

Subject Name: Technology of Organic Chemicals Model Answer

Subject Code: 22410

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1	a	Raw Material for Ethanol Production • Molasses • Corn	1 mark each
1	b	Application of acetaldehyde (any 2) For the production of • Acetic Acid/Acetic anhydride • Acetate esters • Pentaerythritol • Pyridine and pyridine bases • Peracetic acid • 1,3-Butylene glycol	1 mark each for any two
1	с	Catalyst for hydrogenation of oil Nickel	2 marks
1	d	Applications of polyester Industrial polyester fibers, yarns and ropes are used in car tire reinforcements, fabrics for conveyor belts, safety belts, coated fabrics and plastic reinforcements with high-energy	1 mark each for any two

Subject Name: Technology of Organic Chemicals		e: Technology of Organic Chemicals <u>Model Answer</u> <u>Subject Code</u> : 224	10
		absorption.	
1	e	Types of Papers(any 4)	1/2 mark
		Printing Paper:- To use in office printing ,Xeroxing	each
		Wrapping Paper:- To make bags, cartoon wrapping	
		Book paper:- To make text books, handbooks	
		Tissue Paper:- to make cigarette, toilet paper, napkin papers	
		Groundwood printing paper:- To make catalogue, newsprint, poster	
		Paperboard:- boxes, cartoons	
1	f	Processes used for manufacturing of polyethylene(any 2)	1 mark
		High pressure process	each
		• Ziegler process	
		• Low process	
1		Low pressure process	2
1	g	Raw material for Raschig process	2 marks
		• Benzene	
		Hydrochloric acid	
		• Oxygen	
2	а	Block Diagram - Manufacturing of paint	2 marks
		Tints & thinners Feed tank Resins Weigh tank Oils Pigments Platform Scale	
		 Decorative and building paints Application- Flat wall paint, interior, Floor paints, heat and fire resisting Industrial and marine paints Application- ship paints, anti-fouling paints, urethane 	2 marks

Subje	ect Nam	e: Technology of Organic Chemicals	Model Answer	Subject Code:	2241	10
		The dry pure oil and nickel catalyst is t	aken in an iron cylinde	r. The cylinder has two i	nlets	
		& outlets. One inlet is used for the intro	duction of oil & the oth	er to introduce dry hydro	ogen.	2 marks
		Unused hydrogen is removed through the upper outlet, while lower outlet is used to take the			e the	
		hydrogenated oil. The cylinder is pro-	vided with stirrer insid	e it. The temp. is regu	lated	
		between1400C-180oC. From the second	d inlet, pure hydrogen g	as is well mixed with the	e oil.	
		In the cylinder oil &dry hydrogen gas an	re well mixed with mech	nanical stirrer.		
		After certain time a sample of hydro	genated oil is taken thr	ough outlet is situated a	t the	
		bottom of the cylinder. The iodine value	e of the hydrogenated oi	l is determined. If it is 60), the	
		process of hydrogenation is stopped. A	nd all the hydrogenated	d oil is taken out It is pa	assed	
		through cooler then filter pressed to rem	ove nickel particles.			
3	a	Butanol production by OXO process				
		Raw materials for butanol				1 marks
		Propylene, Hydrogen, Synthesis gas				
		Reaction				1 mark
		(a) Aldehyde step $C_3H_6 + CO + H_2$ (CH)	H₂·CH₂·CHO CH·CHO			1 mark
		(b) Alcohol step $C_3H_7CHO + H_2 = \frac{\text{Ni catalys}}{150^{\circ}\text{C}}$	$t \rightarrow C_3 H_7 C H_2 O H$			
		Process description:				
		Propylene is compressed at 150 atm an	d cobalt napthanate add	led to give 0.5 to 1 % C	O in	
		sol. This stream is passed concurrently	with CO+H ₂ stream three	ough a packed bed tower	The	2 marks
		tower contains a porous carrier with 2	% metallic cobalt dep	osited The reaction is hi	ighly	
		exothermic and temperature of 170 deg	C is controlled by recyc	ele of a portion of prod st	ream	
		after cooling The product liquid fraction	n is mixed with steam	at 180 deg C and a relat	ively	
		low pressure of 20 atm. To decompose	cobalt carbonyl and na	pthanate depositing coba	lt on	
		porous carrier as oxides				
		This cobalt is dissolved periodically in an	acid wash and converted	l in napthanate for reuse C	Crude	
		butaraldehyde from demerisation reactor	is continuously hydroger	nated using a fixed bed n	nickel	

Subj	ect Nan	ne: Technology of Organic Chemicals Model A	Answer <u>Subject Code:</u>	2243	10
		catalyst at 100 atm and 150 degC The resulting butano several fractionating column in series Light and heavy alcohol.	l are fed to a distillation column comprisi y ends are obtained in addition to the pr	ng of oduct	
3	b	Cleansing action of soap: The dirt on skin or cloth sticks due to greasy mate easily washed away. Soap molecule has a polar end carbon chain of 12 to 18 carbons). The polar end is oil soluble. Normally oil droplets in contact with v aqueous layer. The non polar ends of soap molecule carboxyl ate ends projecting into the surrounding charged carboxylic groups, each of the oil droplet droplets do not coalesce due to the repulsion betwo oil in water is formed. In this way soap cleans by dirt. Water lonic end [polar and hydroph Hydro carbon chain [non-polar and hydroph]	ter. When rubbed with soap solution, d (-COO-Na+) and a non polar end (a is water soluble while the non polar end vater tend to coalesce to form oil layer ules dissolve in the oil droplet leavin, g water. Due to the presence of negat ts surrounded by an ionic atmosphere een similar charges thus stable emulsion y emulsifying the fat or grease conta	, it is long nd is r and g the ively c. Oil on of ining	3 marks 1 mark
3	с	Difference between varnish and lacquer			1 mark each for
		Varnish Varnish is a homogenous colloidal dispersion solution of resin in oils or thinner or both. Solvent used-Oil	Lacquer Lacquers are dispersion of cellulose or other cellulose derivatives, resins and plasticizers in solvents Solvent used – Ether, alcohol, keton	es	any 4 points

Subje	ect Nam	e: Technology of Organic Chemicals	<u>Iodel Answer</u>	Subject Code:	224	10
		Manufacturing- Cooking	Manufactu	ring - Mixing		
		Mode of drying – Oxidation or polymeri	sation Mode of d	rying - Evaporation		
3	d	Production of paper from pulp				4 marks
		Conversion of fibre suspension into paper s	heet incorporates th	nree principal steps.		
		i) Forming wet-web :				
		A wet sheet is formed by running 99.5%	water-fibre slurry	evenly into a moving en	dless	
		belt of wire cloth at speed of 50 m/min for	or a fine paper to 50	00 m/min for newsprint. V	Vater	
		drain by gravity, apart is next removed	by a pressure roll	and then by suction roll.	The	
		screen also has a side wise shaking motion	on to give better in	terlocking of fibre on the	mat.	
		The water collected in this section of mac	chine is called whit	e water and is reused to o	btain	
		maximum recovery of fibre.				
		ii) Pressing the wet sheet :				
		The wet paper wheet containing about 8	0% water is fed vi	a felt roll to the press se	ction	
		where water is removed by mild pressu	re to reduce conte	ent to 60-65% water. Bor	nd or	
		water mark, if needed is formed on sheet during pressing.				
		iii) Drying of sheet :				
		The sheet from the press section has sufficient strength to carry its own weight as it passed				
		through smoothing rolls, then a series of steam heated metal cylinders where heat and				
		moisture are transferred to a felting or canvas belt running on top of the paper. As the sheet				
		leaves the east drying roll with 5-6% water, it passes through final series of pressure or				
		calendaring rolls to produce a smooth w	ell-finished paper.	It is wound on large roll	and	
		transferred to finishing department where	it may be cut, coat	ed and packaged.		
4	а	Soap by continuous process				2 marks

Subj	ect Nam	e: Technology of Organic Chemicals <u>Model Answer</u> <u>Subject Code:</u> 224	10
		Air in a g g g g g g g g g g g g g g g g g g	3 Marks 3 Marks
		The process operates in the presence of an aqueous liquid copper salt catalyst, promoted by a metal such as palladium. As follows $C_2H_4 + \frac{1}{2}O_2 \rightarrow CH_2CHO$	
		The process is operated at pressure below 50 atmosphere and at temperature of 50 to 100 $^{\circ}$ C. Typical reaction time ranges from 6 to 40 minutes.	
5	с	Condensation polymerization: In this a new bond is formed between the monomers by elimination of small molecules like water under suitable conditions of temperature and pressure. Ex. Production of phenol formaldehyde from phenol and formaldehyde monomers with condensation of water	2
		Addition polymerization : In this a new bond is formed between the monomers by elimination of small molecules like water under suitable conditions of temperature and pressure	2
		Ex. Polyethylene is produces by the addition polymerization of ethylene monomers.	
		Ivionomer of vinyl chloride	2
		$CH_2 = CH_2 + CI_2 \rightarrow CH_2 CICH_2 CI$	
		$CH_2CICH_2CI \rightarrow CH_2 = CHCI + HCI$	
6	а	Manufacturing of ethyl alcohol using corn :	
		(Reactions are not compulsory. If Students writes reactions then allot 2 Marks and 1 mark for description. Otherwise all three marks for description)	3 marks

