SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code 22409
Page 1 of 21

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 2 of 21

		Answer	Marking scheme
		Attempt any five	10
1	a	Ideal fluid: Fluid which do not offer resistance to flow/ deformation. ie it has no viscosity, it is frictionless and incompressible Real fluid: Fluid which offer resistance to flow	1
1	b	Critical velocity It is the velocity at which the flow changes from laminar to turbulent Formula to calculate critical velocity: $\mathrm{N}_{\mathrm{Re}}=\frac{\mathrm{D} \mathrm{u} \rho}{\mu}$ Critical Reynolds number $=2100$ $\mathrm{u}=\frac{\mathrm{NRe} \mu}{D \rho}=\frac{2100 * \mu}{D \rho}$	1
1	c	Flow meters used in chemical industry(any four): Orifice meter, venturimeter, rotameter, pitot tube, electromagnetic flow meter, ultrasonic flow meter, turbine flow meter, rotating vane meter, cylinder and piston type flow meter, mass flow meter etc	$1 / 2$ mark each
1	d	Pipe fitting used for i) Branching of pipe - Tee ,cross(any one) ii) Connecting pipes of different diameters- Reducer, expander(any one) iii) Changing direction of flow - Elbow / bend(any one) iv) Termination of pipeline - Plug	$1 / 2$ mark each
1	e	Net Positive Suction Head (NPSH)	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 3 of 21

		Net Positive Suction Head is the amount by which the pressure at the suction point of the pump (sum of velocity head and pressure head) is in excess of the vapour pressure of the liquid.	
1	f	Equipment used for transportation of gases in the industry (any two): Fan, blower,compressor	1 mark each
1	g	Eg of incompressible fluid with its density (any one): Water Density -1 g/cm ${ }^{3}$ or 1000kg/m³ Generally liquids are considered to be incompressible	1
$\mathbf{2}$	a	Attempt any three Define Newtonian fluid: A fluid, which obeys Newton's law of viscosity, is known as Newtonian Fluid. Generally low viscosity fluids exhibit Newtonion flow behavior Non-Newtonian fluid A fluid, which does not obey Newton's law of viscosity, is known as Non- Newtonian Fluid. Graph showing the relation between shear stress and shear rate for Newtonian and Non Newtonian fluid	1

			2
2	b	Calibration of Orificemeter It is establishing a relation between pressure drop ($\Delta \mathrm{hm}$) and volumetric flow rate Start the pump. Remove air from the manometer and experimental set up by opening the air vent valve. Allow water to flow through the orifice meter. Adjust the valve for a small flow rate. Wait till steady state is reached. Note down h_{1} and h_{2} from the U - tube manometer. Note the time taken for collecting a known volume of water. Repeat the procedure by changing the flow rate. Plot calibration curve Calibration curve	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 5 of 21

\begin{tabular}{|c|c|c|c|}
\hline 2 \& c \& \begin{tabular}{l}
Application of \\
i) Needle valve: For accurate controlling of the flow. \\
ii) Check valve: Used when unidirectional flow is required. \\
iii) Gate valve: For on-off service \\
iv) Diaphragm valve: To control the flow ie for regulating the flow
\end{tabular} \& 1 mark each \\
\hline 2 \& d \& \[
\begin{aligned}
\& \mathrm{NPSH}=\frac{P_{B-P_{V}}}{\rho}-g Z_{A}-\mathrm{h}_{\mathrm{fs}} \\
\& P_{V}= 200 \mathrm{~mm} \text { of } \mathrm{Hg}=\frac{200 * 101325}{760}=26664.47 \mathrm{~N} / \mathrm{m}^{2} \\
\& P_{B}=101325 \mathrm{~N} / \mathrm{m}^{2} \\
\& Z_{A}=1.2 \mathrm{~m} \\
\& \mathrm{~h}_{\mathrm{fs}}= 3.43 \mathrm{~J} / \mathrm{kg} \\
\& \mathrm{NPSH}=\frac{P_{B-P_{V}}}{\rho}-g Z_{A}-\mathrm{h}_{\mathrm{fs}} \\
\&=\frac{101325-26664.47}{865}-(9.81 * 1.2)-3.43=71.04 \mathrm{~J} / \mathrm{kg}=\frac{71.04}{9.8}=7.25 \mathrm{~m}
\end{aligned}
\] \& 1

3

\hline 3 \& \& Attempt any three \& 12

\hline 3 \& a \& | Hagen-Poiseuille equation. |
| :--- |
| Hagen Poiseuille equation is used for estimation of pressure drop during laminar flow of fluids through a pipe. |
| It is the relation between pressure drop during flow through pipe $(\Delta \mathrm{P})$, internal diameter of pipe(D), wall shear stress ($\tau_{\mathrm{w})}$, average velocity of flowing fluid(u) and viscosity of flowing (μ) and length of pipe (L) for laminar flow. |
| Average velocity of flowing fluid can be represented as, $\begin{equation*} u=\frac{\tau_{w} r_{w}}{4 \mu} \tag{i} \end{equation*}$ |
| Similarly, the dependence of pressure drops on shear stress, length of pipe, | \&

\hline
\end{tabular}

SUMMER-22 EXAMINATION

Model Answer
Subject title: Fluid Flow Operation
Subject code
22409

Page 6 of 21

		diameter and wall shear is expressed as, $\begin{equation*} \frac{d P}{d L}+\frac{2 \tau_{w}}{r_{w}}=0 \tag{ii} \end{equation*}$ As we are considering viscous flow, the energy loss due to skin friction is pressure energy only which can be represented as, $\begin{equation*} h_{f s}=\frac{\Delta P}{\rho} \tag{iii} \end{equation*}$ Now integrating equation (ii) for pipe of finite length 'L', we get, $\begin{equation*} \Delta P=\frac{2 \tau_{w} L}{r_{w}} \tag{iv} \end{equation*}$ Above equation can be rearranged to eliminate τ_{w}. $\begin{equation*} \therefore \tau_{w}=\frac{\Delta P r_{w}}{2 L} \tag{v} \end{equation*}$ Combining equation (i) and (v), we can write, $\begin{equation*} u=\frac{\Delta P r_{w}}{2 L} x \frac{r_{w}}{4 \mu}=\frac{\Delta P r_{w}^{2}}{8 \mu L} \tag{vi} \end{equation*}$ We can substitute $D / 2$ in place of r_{w}. Thus equation (vi) can be rewritten as, $\begin{equation*} u=\frac{\Delta P\left((D / 2)^{2}\right)}{8 \mu L}=\frac{\Delta P D^{2}}{32 \mu L} \tag{vii} \end{equation*}$ Rearranging above equation, we can write equation (vii) as, $\begin{equation*} \Delta P=\frac{32 \mu u L}{D^{2}} \tag{viii} \end{equation*}$ Above equation is Hagen-Poiseuille equation.	2
3	b	Derivation for discharge through a venturi meter by applying Bernoulli's equation In schematic representation of venturi meter, consider variables representing area, velocity and diameter at upstream section 1 and throat represented by 2 . Let the notation used for representing area, velocity and diameter are as follows.	

SUMMER-22 EXAMINATION

Model Answer
Subject title: Fluid Flow Operation \quad Subject code 22409

Page 7 of 21

SUMMER-22 EXAMINATION

Model Answer
Subject title: Fluid Flow Operation \quad Subject code 22409

Page 8 of 21

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 9 of 21

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation \quad Subject code | 22409 |
| :--- |
| Page $\mathbf{1 0}$ of $\mathbf{2 1}$ |

3	d	Industrial Applications of Blower: i. Blowers can achieve much higher pressures than fans, as high as 1.20 $\mathrm{kg} / \mathrm{cm}^{2}$. They are also used to produce negative pressures for industrial vacuum systems. ii. Blowers are used for supplying combustion air. iii. These are also used for sewage aeration. iv. For loading of dust in dust handling systems such as bag house. v. For circulation of air in ventilation system. Compressor: i. Compressors are used for compressing gas to facilitate its storage in bullets. ii. To operate pneumatic devices. iii. Compressing reactant gas as per process pressure requirements. iv. To facilitate spray painting v. In sand blasting operation.	1 mark each for any two 1 mark each for any two
4		Attempt any three	12
4	a	By referring the sketch, we can write: $\mathrm{P}_{\mathrm{b}}=\mathrm{P}_{\mathrm{Hg}}+\mathrm{P}_{\text {water }}+\mathrm{P}_{\text {oil }}+\mathrm{P}_{\text {air }}$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 11 of 21

		$\begin{aligned} & \mathrm{P}_{\mathrm{b}}=\text { Pressure exerted at bottom of tank }\left(\mathrm{N} / \mathrm{m}^{2}\right) \\ & \mathrm{P}_{\mathrm{Hg}}=\text { Pressure by mercury column }\left(\mathrm{N} / \mathrm{m}^{2}\right) \\ & \mathrm{P}_{\text {water }}=\text { Pressure by water column }\left(\mathrm{N} / \mathrm{m}^{2}\right) \\ & \mathrm{P}_{\text {oil }}=\text { Pressure by oil column }\left(\mathrm{N} / \mathrm{m}^{2}\right) \\ & \mathrm{P}_{\text {air }}=\text { Pressure by air column }\left(\mathrm{N} / \mathrm{m}^{2}\right) \\ & 300000=\mathrm{h}_{\mathrm{m}} \rho_{\mathrm{m}} \mathrm{~g}+\mathrm{h}_{\text {water }} \rho_{\text {water. }} \mathrm{g}+\mathrm{h}_{\text {oil. }} \rho_{\text {oiil }} . \mathrm{g}+\mathrm{P}_{\text {air }} \\ & 300000=0.5 * 13600 * 9.81+1.5 * 1000 * 9.81+2 * 800 * 9.81+\mathrm{P}_{\text {air }} \\ & 300000=66708+14175+15696+\mathrm{P}_{\text {air }} \\ & \mathrm{P}_{\text {air }}=\mathbf{2 0 3 4 2 1} \mathbf{N} / \mathbf{m}^{2} \end{aligned}$	2 1
4	b	Data given: $\begin{aligned} & D_{1}: 30 \mathrm{~cm}=0.3 \mathrm{~m}, \mathrm{D}_{2}: 10 \mathrm{~cm}=0.1 \mathrm{~m} \quad \mathrm{u}_{1}: 4 \mathrm{~m} / \mathrm{s}, \rho_{1}: 0.01 \mathrm{~g} / \mathrm{cm} . \mathrm{s}=0.001 \mathrm{~kg} / \mathrm{m} . \mathrm{s}, \\ & \rho_{2}: 0.025 \mathrm{~g} / \mathrm{cm} \cdot \mathrm{~s}=0.0025 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}, \mathrm{u}_{2} ? \end{aligned}$ As per the problem statement, It is mentioned that dynamic similarity is maintained. This in turn means Reynold number might be maintained same. $\begin{aligned} \therefore & N_{\text {ReWater }}=N_{\text {Reoil }} \\ & \frac{D_{w} u_{w} \rho_{w}}{\mu_{w}}=\frac{D_{\text {oil }} u_{\text {oil }} \rho_{\text {oil }}}{\mu_{\text {oil }}} \end{aligned}$ Substituting the values in above equation, we can find the velocity of oil in another pipe. $\frac{0.3 \times 4 \times 1000}{0.001}=\frac{0.1 X u_{\text {oil }} X 800}{0.0025}$ Solving above, $\mathrm{u}_{\text {oil }}: 37.5 \mathrm{~m} / \mathrm{s}$ Assuming condition of dynamic similarity, velocity of oil: $\mathbf{3 7 . 5} \mathbf{~ m} / \mathrm{s}$	1 1 1 2
4	c	Pitot tube	

SUMMER-22 EXAMINATION

Model Answer

Abstract

Subject title: Fluid Flow Operation Subject code 22409

Page 12 of 21

| | Construction:
 Pitot tube is variable head flow measuring device. In simple form, it consists
 of a single pitot tube with mouth pointing in the direction of flow. In modified
 pitot tube construction, two concentric tubes are arranged in the directions of
 flow. It is installed in flow stream of which velocity is to be measured. In case
 of simple single tube construction, rise in level of liquid above pipe cross
 section is used for calculation of velocity of flowing fluid. In case of modified
 pitot tube, differential a manometer is connected between static pressure port
 and impact pressure port. Similarly, a hole is made on the outer tube to such
 size that fluid entering through the hole represents bulk velocity or velocity of
 fluid in adjacent layer of fluid. |
| :--- | :--- | :--- |
| 4 | Rupture disc:
 A rupture disk is a device designed to function by the bursting of a pressure-
 retaining disk.
 Construction:
 This assembly consists of a thin, circular membrane usually made of metal,
 plastic, or graphite that is firmly clamped in a disk holder. The thickness and
 material of construction of rupture disc depends upon operating conditions and
 process fluid in contact. Rupture disks can be installed alone or in |

SUMMER-22 EXAMINATION

Model Answer
Subject title: Fluid Flow Operation \quad Subject code 22409

Page 14 of 21

SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 15 of 21

		Priming It does not require priming. It requires priming.	
5		Attempt any two	12
5	a	Data: Diameter of pipe : $\mathrm{d}=300 \mathrm{~mm}=0.3 \mathrm{~m}$ Discharge: $\mathrm{Q}=300 \mathrm{lit} / \mathrm{sec} .=300 * 0.001=0.3 \mathrm{~m}^{3} / \mathrm{s}$ Kinematic Viscosity $=v=0.4$ stoke $=0.4 * 0.0001=0.00004 \mathrm{~m}^{2} / \mathrm{s}$ Area of pipe $=\pi / 4 \mathrm{xd}^{2}=\pi / 4 \times(0.3)^{2}=0.07 \mathrm{~m}^{2}$ $u=\frac{Q}{A}=0.3 / 0.07=4.28 \mathrm{~m} / \mathrm{s}$ $\text { Reynolds no. }=N_{R e}=\frac{\text { diameter } * \text { velocity }}{\text { kinematic viscosity }}=\frac{d u}{v}=\frac{0.3 * 4.28}{0.00004}=32100$ As $\mathrm{N}_{\mathrm{Re}}>4000$, flow is turbulent For turbulent flow ,	1 1 1 1 1
5	b	Data: Specific gravity of oil $=0.87$ Density of oil $=0.87 * 1000=870 \mathrm{~kg} / \mathrm{m}^{3}$ $\begin{aligned} & \mathrm{D}_{1}=200 \mathrm{~mm}=0.2 \mathrm{~m} \\ & \mathrm{D}_{2}=500 \mathrm{~mm}=0.5 \mathrm{~m} \\ & \mathrm{P}_{1}=9.81 \mathrm{~N} / \mathrm{cm}^{2}=98100 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{P}_{2}=? \\ & \mathrm{Z}_{1}=0 \mathrm{~m} \text { (assume as datum level) } \end{aligned}$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 16 of 21

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
\[
\begin{aligned}
\mathrm{Z}_{2} \& =4 \mathrm{~m} \\
\mathrm{Q} \& =200 \mathrm{lit} / \mathrm{s}=0.2 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
\] \\
Let us calculate velocities at point 1 and point 2 \\
Area at point \(1,=A_{1}=\pi / 4\left(D_{1}\right)^{2}=\pi / 4(0.2)^{2}=0.0314 \mathrm{~m}^{2}\) \\
Area at point \(2, A_{2}=\pi / 4\left(D_{2}\right)^{2}=\pi / 4(0.5)^{2}=0.19625 \mathrm{~m}^{2}\) \\
Let's find out the velocity of water at point A and B
\[
\begin{aligned}
\& \mathrm{As} \mathrm{Q}=\mathrm{uA} \\
\& \mathrm{u}_{1}=\mathrm{Q} / \mathrm{A}_{1}=\frac{0.2}{0.0314}=6.37 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
Similarly \(\mathrm{u}_{2}=\mathrm{Q} / \mathrm{A}_{2}=\frac{0.2}{0.19625}=1.019 \mathrm{~m} / \mathrm{s}\) \\
As per Bernoulli's equation, \\
Total energy at point \(1=\) Total energy at point 2 (neglecting frictional losses)
\[
\begin{aligned}
\& \frac{P_{1}}{\rho g}+\frac{u_{1}^{2}}{2 g}+Z_{1}=\frac{P_{2}}{\rho g}+\frac{u_{2}^{2}}{2 g}+Z_{2} \\
\& \frac{98100}{870 * 9.81}+\frac{6.37^{2}}{2 * 9.81}+0=\frac{P_{2}}{870 * 9.81}+\frac{1.019^{2}}{2 * 9.81}+4 \\
\& 11.49+2.068=\frac{P_{2}}{8534.7}+0.0529+4 \\
\& 9.5051=\frac{P_{2}}{8534.7} \\
\& \mathrm{P}_{2}=\mathbf{8 1 1 2 3 . 1 7} \mathbf{~ N} / \mathbf{m}^{2}=\mathbf{8 . 1 1 2 3} \mathbf{N} / \mathbf{c m}^{2}
\end{aligned}
\]
\end{tabular} \& 1
1
1
2

2

\hline 5 \& c \& | Gear Pump: |
| :--- |
| Construction: |
| It consists of two toothed gear wheels (spur gears) enclosed in a casing which is provided with inlet and outlet connections for the liquid to be pumped. Of the two gear wheels, one is driven by an electric drive and other rotates in mesh with it. | \& 2

\hline
\end{tabular}

Subject title: Fluid Flow Operation \quad Subject code 22409

Page 17 of 21

| | Working:
 The liquid to be pumped enters in pump through the inlet connection. As one
 of the gear wheel is driven by the electric motor, the other gear wheel also
 rotates inside the casing. Due to rotation of both the gear wheels, there is
 reduction in pressure at the inlet. Therefore the liquid entered in casing is
 carried round in the space between the gear teeth \& the casing during the
 rotation of the gear wheels \& after further rotation the liquid is pumped out of
 the discharge side as the teeth come into mesh. |
| :--- | :--- | :--- |
| 6 | Attempt any TWO of the following |
| 6 | Data:
 Diameter of pipe $=\mathrm{D}=20 \mathrm{~cm}=0.2 \mathrm{~m}$
 Diameter of throat $=\mathrm{D}$
 Specific $=10$ cm $=0.1 \mathrm{~m}$
 Density of oil $=\rho$ of oil $=0.8$
 Specific gravity of mercury $=0.8 * 1000=800 \mathrm{~kg} / \mathrm{m}^{3}$
 Density of mercury $=\rho$
 Coefficient of venturimeter $=13.6 * 1000=13600 \mathrm{~kg} / \mathrm{C}^{3}=0.98$ |

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 18 of 21

		$\Delta \mathrm{h}=$ Difference in levels in mercury manometer $=30 \mathrm{~cm}=0.3 \mathrm{~m}$ The flow equation of venturimeter is $Q=\frac{C_{v} A_{T} \sqrt{2 * g * \Delta H}}{\sqrt{1-\beta^{4}}}$ Area of throat $=A_{T}=\pi / 4 * D_{T}^{2}=\pi / 4 *(0.1)^{2}=0.00785 \mathrm{~m}^{2}$ $\beta=\frac{\mathrm{DT}}{D} \quad=\frac{0.1}{0.2}=0.5$ $\Delta H=$ Difference in levels in terms of oil $\begin{aligned} \Delta H & =\Delta h \frac{\left(\rho_{H g}-\rho_{\text {oil }}\right)}{\rho_{\text {oil }}}=0.3 \frac{(13600-800)}{800}=4.8 \mathrm{~m} \text { of oil } \\ Q & =\frac{0.98 * 0.00785 \sqrt{2 * 9.81 * 4.8}}{\sqrt{1-0.334^{4}}}=\frac{0.07462}{0.9682} \\ Q & =\mathbf{0 . 0 7 7} \mathbf{~ m}^{3} / \mathbf{s}=\mathbf{7 7 . 0 7} \mathbf{~ l i t} / \mathbf{s} \end{aligned}$	1 1 1 1 1 1
6	b	Data: Pipe length: 800 m Pipe $\mathrm{ID}=70 \mathrm{~mm}=0.07 \mathrm{~m}$ Density of fluid $=1900 \mathrm{~kg} / \mathrm{m}^{3}$ Viscosity $=0.07$ Poise $=0.007 \mathrm{~kg} / \mathrm{ms}$ Height $=25 \mathrm{~m}$ Pump efficiency $=60 \%$ Mass flow rate $=\dot{m}=2.5 \mathrm{~kg} / \mathrm{sec}$ Area of pipe: $\mathrm{A}=\pi / 4 \mathrm{D}^{2}=\pi / 4^{*}(0.07)^{2}=0.0038 \mathrm{~m}^{2}$ Bernoulli's equation for pump work is $\frac{P_{1}}{\rho}+\frac{\alpha_{1} \cdot u_{1}^{2}}{2}+g Z_{1}+\eta W_{p}=\frac{P_{2}}{\rho}+\frac{\alpha_{2} \cdot u_{2}^{2}}{2}+g Z_{2}+h_{f} \quad e q I$ $P_{1}=P_{2}=101.325 \mathrm{~N} / \mathrm{m} 2$ as both open to atmosphere $\alpha_{1 .}=\alpha_{2}$.	1

SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 19 of 21

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
\(\mathrm{u}_{1}\) is negligible as compared to velocity at station 2 \\
\(\mathrm{Z}_{1}=0\) (Assuming datum level as surface of liquid in tank) \\
\(\mathrm{Z}_{1}=25 \mathrm{~m}\) \\
\(\eta=0.6\) \\
\(W_{p}=\) Pump work in \(\mathrm{J} / \mathrm{kg}\)
\[
\mathrm{U}_{2}=v=\frac{\dot{m}}{\rho A}=\frac{2.5}{1900 * 0.0038}=0.34 \mathrm{~m} / \mathrm{s}
\] \\
Eq.I becomes \(\boldsymbol{\eta} \boldsymbol{W}_{\boldsymbol{p}}=\frac{\boldsymbol{u}_{2}^{2}}{2}+\boldsymbol{g} \boldsymbol{Z}_{2}+\boldsymbol{h}_{\boldsymbol{f}} \quad\) eq II \\
Head loss due to friction \\
\(h_{f}=\frac{4 f L u^{2}}{2 D} \quad\) Where \(f=\) friction factor
\[
N_{R e}=\frac{D \cdot u_{2} \rho}{\mu}=\frac{0.07 * 0.34 * 1900}{0.007}=6460
\] \\
\(N_{R e}>4000\), Flow is turbulent flow \\
Therefore \(f=\frac{0.078}{\left(N_{R e}\right)^{0.25}}=\frac{0.078}{(6460)^{0.25}}=0.0087\)
\[
h_{f}=\frac{4 * 0.0087 * 825 *(0.34)^{2}}{2 * 0.07}=23.7 \mathrm{~J} / \mathrm{kg}
\] \\
Putting all the values in eq.II
\[
\begin{gathered}
0.6 W_{p}=\frac{(0.34)^{2}}{2}+9.81 * 25+23.7 \\
0.6 W_{p}=269
\end{gathered}
\]
\[
W_{p}=448.35 \mathrm{~J} / \mathrm{kg}
\] \\
Power required \(=\dot{m} \cdot W_{p}=2.5 * 448.35=\mathbf{1 1 2 0 . 9} \mathbf{~ J} / \mathbf{s}=1120.9 \mathrm{~W}\)
\end{tabular} \& 1

1
1
1
1
1
1

\hline 6 \& c \& | Steam Jet Ejector |
| :--- |
| Construction: Basic ejector components are the steam chest, nozzle, suction | \&

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-22 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation \quad Subject code | 22409 |
| :---: |
| Page 20 of 21 |

| for entrained fluid, diffuser and the discharge. Diffuser consists of three parts- | |
| :--- | :--- | :--- | :--- |
| converging section, throat and diverging section | |
| Working: | |
| Steam at about 7 atm is admitted to a converging-diverging nozzle, from | |
| which it issues at supersonic velocity into a diffuser cone. The air or other gas | |
| to be moved is mixed with the steam in the first part of the diffuser, lowering | |
| the velocity to acoustic velocity or below. In the diverging section of the | |
| diffuser, the kinetic energy of the mixed gas is converted to pressure energy so | |
| that the mixture can be discharged directly to atmosphere. | |
| Diagram: | 2 |

Subject title: Fluid Flow Operation \quad Subject code 22409

Page 21 of 21

