(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

22407

Page **1** of **21**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8)As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

SUMMER-22 EXAMINATION

Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

22407

Page 2 of 21

Q No.		Answer	Marking
			scheme
	1	Attempt any five	10
1	a	Principle of Positive displacement meter:	2
		As the liquid flows through the meter, it separates the flow of liquid into	
		separate known volumetric increments which are counted and totaled. The sum	
		of the increments gives the measurement of the total volume of liquid passed	
		through the meter.	
		(OR)	
		These meters have two chambers of known volumetric capacity and they are	
		arranged so that when one chamber is being filled, the other is being emptied.	
		For measuring the total flow over a certain period, the fluid is continuously	
		filled and emptied from the chamber and then the number of times the	
		chamber is being filled and emptied in that period is counted which when	
		multiplied by the volumetric capacity of the chamber gives the total flow.	
1	b	Diagram of Metallic diaphragm gauge	2
		pointer Poi	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject title: Chemical Process Instrumentation & Control Subject code

1	c	Definition	
		Measurement:	1
		Measurement is a comparison of a given unknown quantity with one of its	
		predetermined standard value adopted as aunit	
		Calibration:	
		It is defined as the process for determination, by measurement or comparison	1
		with a standard, of the correct value of each scale reading on a meter or other	
		measuring instrument.	
1	d	Definition of control system:	2
		A control system is defined as a system of devices that manages commands,	
		directs, or regulates the behavior of other devices or systems to achieve a	
		desired result. A control system achieves this through control loops, which are	
		process designed to maintain a process variable at a desired set point.	
1	e	Indirect methods of liquid level measurement (any two):	1 mark each
		Pressure gauge, air purge, radioactive, ultrasonic, capacitive	
1	f	Advantages of LVDT(any two):	1 mark each
		(i) High range for measurement	
		(ii) Frictionless device	
		(iii)Nor affected due to external environment	
		(iv)High sensitivity	
		(v) Low hysteresis	
		(vi)Low power consumption	
		(vii) Easy to align and maintain	
		(viii) Less weight	
		(ix)Small size	

		(ISO/IEC - 27001 - 2005 Certified) SUMMER-22 EXAMINATION <u>Model Answer</u>	
t titl	e: Cł	nemical Process Instrumentation & Control Subject code 22407	7
1	g	$^{\circ}C = (5/9 (^{0}F - 32))$ 98°F = 36.66°C	2
2		Attempt any three	12
		Diagram	2
2	b	Transmitter is the source of ultrasonic oscillations such as piezo-element like Quartz, which is positioned at the top or bottom of the vessel. The ultrasonic waves from the transmitter reach the material surface from where they get reflected back and these reflected waves are received by the receiver. The time interval from the instant of an emission of the waves to the reception of the reflected rays is measured, which varies with liquid level. Use of Dead weight tester for calibration of pressure gauge Diagram:	2
			2

t title	e: Ch	nemical Process Instrumentation & Control Subject code 2240	7
		First a known (calculated) weight is placed on the platform and the fluid pressure is applied on the other end of the piston until enough force is developed to lift the piston-weight combination and the piston floats freely within the cylinder when the fluid gauge pressure equals the dead weight	2
		developed to lift the piston-weight combination and the piston floats freely within the cylinder when the fluid gauge pressure equals the dead weight	
		divided by the piston area.	
2	с	Factors to be considered for valve selection(any four) :	1 mark eac
		The basic steps in control valve selection are	
		1. The first step in control valve selection involves collecting all relevant data	
		and completing the ISA Form S20.50. The piping size must be set prior to	
		valve sizing, and determining the supply pressure may require specifying a	
		pump	
		2. The size of the valve is required; select the smallest valve Cv that satisfies	
		the maximum Cv requirement at 90% opening. While performing these	
		calculations, checks should be made regarding flashing, cavitation, sonic flow	
		and Reynolds number to ensure that the proper equation and correction factors	
		are used. As many difficulties occur due to oversized valves as to undersized	
		valves. Adding lots of "safety factors" will result in a valve that is nearly	
		closed during normal operation and has poor rangeability.	
	1		1

SUMMER-22 EXAMINATION

Model Answer

t title:	Chemical Process Instrumentation & Cont	rol Subject code	22407
	3. The trim characteristic is selected to	provide good performance; goo	als are
	usually linear control loop behaviour a	long with acceptable rangeabili	ty.
	4. The valve body can be selected. The	e valve size is either equal to the	e pipe
	size or slightly less, for example, a 3-in	nch pipe with a 2-inch globe val	ve body.
	When the valve size is smaller than the	e process piping, an inlet reduce	r and
	outlet expander are required to make c	onnections to the process piping	g.
	5. The actuator is now selected to prov	vide sufficient force to position t	he stem
	and plug.		
	6. Finally, auxiliaries can be added to	enhance performance. A booste	r can be
	increase the volume of the pneumatic s	signal for long pneumatic lines	and large
	actuators. A positioner can be applied	for slow feedback loops with la	rge
	valves or valves with high actuator for	ce or friction. A hand wheel is i	needed if
	manual operation of the valve is expec	eted.	
2 d	Difference between resistance therm	ometer and thermistor(four p	ooints) 1 mark
	Resistance thermometer	Thermistor	
	1. Made of metals	Made of metallic oxides	
	2. Has positive temperature	Has both positive and negative	/e
	coefficient of resistance	temperature coefficient of res	istance
	3. Resistance change is small,	Large and non linear	
	positive and linear.		
	positive and linear. 4. Better reproducibility and	Low reproducibility and more	re
	positive and linear. 4. Better reproducibility and low hysteresis	Low reproducibility and more hysteresis	re
	 positive and linear. 4. Better reproducibility and low hysteresis 5. Relatively bigger in size 	Low reproducibility and more hysteresis Quite small in size	re

SUMMER-22 EXAMINATION

Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

3		Attempt any three				
3	a	Mcleod Gauge				
		Working:				
		To operate the gauge, the piston is first withdrawn, causing the level of				
		mercury in the lower part of the gauge to fall below the level of the junction				
		between the two tubes. The unknown pressure source is connected to the				
		gauge from where it also flows and fills the bulb and capillary. Next, the piston is pushed in, moving the mercury level up to block the junction. At this stage, the fluid in the capillary and the bulb is at pressure P. Further movement of the				
	piston compresses the fluid in the tube and the mercury level is raised till it					
		mercury column in the capillary allows the calculation of the compressed				
		volume of the fluid.				
		The expression for calculating the unknown pressure is				
		$P = A \rho g y 2 / V$				
		Where A is capillary area				
		ρ is density of fluid				
		y is height above the mercury column in capillary				

SUMMER-22 EXAMINATION Model Answer

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

t title: C	hemical Process Instrumentation & Control Subject code 22407	
		Page
	quantity for which there is no output of the instruments. It is basically	
	range of input value forwhichoutput is zero. Dead zone is also known	
	as Dead band or dead space or neutral zone	
	(iv)Drift: Drift is the gradual shift in the indication or record of the	
	instrument over an extended period of time during which the true value	
	of the variable does not change.	
4	Attempt any three	12
4 a	Diagram of	
	Spiral bourdon tube	
	Pointer Scale	
	Spiral Tube	2
	Pressure	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject code Subject title: Chemical Process Instrumentation & Control 22407 conducting liquid as the dielectric medium. These two conductors are connected to capacitance detecting element. 4 c Functional elements for measurement of any physical system: **Block Diagram:** Primary Secondary Variable Data Data Measy Measu. 2 Present. ation element Obse Sensing maniputransfe red red lement Pre Ving Mediuga lation quanti element **Explanation:** The main functional elements of a measurement system are: i) Primary sensing element ii) Variable conversion element iii) Variable manipulation element iv) Signal conditioning element Data transmission element v) vi) Data presentation element. 2 The primary sensing element of an instrument is that which first receives energy from the measured medium and produces an output depending in some way on the value of measured quantity. A variable conversion element converts the output signal of the primary sensing element in to a more suitable variable or condition useful to the function of the instrument. A variable manipulation element manipulates the signal represented by some physical variable to perform the intended task of an instrument. A data transferring element transmits the data from one element to another. A data presentation

Page **13** of **21**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

		element performs the translation function such as indication of pointer moving	
		on a calibrated scale.	
4	d	Types of control valve:	
		1. Based on number of plugs:	
		Control valves can be classified as single seated valve and double	
		seated valve	
		2. Based on action:	
		Control valves operated through pneumatic actuators can be either air	
		to open or air to close	1 mark each
		3. Based on flow characteristics	for any
		Control valves can be classified as quick opening valve, linear	three
		opening valve, equal percentage valve.	classificatio
		4. Based on construction	n
		1. Angle Valve	
		2. Globe valve	
		3. Diaphragm Valve	
		4. Butterfly valve	
		5. Rotary valve	
		6. Ball valve	
		7. Sliding cylinder valve	
		Function ofValve actuator:	
		It is that portion of the valve that responds to the applied signal and results in	
		the movement of the stem due to which the flow rate of fluid changes. It	1
		consists of diaphragm, stem and diaphragm returning spring	
4	e	Classification of temperature measurement:	
1	1		

SUMMER-22 EXAMINATION

Model Answer

t title:	Chemical Process Instrumentation & Control Subject code 2240	7	
			Page
	Q = by		
	Q- Flow rate at constant pressure drop		
	b - constant		
	y - valve opening / valve stem travel		
	(ii) Equal Percentage inherent flow characteristics : In equal percentage		
	valve equal increment of the stem travels give equal % change of the		
	existing flow	2	
	$Q = be^{ay}$		
	Q= Flow rate at constant pressure drop		
	a& b = constant		
	e = base of natural logarithms		
	y = valve opening / valve stem travel		
	(iii)Quick opening characteristics: A relatively small motion of the valve		
	stem results in maximum possible flow rate through the valve.	2	
	$(iv)Q = \sqrt{y}$		
	Where Q= Flow rate at constant pressure drop		
	y = valve opening / valve stem travel		
5 c	Radiation pyrometer:		
	Construction: It consists of a lens, diaphragm, radiation receiving element,		
	sighting hole and recorder or indicator. Lens is used to concentrate the radiant		
	energy from the hot source on the diaphragm and on the thermopile. Sighting	2	
	glasses enable the proper line of sight and proper focus to be established.		
	Diagram:		

		Hot Body					
		Work by the thermo the tar of rac Seeber to term develo	ing: Radiation of all possible e lens on the radiation receiv occuple is used as radiation r rget is focused on the blacker liant energy, the measuring ck effect, emf is developed be operature difference between r oped is calibrated in terms eter or Wheatstone bridge circ	wave lengths from a hot body is foc ing element. When thermopile or receiving element, the radiant energy ned measuring junction. Due to abs junction temperature rises. Accor etween output leads which are prop measuring and reference junction. To of target temperature by using of uit.	eused vacuum gy from sorption ding to ortional The emf either a	2	
6		Attem	pt any TWO of the followin	g		12	
6	a	Differ	ence between open loop and	closed loop control system (any s	ix).	1 mark each	
		Sr No.	Open loop control system	Closed loop control system			
		1	Feedback doesn't exists	Feedback exists			
		2	Output measurement is not necessary	Output measurement is necessary			
		3	Any change in output has no effect on input	Changes in output affects the input			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION

Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

	4	Error detector is absent	Error detector is present		
	5	Inaccurate and unreliable	Highly accurate and reliable		
	6	Highly sensitive to	Less sensitive to disturbance		
		disturbance			
	7	Highly sensitive to	Less sensitive to environmental		
		environmental changes	changes		
	8	Simple in construction and	Complicated in construction and		
		cheap	hence costly		
	9	Highly affected by non-	Reduced effect of non-linearity		
		linearities			
6 b	Air p	urge method:			
	Diag	ram:			
	Cons	truction: It consists of a 1 inch	Bubbler pipe Bubbler pipe	aving d. The	2

SUMMER-22 EXAMINATION Model Answer

SUMMER-22 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control Subject code

22407

It consists of a nozzle flapper assembly and a relay. The nozzle back pressure is controlled by the nozzle flapper distance. A feedback bellows and spring is 2 added to the bottom of the flapper. A variable restriction known as derivative restriction is introduced in to the line leading to the feedback bellows. Reset bellows and an adjustable restriction known as integral restriction calibrated in time units provide reset or integral control action. Working: As the input error increases, baffle is moved towards the nozzle increasing the control output through the relay. This change in output pressure is applied to 2 the bellows further closing the nozzle and increasing the output to the maximum. The nozzle back pressure is controlled by the nozzle flapper distance. A derivative restriction is introduced into the line leading to the feedback bellows. Reset or integral action increases the gain of the controller. Greater the restriction imposed upon the flow of air to the feedback bellows, greater will be the pressure drop across the restriction and greater will be the increase of pressure due to derivative action. The rate at which integral action is applied depends on the rate at which air flows through the integral restriction. By causing both positive and negative feedback to lag the output pressure, both rate and reset action may be obtained which is known as PID

control action.