \frac{1}{(1 + k\tau)^N}$	
4	e	Method of feeding when PFR's are connected in parallel	
		Consider PFRs are connected as shown in the figure.	

Subject title: Ch	emical Reaction Engineering Subject code 22512	
		Page 16 of 23
	Where k_0 - frequency factor or pre exponential factor	2
	E - activation energy in J/ mol or cal/ mol	
	R – universal gas constant	
	T – temperature in Kelvin	
	The activation energy is determined experimentally by carrying out the	
	reaction at different temperatures. A plot of ln k vs $\frac{1}{T}$ should give a straight line	
	with slope equal to $\frac{-E}{R}$.	
	↑ 1	
	Slope = $-E/R$	2
	$\frac{1}{T} \times 10^{3}$	
	Alternatively, if the rate is known at two different temperatures T_1 and T_2 , then	
	we can evaluate E with the help of equation	
	$\ln\frac{k_2}{k_1} = \frac{-E}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$	
	Lower the value of activation energy, higher will be the rate at which reaction	2
	will proceed as the considerable part of collisions between the molecules result	
	in a reaction and higher the value of activation energy, lower will be the rate at	
	which the reaction proceeds.	
5 b	Promoters	
	They are substances which do not act as catalyst but enhances the efficiency	
	and life of the catalyst. It is a substance added during the preparation of a	1

Subject title: Chemical Reaction Engineering Subject code

22512

Page **17** of **23**

	catalyst which improves the activity or selectivity or stabilizes the catalytic						
		agent so as to increase its l	ife.				
		Eg Al_2O_3 is used as a promoter to iron catalyst in the manufacture of ammon					
		Inhibitors					
		It is the substance which decreases the performance of the catalyst. It lessens					
		activity, stability or selectivity of a catalyst. It is useful for reducing the					
		activity of a catalyst for an	activity of a catalyst for an undesirable side reaction.				
		Eg silver supported on alumina is an excellent oxidation catalyst and is used					
		in the production of ethylene oxide from ethylene. But at the same conditions,					
	complete oxidation to CO ₂ and H ₂ O also occurs. So selectivity is poor. I						
		adding halogen compound	s to the catalyst inhibits the	e oxidation to CO ₂ and			
	H ₂ O and results in satisfactory selectivity.						
	Accelerators						
		They are substances added to the reactant streams to improve the performance					
		of a catalyst.					
		Eg steam added to butane	feed of a dehydrogenation	reactor reduces the	1		
		amount of coke formed an	d increases the yield of but	tadiene.			
5	c	$C_{A0} = 0.1 \text{ mol} / 1$					
		Assume the reaction is of a	zero order				
		For zero order reaction C_A	$_{0} - C_{A} = kt \qquad \qquad k = (C_{A})$	C_{A0} - C_A) / t			
		When t-= 10 minutes					
	$k = (C_{A0} - C_A) / t = (0.1 - 0.0714) / 10 = 2.86*10^{-3} \text{mol} / (1. \text{minute})$						
		Time, min	Concentration, mol/l	k, mol / (l. minute)			
		0	0.1				
	$10 0.0714 2.86*10^{-3}$						

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject title: Chemical Reaction Engineering Subject code 22512 Page 18 of 23 $2.22*10^{-3}$ 2 20 0.0556 $1.5375*10^{-3}$ 40 0.0385 8*10-4 100 0.02 6.664*10⁻⁴ 125 0.0167 Since k values are not same, reaction is not of zero order Assume reaction is of first order For first order reaction $-\ln(C_A / C_{A0}) = kt$ $k = -ln(C_A / C_{A0}) / t$ At $C_{A0} = 0.1$ and $C_A = 0.0714$ at t = 10 min. $k = \frac{1}{10} ln \frac{0.1}{0.0714} = 0.0343 \text{ min}^{-1}$ k, min⁻¹ Time, min Concentration, mol/l 0 0.1 ___ 10 0.0714 0.0343 20 0.0556 0.0342 2 40 0.0385 0.0239 100 0.02 0.0161 125 0.0167 0.0143 Since k values are not same, reaction is not of first order Assume reaction is of second order For second order reaction: $k = \frac{1}{t} \left[\frac{1}{C_A} - \frac{1}{C_{A0}} \right]$ For $C_A = 0.0556 \text{ at } t = 20 \text{ min}$ $k = \frac{1}{20} \left[\frac{1}{0.0556} - \frac{1}{0.1} \right] = 0.399 (l/mol) \text{ min}^{-1}$ k, $(l/mol) min^{-1}$ Time, min Concentration, mol/l

ubject title	e: Ch	emical Reaction Engineering	Subject code	22512	
					Page 19 of 2
		0	0.1		
		10	0.0714	0.4	2
		20	0.0556	0.399	
		40	0.0385	0.399	
		100	0.02	0.4	
		125	0.0167	0.399	
		Since the k values are same	, reaction is of second orde	er	
		Order of reaction is 2			
		Value of rate constant(avera	age) = $0.4(l/mol) min^{-1}$		
6		Attempt any TWO of the	following		12
6	а	Performance equation of l	oatch reactor for constant	volume and variable	
		volume system:			
		In batch reactor, the compositi	on is uniform throughout read	ction zone at any instant of	
		Writing the material balance	e for any component A.		
		of loss of reactant A			
		actant A within the			
		reactor.			
		In a batch reactor, no fluid e	enters or leaves the reaction	mixture during the	
		reaction.			
		Therefore Rate of reactant A	A in = Rate of reactant A or $A = A = A + A + A + A + A + A + A + A + $	ut = 0	
		Material balance equation the	nen becomes		
		Rate of loss of reactant A	due to chemical reaction $=$ \cdot	- Rate of accumulation	
		of reactant A within the read	ctor(1)		
		Rate of loss of reactant A	due to chemical reaction = \cdot	-r _A V	
		Rate of accumulation of re	actant A within the reactor	$=\frac{dN_A}{dt} = -N_{A0}\frac{dX_A}{dt}$	2

WINTER-19 EXAMINATION **Model Answer**

Subject title: Chemical Reaction Engineering

Subject code

22512

Page **20** of **23**

		Substituting in equation (1)	
		$-\mathbf{r}_{\mathrm{A}}\mathbf{V} = \mathbf{N}_{\mathrm{A}0}\frac{dX_{A}}{dt}$	
		Rearranging and integrating	
		$\int_{0}^{t} dt = N_{A0} \int_{0}^{x_{A}} \frac{dx_{A}}{V(-r_{A})}$	
		$t = N_{A0} \int_0^{x_A} \frac{dx_A}{V(-r_A)} (2)$	2
		This is the design equation for batch reactor, which indicates the time needed	
		to achieve a conversion X_A for either isothermal or non-isothermal operation.	
		The terms rate $-r_A$ & volume V are retained under the integral sign because	
		they both may change as the reaction proceeds.	
		For constant volume system, the equation (2) becomes	
		$t = \frac{N_{A0}}{V} \int_0^{x_A} \frac{dx_A}{(-r_A)} = C_{A0} \int_0^{x_A} \frac{dx_A}{(-r_A)} = - \int_{CA0}^{C_A} \frac{dC_A}{(-r_A)} \dots $	1
		For variable volume reaction systems	
		For variable volume reaction systems $V = V_0(1 + \varepsilon_A X_A)$	
		For variable volume reaction systems $V = V_0(1 + \varepsilon_A X_A)$ Eq.2 becomes $t = N_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A) \cdot V_0(1 + \varepsilon_A X_A)}$	
		For variable volume reaction systems $V = V_0(1 + \varepsilon_A X_A)$ Eq.2 becomes $t = N_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A) \cdot V_0(1 + \varepsilon_A X_A)}$ As $C_{A0} = \frac{N_{A0}}{V_0}$ $t = C_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A)(1 + \varepsilon_A X_A)} \dots (4)$	1
6	b	For variable volume reaction systems $V = V_0(1 + \varepsilon_A X_A)$ Eq.2 becomes $t = N_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A) \cdot V_0(1 + \varepsilon_A X_A)}$ As $C_{A0} = \frac{N_{A0}}{V_0}$ $t = C_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A)(1 + \varepsilon_A X_A)} \dots (4)$ Reaction: $A \rightarrow 3 R$	1
6	b	For variable volume reaction systems $V = V_0(1 + \varepsilon_A X_A)$ Eq.2 becomes $t = N_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A) \cdot V_0(1 + \varepsilon_A X_A)}$ As $C_{A0} = \frac{N_{A0}}{V_0}$ $t = C_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A)(1 + \varepsilon_A X_A)} \dots (4)$ Reaction: $A \to 3 R$ $-r_A = 10^{-1} C_A$	1
6	b	For variable volume reaction systems $V = V_0(1 + \varepsilon_A X_A)$ Eq.2 becomes $t = N_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A) \cdot V_0(1 + \varepsilon_A X_A)}$ As $C_{A0} = \frac{N_{A0}}{V_0}$ $t = C_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A)(1 + \varepsilon_A X_A)} \dots (4)$ Reaction: $A \rightarrow 3 R$ $-r_A = 10^{-1} C_A$ $k = 10^{-1} s^{-1} = 0.1 s^{-1}$	1
6	b	For variable volume reaction systems $V = V_0(1 + \varepsilon_A X_A)$ Eq.2 becomes $t = N_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A) \cdot V_0(1 + \varepsilon_A X_A)}$ As $C_{A0} = \frac{N_{A0}}{V_0}$ $t = C_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A)(1 + \varepsilon_A X_A)} \dots (4)$ Reaction: $A \rightarrow 3 R$ $-r_A = 10^{-1} C_A$ $k = 10^{-1} s^{-1} = 0.1 s^{-1}$ Let 1 mol of A be present initially. Along with 1 mole of A,I mole of inert is	1

WINTER-19 EXAMINATION **Model Answer**

Subject title: Chemical Reaction Engineering

Subject code

22512

Page **21** of **23**

		Moles of R formed =3	
		Moles present initially = of A + moles of inerts = $1+1 = 2$ moles	
		Moles present finally = moles of R + moles of inerts = $3 + 1 = 4$ moles	
		$\epsilon_{A} = \frac{V_{XA=1}-V_{XA=0}}{V_{XA=0}} = \frac{4-2}{2} = 1$	1
		For PFR $\frac{V}{F_{A0}} = \int_0^{X_A} \frac{dX_A}{-r_A} = \frac{\tau}{C_{A0}}$	1
		From the unit of rate constant, the reaction is of first order	
		$-r_A = \frac{KC_{A0}(1-x_A)}{(1+\epsilon_A X_A)}$ for variable volume system	1
		$\int_0^{X_A} \frac{dX_A}{-r_A} = \frac{\tau}{C_{A0}}$	
		$\frac{\tau}{C_{A0}} = \int_{0}^{X_{A}} \frac{(1 + \varepsilon_{A} X_{A}) dX_{A}}{k c_{A0} (1 - X_{A})}$	
		$\frac{\tau}{C_{A0}} = -\frac{1}{kc_{A0}} \int_{0}^{X_{A}} \frac{(1 + \varepsilon_{A} X_{A}) dX_{A}}{(1 - X_{A})}$	
		$\frac{\tau}{C_{A0}} = \frac{1}{KC_{A0}} \left(-\ln(1-X_A) + \varepsilon_A \left\{ -\ln(1-X_A) - X_A \right\} \right)$	
		$= \frac{1}{KC_{A0}} \left\{ -\ln(1-X_A) - \varepsilon_A \ln(1-X_A) - \varepsilon_A X_A \right\}$	2
		$=\frac{1}{KC_{A0}}(-\ln(1-X_A))(1+\varepsilon_A)-\varepsilon_A X_A)$	
		$\tau = (-\ln(1-X_A) (1+\epsilon_A) - \epsilon_A X_A) / k$	
		$= (-\ln(1-0.8) (1+1) - (1*0.8)) / 0.1 = 24.19 s$	1
		Space time τ = 24.19 s	*
6	c	Design equation of a MFR is	

Subject title: Chemical Reaction Engineering

Subject code

<u>225</u>12

Page **22** of **23**

$$\frac{V}{F_{A0}} = \frac{\tau}{C_{A0}} = \frac{X_A}{(-r_A)}$$
Where $X_A = 0.5$:
 $-r_A = k C_A^2$
For constant volume reaction system

$$\frac{V}{F_{A0}} = \frac{X_A}{(-r_A)}$$

$$\frac{V}{F_{A0}} = \frac{0.5}{(k C_A^2)}$$
As $C_A = C_{A0}(1 - X_A)$, above equation can be written as

$$\frac{V}{F_{A0}} = \frac{0.5}{(k C_{A0}^2(1 - X_A)^2)}$$

$$\frac{V}{F_{A0}} = \frac{0.5}{(k C_{A0}^2(1 - 0.5)^2)}$$

$$\frac{V \cdot k C_{A0}^2}{F_{A0}} = \frac{0.5}{((1 - 0.5)^2)}$$
For a plug flow reactor of same size , design equation is

$$\frac{V}{F_{A0}} = \frac{\tau}{C_{A0}} = \int_0^{X_A} \frac{dX_A}{-r_A}$$

$$\frac{V}{F_{A0}} = \int_0^{X_A} \frac{dX_A}{-r_A}$$

$$\frac{V}{F_{A0}} = \int_0^{X_A} \frac{dX_A}{-r_A}$$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Reaction Engineering Subject code 22512 Page 23 of 23 $\frac{V}{F_{A0}} = \frac{1}{\text{k. } C_{A0}^2} \int_0^{X_A} \frac{dX_A}{(1 - X_A)^2}$ $\frac{V \cdot k \cdot C_{A0}^2}{F_{A0}} = \int_0^{X_A} \frac{dX_A}{(1 - X_A)^2}$ $\frac{V.k.C_{A0}^2}{F_{A0}} = 2$ But Therefore $2 = \int_0^{X_A} \frac{dX_A}{(1-X_A)^2}$ For second order reaction the integrated rate equation in terms of conversion is $\int_{0}^{X_{A}} \frac{dX_{A}}{(1-X_{A})^{2}} = \frac{X_{A}}{1-X_{A}}$ $\frac{X_A}{1-X_A} = 2$ Therefore $2(1 - X_A) = X_A$ $2 - 2X_A = X_A$ $2 = 3X_{A}$ $X_A = \frac{2}{3} = 0.667$ 3 Conversion in PFR is 0.667 =66.7%