SUMMER - 2022 EXAMINATION

Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	Sub Q. N.	Answers				Marking Scheme
1	(A)	Attempt any FIVE of the following:				10- Total Marks
	(a)	State ideal and practical value of given parameters for Op-Amp IC-741 i) Input resistance ii) Slew rate				2M
	Ans:	Sr. no	Parameter	Ideal values	Typical Practical values	1/2 M for each value
		1	Input resistance	∞	$2 \mathrm{M} \Omega$	
		2	Slew rate	∞	$0.5 \mathrm{~V} / \mu \mathrm{s}$	

Model Answer

(b)	Sketch the circuit diagram of Op-Amp based differential amplifier in open loop mode.	2M
Ans:		2 M for correct sketch
(c)	List four specifications of LM 324.	2M
Ans:	- Supply voltage $=\mathbf{3 2}$ V. - Differential \mathbf{i} / \mathbf{p} voltage $=-\mathbf{0 . 3} \mathbf{V}$ to +32 V . - Operating temp $=00 \mathrm{c}$ to +700 c - Input current $=\mathbf{5 0 m A}$. - Power dissipation $=$ molded $\mathbf{D I P}=1130 \mathrm{mw}$ - Cavity DIP $=1260 \mathrm{mw}$	Any 4(Each 1/2M)
(d)	List any four merits of active filters over passive filters.	2M
Ans:	Merits of active filters over passive filters:- 1. Less cost due to the variety of cheaper op-amp and absence of costly inductors. 2. Gain and frequency adjustment flexibility since the op-amp is able to providing gain; the input signal is not attenuated as in case of passive filters. 3. Active filter is easier to tune or adjust as compare to passive filters. 4. No loading problem because active filter provides excellent isolation between individual stages due to high input impedance. 5. Active filters are small in size and less bulky (due to absence of "L") and rugged. 6. Non floating input and output	Any 4 (Each 1/2 M)

SUMMER - 2022 EXAMINATION

Subject Name: Linear Integrated Circuit.
Subject Code:

Model Answer

SUMMER - 2022 EXAMINATION

Subject Name: Linear Integrated Circuit.
Subject Code:

Model Answer

SUMMER - 2022 EXAMINATION

Model Answer

Ans:	Circuit Diagram:- The load resistor R2 is floating not connected to ground. The input voltage is applied to the non-inverting input terminal and the feedback voltage across R1 drives the inverting terminal. Writing KVL to the input loop, $V_{i n}=V_{i d}+V_{F}$ But Vid $=0 \mathrm{v}$ since A is very large, $\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{F}} \\ & \mathrm{Vin}=\mathrm{R}_{1} * \mathrm{I}_{0} \\ & \mathrm{I}_{\mathrm{O}}=\mathrm{Vin} / \mathrm{R}_{1} \end{aligned}$ Thus, Output current is proportional to input voltage. Input voltage is converted into an output current.	2M - Circuit diagram, 2MDerivation
c)	Sketch the Timer IC 555 based monostable multivibrator with suitable value of \mathbf{R} and \mathbf{C} for pulse width .	

Model Answer

SUMMER - 2022 EXAMINATION
Subject Name: Linear Integrated Circuit.
Subject Code:

22423

Model Answer

	d)	Explain virtual ground concept. In which basic amplifier virtual ground is present.	4M
	Ans:	Circuit diagram-: - In circuit point VA is virtual ground. Figure shows inverting amplifier using op-amp. - In this circuit non-inverting terminal is connected to the actual ground. - Due to this potential of inverting terminal become zero. Thus, inverting terminal is not actually connected to the ground. There after its potential is zero. - Thus point VA is known as virtual ground point. This phenomenon of having zero potential without actually grounding is known as virtual ground concept. Virtual Ground is present in Closed Loop Inverting Amplifier Circuit.	Circuit diagram- 1M, Explainati on- 2 M, Applicatio n -1M
Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. } \\ & \mathrm{N} . \end{aligned}$	Answers	Marking Scheme
3		Attempt any THREE of the following:	12- Total Marks
	a)	If $R_{1}=\mathbf{2 K} \Omega, R_{F}=\mathbf{1 0 0} \mathrm{K} \Omega, V_{C C}= \pm \mathbf{1 5 V}$ and rms input voltage $V_{i}=\mathbf{2 0 m V}$. Calculate the output voltage in inverting and non-inverting mode.	4M
	Ans:		

SUMMER - 2022 EXAMINATION

Subject Name: Linear Integrated Circuit.

Model Answer

Model Answer

SUMMER - 2022 EXAMINATION

Model Answer

Model Answer

SUMMER - 2022 EXAMINATION
Subject Name: Linear Integrated Circuit.
Subject Code:

Model Answer

		The output of the low pass filter, i.e., DC level is passed on to the VCO. The input signal is directly proportional to the output frequency of the VCO (fo). The input and output frequencies are compared and adjusted through the feedback loop until the output frequency is equal to the input frequency. Hence, the PLL works like free running, capture, and phase lock.	
$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{array}{\|l} \hline \text { Sub } \\ \mathrm{Q} . \\ \mathrm{N} . \end{array}$	Answers	Marking Scheme
4		Attempt any THREE of the following:	12- Total Marks
	(a)	Draw the circuit diagram to generate the following output using op-amps. $V_{0}=3 V_{1}+2 V_{2}-4 V_{3}: V_{1}, V_{2}, V_{3}$ are input voltages.	4M
	Ans:		Correct diagram 4 mks
	(b)	Define the following parameters of op-amp i) Input bias current ii) Input offset current	4M

Model Answer

		iii) Slew rate iv) CMRR	
	Ans:	i) Input bias current- An input bias current IB is defined as the average of the two input bias current, IB1 \& IB2, $\mathrm{IB}=(\mathrm{IB} 1+\mathrm{IB} 2) / 2$ Where IB1 = dc bias current flowing into the non - inverting input IB2 $=$ dc bias current flowing into the inverting input ii) Input offset current- The input offset current Iio is defined as the algebraic difference between two input bias currents IB1 \& IB2. $\text { Iio }=\|\mathrm{IB} 1-\mathrm{IB} 2\|$ iii) Slew rate- It is defined as the maximum rate of change of output voltage per unit time. $\mathrm{S} . \mathrm{R} .=\Delta \mathrm{Vo} / \Delta \mathrm{t}, \quad \text { Unit- } \mathrm{V} / \mu \mathrm{s} .$ iv) CMRR- It defined as the ratio of differential gain to the common mode gain. It is the ability of an amplifier to reject the common mode signal such as noise. Expressed in dB.	Each correct definition -1 mks
	(c)	Sketch the diagram of voltage follower. Why it is called voltage follower. State its one application.	4M
	Ans:	Circuit diagram of voltage follower-	Diagram:2 mks; Voltage follower: 1mks ; Applicatio n(any one) : 1mks

Model Answer

	When $\mathrm{R} 1=\infty$ and $\mathrm{RF}=0$ the non-inverting amplifier gets converted into a voltage follower or unity gain amplifier. When the non- inverting amplifier is configured so as to obtain a gain of 1 , it is called as voltage follower or unity gain non- inverting buffer. Applications: (Any one) 1. As a buffer amplifier so as to avoid the loading of the source. 2. As the output stage. 3. For impedance matching.	
(d)	Sketch the op-amp based Wein Bridge Oscillator for frequency $=1 \mathrm{KHz}$	4M
Ans:	Given- Frequency of oscillation $\mathrm{F}=1 \mathrm{KHz}$ $\mathrm{F}=1 / 2 \pi \mathrm{RC}$ Let $\mathrm{C}=0.1 \boldsymbol{\mu} \mathrm{~F}$ $\begin{aligned} & 1 * 10^{3}=1 /\left(2 \pi \mathrm{R} * 0.1 * 10^{-6}\right) \\ & \mathrm{R}=1592 \Omega=1.59 \mathrm{~K} \Omega \end{aligned}$ Let $\mathrm{R} 1=\mathrm{RF}=10 \mathrm{~K} \Omega$	1mks 1 mks

Model Answer

SUMMER - 2022 EXAMINATION

Subject Name: Linear Integrated Circuit.
Subject Code:
22423

Model Answer

Model Answer

Ans:

SUMMER - 2022 EXAMINATION
Subject Name: Linear Integrated Circuit. Subject Code:

Model Answer

SUMMER - 2022 EXAMINATION

Subject Name: Linear Integrated Circuit.
Subject Code:
Model Answer

SUMMER - 2022 EXAMINATION
Subject Name: Linear Integrated Circuit.
Subject Code:

Model Answer

SUMMER - 2022 EXAMINATION
Subject Name: Linear Integrated Circuit.
Subject Code:

Model Answer

Model Answer

	sketch the designed circuit and its frequency response	
Ans:	Given:- Cut off frequency $\mathrm{Fc}=1.6 \mathrm{Khz}$ Let Passband gain $\mathbf{A f}=2$ Pass band Gain $\left(A_{f}\right)$ is given by the formula $A_{f}=1+\frac{R_{f}}{R_{1}}$ Here, $A_{f}=2$ Therefore, $2=1+\frac{R_{f}}{R_{1}}$ So, $1=\frac{\mathbf{R}_{\mathbf{f}}}{\mathbf{R}_{\mathbf{1}}}$ Therefore, $\mathbf{R}_{\mathbf{f}}=\mathbf{R}_{\mathbf{1}}$ Let $\mathrm{R}_{\mathrm{f}}=10 \mathrm{k} \Omega$ Therefore, $\mathrm{R}_{\mathbf{1}}=10 \mathrm{k} \Omega$ Assume $\mathrm{C}=0.01 \mathrm{uF}$ $\text { But } f_{C}=\frac{1}{2 \pi R C}$ Given- $\mathrm{Fc}=1.6 \mathrm{Khz}=1600 \mathrm{~Hz}$ $1600=1 /(2 * \pi * R * 0.01 * 10-6)$ $R=9992 \Omega=9.992 \mathrm{~K} \Omega \quad(\text { or } 10 \mathrm{~K} \Omega)$ The designed circuit is-	Correct numerical values -2 mks, circuit diagram with compone nt values -2 mks , correct frequency response 2 mks

(ISO/IEC - 27001-2013 Certified)
SUMMER - 2022 EXAMINATION
Subject Name: Linear Integrated Circuit.
Subject Code:

Model Answer

