

Subject Name: Digital Electronics and Microcontroller Applications Model Answer: 22421: DEM

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Q. N.	Answer	Marking Scheme
1.		Attempt any <u>FIVE</u> of the following:	10 Marks
	a)	State	
		1. Duality Theorem	
		2. De-Morgan's Theorem	
		Ans:	
		i)Duality Theorem :	
		Duality theorem states that the dual of the Boolean function is obtained by interchanging	
		the logical AND operator with logical OR operator and zeros with ones. For every Boolean	1 marks
		function, there will be a corresponding Dual function.	1 111/1/185
		For ex	

 $x + 0 = x \implies x \cdot 1 = x$

ii)De-Morgan's Theorem

De-Morgan's first theorem-

It states that the complement of a product is equal to the sum of the individual complements.

Or

C

This theorem states that the complement of a product of variables is equal to the sum of their individual complements.

i.e.

 $\overline{A.B} = \overline{A} + \overline{B}$

De-Morgan's second theorem-

It states that the complement of a sum is equal to the product of the complements. Or

This theorem states that the complement of a sum of variables is equal to the product of their individual complements.

i.e.

 $\overline{A + B} = \overline{A}.\overline{B}$

b) Draw symbol and truth table of Universal Gates.

Ans:

1 marks

i] NAND GATE

Symbol

Truth table:

Inputs		Output
A	В	Υ =A . B
0	0	1
0	1	1
1	0	1
1	1	0

1 marks (¹/₂ mark for symbol & ¹/₂ mark for truth table)

ii] NOR GATE

Symbol

Truth table:

Inputs		Output
Α	В	$Y = \overline{A + B}$
0	0	1
0	1	0
1	0	0
1	1	0

1 marks (¹/₂ mark for symbol & ¹/₂ mark for truth table)

c) State race around condition in JK flip flop.

Ans:

For J-K flip-flop, if J=K=1, and if CLK =1 for a long period of time, then output Q will 2 marks toggle as long as CLK remains high which makes the output unstable or uncertain. This condition is called as race around condition in JK flip-flop.

d) Draw symbol and truth table of T type flip flop.

Ans:

Symbol

Truth table

1

T		Q_n		Q_{n+1}	
0		0		0	
0		1		1	
1		0		1	
1		1		0	
	(OR			
Т			Q _n	+1	
0			Q	2n	

Qn

1 mark for symbol & 1 mark for truth table

e) Explain assemble directives.

- i] DB
- ii] EQ
- Ans: i] DB

	SUMMER – 2022 EXAMINATION		
Subject N	Name: Digital Electronics and Microcontroller Applications <u>Model Answer:</u>	22421:	DEM
	Define Byte - This directive is used for the purpose of allocating and initializing or multiple data bytes. AREA DB 30H, 52H, 35H	single	1 mark for each
	Memory name AREA has three consecutive locations where 30H, 52H and 35H be stored.	are to	directives
	ii] EQ		
	Equate- It is used to assign any numerical value or constant to the variable.		
	A value 10H is assigned to variable name 'DONE'.		
f)	Explain PUSH instruction with one example		
	Ans:		
	This instruction increments the stack pointer (SP) by 1. The contents of Direct, wh	iich is an	
	internal memory location or a SFR, are copied into the Stack Memory (10p of the	ne stack)	1 mark
	by the stack pointer. Operation : $SD = SD + 1$		For
	Content of direct address /SER \rightarrow TOS		Correct
	No of byte : 1 byte or 2 byte		Explanation
	Addressing mode : register / direct addressing		1
	Effect on flag: No effect on Flag (only data transfer).		
	Example:		
	Let SP =0AH and data pointer = $1234H$		
	PUSH DPL		
	PUSH DPH		
	The first instruction PUSH DPL will set the $SP = 0BH$ and store 34H in internal RA location 0BH.	AM	1 marks for
	The second instruction PUSH DPH will set the $SP = 0CH$ and store 12H in intern location 0CH.	al RAM	any correct example
	The stack pointer will remain at 0CH.		-
	(Note : Any other correct definition and example may please be consider	red)	
g)	State the function of LCD display pins.		
	i) R/W		
	ii) RS		
	Ans:		
	i] R/W - Read/Write/Control Pin :		
	This pin toggles the display among the read or writes operation, and it is connected	cted to a	
	microcontroller to get either 0 or 1		
	(0 = Write Operation, and I = Read Operation).		
	$\mathbf{W} \mathbf{h} \mathbf{r} = \mathbf{D} \mathbf{W} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} u$		1 mark
	when $R/W = 0$ its write operation P/W = 1 its read operation		
	K/W = 1 its read operation iii DS Descistor Select/Control Din		
	II] IN - REGISTER DETECT/CONTROL FIN : This nin toggles among command or data register used to connect a micros	ontroller	
	unit pin and obtains either 0 or $1(1 - data mode, and 0 - command mode)$	onuoner	
	Or		
	RS: its register select pin		
	The the register believe pin .		

Subject Name: Digital Electronics and Microcontroller Applications Model Answer: 22421: DEM

It select Data register or command register depending on the status of RS bit If RS = 0 it will select the Command Register If RS = 1 it will select the data register

2. Attempt any <u>THREE</u> of the following:

a) Compare between TTL and CMOS. (any four points).

Ans:

TTL	CMOS
1. TTL stand for Transistor-Transistor	1. CMOS stands for Complimentary Metal-
Logic.	oxide Semiconductor
2. TTL circuit uses bipolar junction	2. CMOS circuit uses a field-effect transistor
transistor.	by connecting NMOS and PMOS
3. The design of the TTL is quite complex.	3. The design of the CMOS is simple.
4. Fan-in for TTL is 12-14.	4. Fan-in for CMOS is 10.
5. Propagation delay for TTL is 10ns	5. Propagation delay for CMOS is 20-50ns
6. Fan-out for TTL is 10	6. Fan-out for CMOS is 50
7. Power dissipation in TTL is 10mW	7. Power dissipation in CMOS is 1.01mW
8. Figure of merit is 100pJ	8. Figure of merit is 0.7pJ
9. Clock rate for TTL is 35MHz	9. Clock rate for CMOS is 10MHz
10. Supply voltage is fixed 5V	10. Supply voltage is variable between 3V to
	15 V

1 mark for each of any four points = 4 marks

b) Draw OR gate and AND gate using universal gates.

Ans:

i] OR gate using NAND gate

ii] OR gate using NOR gate

iii] AND gate using NAND gate

iv] AND gate using NOR gate

c) Design 8:1 MUX using 4:1 & 2:1 MUX. Draw Truth Table.

1 mark

12 Marks

1 mark

1 mark

1 mark

1 I_4 1 0 1 I_5 0 1 1 I_6 1 1 1 17

0

Minimise the following Boolean expression using K-Map and realize it using the basic d) logic gates.

0

Ans:

Boolean expression is not given, so cannot solve the example.

Attempt any <u>THREE</u> of the following:

Explain any four addressing modes of 8051 with one example each. a)

Ans:

3.

1. Immediate addressing mode: In this Immediate Addressing Mode, the data is provided in the instruction itself. The data is provided immediately after the opcode.

Immediate data is given in the instruction.

These are some examples of Immediate Addressing Mode.

MOV R2, #35H

MOV A, #0AFH;

12 Marks

1 marks

For each Mode

SUMMER – 2022 EXAMINATION Subject Name: Digital Electronics and Microcontroller Applications Model Answer:

22421: DEM

2. Register addressing mode: In the register addressing mode the source or destination data should be present in a register (R0 to R7). These are some examples of Register Addressing Mode.

MOV A, R5; MOV R0, A;

3. Direct Addressing Mode: In the Direct Addressing Mode, the source or destination address is specified in the instruction. Only the internal data memory can be used in this mode. Here some of the examples of direct Addressing Mode.

MOV 80H, R6; MOV R2, 45H; MOV R0, 05H; JMP 3000H

4. Register indirect addressing Mode: In this mode, the source or destination address is given in the register. By using register indirect addressing mode, the internal or external addresses can be accessed. The R0 and R1 are used for 8-bit addresses, and DPTR is used for 16-bit addresses, no other registers can be used for addressing purposes.

Address is indirectly given in instruction.

ACALL DELAY ;

Example:

MOV A, @R0

MOV @R1, A

Interface stepper motor to 8051 microcontroller and write an ALP to rotate stepper motor in b) anti-clockwise direction continuously.

Ans:

Give some delay

2 marks for diagram

(¹/₂ Marks Definition 1/2 Mark Example)

SUMMER – 2022 EXAMINATION 22421: DEM Subject Name: Digital Electronics and Microcontroller Applications Model Answer: RLA; rotate Left (Anticlockwise) SJMP BACK ; keep doing 2 marks for

Correct Program

//Delay subroutine.

- DELAY : MOV R2,#64H
 - H1: MOV R3,#0FFH
 - H2: DJNZ R3, H2 DJNZ R2, H1 RET END

(Note : Students can use any step sequence and delay routine. Any other correct program /diagram may please be considered)

Compare between combinational and sequential circuits.(any four points) c) Ans:

Parameters	Combinational Circuit	Sequential Circuit	
Meaning and Definition	It is a type of circuit that generates an output by relying on the input it receives at that instant, and it stays independent of time.	It is a type of circuit in which the output does not only rely on the current input. It also relies on the previous ones.	1 Mark for each of any
Feedback	A Combinational Circuit requires no feedback for generating the next output. It is because its output has no dependency on the time instance.	The output of a Sequential Circuit, on the other hand, relies on both- the previous feedback and the current input. So, the output generated from the previous inputs gets transferred in the form of feedback. The circuit uses it (along with inputs) for generating the next output.	points = 4 Marks
Performance	We require the input of only the current state for a Combinational Circuit. Thus, it performs much faster and better in comparison with the Sequential Circuit.	In the case of a Sequential Circuit, the performance is very slow and also comparatively lower. Its dependency on the previous inputs makes the process much more complex.	
Complexity	It is very less complex in comparison. It is because it basically lacks implementation of feedback.	This type of circuit is always more complex in its nature and functionality. It is because it implements the feedback, depends on previous inputs and also on clocks.	1
Elementary Blocks	Logic gates form the building/ elementary blocks of a Combinational Circuit.	Flip-flops form the building/ elementary blocks of a Sequential Circuit.	

SUMMER – 2022 EXAMINATION Subject Name: Digital Electronics and Microcontroller Applications Model Answer: 22421: DEM

Operation	One can use these types of circuits	You can mainly make use of
	for both- Boolean as well as	these types of circuits for storing
	Arithmetic operations.	data.

d) Draw memory organization for $\overline{EA} = 0$ and $\overline{EA} = 1$ and explain the same. Ans:

Or Equivalent diagram

The 8051 microcontrollers ignore the internal memory and start the execution of a program	2 marks
stored in external memory.	for
·	explanation

 $\overline{\mathbf{EA}} = \mathbf{1}$, When $\overline{\mathbf{EA}} = 1$, Microcontroller access the Internal memory

The 8051 Microcontroller executes the program form internal ROM and later the execution is continued by executing the program from additional memory.

4. Attempt any <u>THREE</u> of the following:

- a) Explain the following instructions:
 - (i) DAA
 - (ii) DIV AB
 - (iii)CJNE A, data, rel
 - (iv)SWAP A

Ans :

1) DAA

The **DA** instruction adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two variables (each in packed-BCD format), producing two four-bit digits. This instruction is used only after the addition, to adjust the result of addition to BCD format, this instruction can not used after subtraction.

The data is adjusted in following possible way :

1. If lower 4 bit of accumulator is greater than 9 or if AC = 1, then it adds 6 to lower 4 bit.

12 Marks

Subject Name: Digital Electronics and Microcontroller Applications Model Answer:

22421: DEM

2. If Higher 4 bit of accumulator is greater than 9 or if CY =1, then it adds 6 to higher 4 bit.
Operation : Result in accumulator = A (BCD format)
No of byte : 1
Addressing mode : Register addressing mode
Effect on flag : CY

2) DIV AB

The DIV instruction divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register B. After the division, the quotient is stored in the accumulator and the remainder is stored in the B register. The carry and OV flags are cleared.

If the B register begins with a value of 00h the division operation is undefined, the values of the accumulator and B register are undefined after the division, and the OV flag will be set indicating a division-by-zero error.

Example : DIV AB

3) CJNE A, data, rel

When this types of instructions are executed the content of accumulator get compare with the data , the comparison is done by subtracting data from Accumulator , and if A and data are not equal then program control transfer to the relative address , relative address range is -128 to 127 only. Here it does not store the result of subtraction , only affect the carry flag in following way :

- If dest = Source byte CY = 0
- If dest > Source byte CY = 0
- If dest < Source byte CY = 1

No of byte : 3 byte

Effect on flag : CY

4) SWAP A

The SWAP instruction exchanges the low-order and high-order nibbles within the accumulator. No flags are affected by this instruction.

Operation : Lower order nibble exchange with higher order nibble of Accumulator

b) Compare Harvard and Von-Neumann architecture. (Any four points)

Subject Name: Digital Electronics and Microcontroller Applications Model Answer: 2747

22421: DEM

Ans:

VON NEUMANN ARCHITECTURE	HARVARD ARCHITECTURE	1 marks for
The von Neumann type of architecture has only one set of address and data bus for accessing data memory and Program memory	The Harvard type of architecture has separate set of address and data bus for accessing data memory and Program memory	each of any four points = 4 Marks
Same physical memory address is used for instructions and data.	Separate physical memory address is used for instructions and data.	
There is common bus for data and instruction transfer.	Separate buses are used for transferring data and instruction.	
Two clock cycles are required to execute single instruction.	An instruction is executed in a single cycle.	
It is cheaper in cost.	It is costly than Von Neumann Architecture.	
CPU can not access instructions and read/write at the same time.	CPU can access instructions and read/write at the same time.	
It is used in personal computers and small computers.	It is used in micro controllers and signal processing.	

c) Design Half adder using K-Map and implement using basic logic gates. Ans:

Truth table

А	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

K-MAP For Sum

Sum = A'B + AB'

= A xor B

1 mark for K map and Expression For Sum

1 mark Truth Table

d) Realize the following equation using NAND gates only.

Carry

(Note : Marks to be given for Any other correct Realization diagram of equation)

What are the alternate functions of port 3 of 8051 micro-controller? e)

Subject Name: Digital Electronics and Microcontroller Applications Model Answer:

22421: DEM

Ans:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INT0 (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

5 Attempt any <u>TWO</u> of the following:

 5 a) Interface 8 LED's with port 1 of 8051 micro-controller. Write ALP to make LED's ON and OFF after 10 msec delays. Assume suitable data.
 Ans: Interfacing Diagram:

12 Marks

 $\frac{1}{2}$ mark for each of eight functions = 4 marks

2 marks for Diagram

OR Equivalent diagram

C= 1 μsec MOV R1,#20 MOV R2,# 250
MOV R1,#20 MOV R2,# 250
MOV R1,#20 MOV R2,# 250
MOV R2,# 250
DJNZ R2, L1
DJNZ R1,L2
RET
250* 2MC * 1 µsec= 10 msec
k

1 mark for Calculation

SUMMER – 2022 EXAMINATION										
Subject Name: Digita	al Electronics and Microcontroller Applications <u>Mode</u>	el Answer:	22421:	DEM						
Program :										
-	MOV P1,#00h //configure all lines of port P1 in output i	node								
AGAIN:	MOV P1.#00h									
	ACALL DELAY									
	MOV P1.#0FFh			3 marks						
	ACALL DELAY			For program						
	SJMP AGAIN			F 8						
DELAY:	MOV R1,#20									
L2:	MOV R2,# 230									
L1:	DJNZ R2, L1									
	DJNZ R1, L2									
	RET									

END

(NOTE: Marks to be given for any other correct logic used by students.)

5 b) Develop an ALP to arrange ten numbers stored in internal memory locations starting from 40H location in descending order.

Ans:

	ORG 0000H		
	MOV R1,#09H	// Counter 1	
START:	MOV R2,#09H	// Counter 2	
	MOV R0,#40H	// Initialize memory pointer	
	MOV A,#00H		
BACK:	MOV A,@R0		
	INC R0		
	MOV 0F0H,@R0		- 1
	CJNE A,0F0H,LOC	C1 // Compare two numbers	6 marks
	SJMP LOC3	//Carry will generate if A is less than B then jump else	FOI
LOC1:	JC LOC2	//Exchange	Program
	SJMP LOC3		Tiogram
LOC2:	DEC R0		
	MOV @R0,0F0H		
	INC R0	// points to the next number	
	MOV @R0,A		
LOC3:	DJNZ R2,BACK	//Repeat for all numbers	
	DJNZ R1,START		
	END		

(NOTE: Marks to be given for any other correct logic used by students.)

5 c) Draw architecture of 8051 Microcontroller.

Ans:

- Explain Power saving options a)
 - Idle mode (i)
 - (ii) Power down mode

Ans:

(i) Idle mode:

Idle mode is selected by setting IDL bit in PCON register.

In the Idle mode, the internal clock signal is gated off to the CPU, but not to the Interrupt, Timer and Serial Port functions.

The CPU status is preserved in its entirety, the Stack Pointer, Program Counter, Program

Status Word, Accumulator, and all other registers maintain their data during Idle

3 marks For Each mode = 6 marks

Subject Name: Digital Electronics and Microcontroller Applications Model Answer: 2247

22421: DEM

mode. The port pins hold the logical state they had at the time idle mode was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the idle mode.

- i) Activation of any enabled interrupt will cause PCON.0 to be cleared and idle mode is terminated.
- ii) Hardware reset: that is signal at RST pin clears IDEAL bit IN PCON register directly. At this time, CPU resumes the program execution from where it left off.

(ii) Power down mode:

An instruction that sets PCON.1 causes that to be the last instruction executed before going into the Power Down mode.

Power down mode can be selected by setting PD bit in PCON register. In the Power Down mode, the on-chip oscillator is stopped. With the clock frozen, all functions are stopped, but the content of on-chip RAM and Special Function Register are maintained. The port pins output the values held by their respective SFRS. ALE and PSEN are held low as 2 Volt.

Termination from power down mode: an exit from this mode is hardware reset.

6 b) Draw interfacing diagram of $8k \times 8$ program ROM with 8051 and also write memory map for same.

Ans:

Interfacing Diagram:

4 marks for Correct Diagram

Memory Map:

	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	Address
Starting Address	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000H
End address	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1FFFH

2 marks For Memory Map

(NOTE: Marks to be given for any other Correct Diagram)

Note : Marks to be given to any Correct diagram using any other type of flip flop