SUMMER - 2022 EXAMINATION

Subject Name: Theory of Structure

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Sub } \\ \text { Q. N. } \end{gathered}$	Answer	Marking Scheme
Q-1		Attempt any FIVE of the following:	10 M
	a) Ans.	Define core of the section. Core of a section: Core of the section is that portion around the centroid in within which the line of action of load must act, so as to produce only compressive stress is called as core of the section. OR It is also defined as the region or area within which if load is applied, produces only compressive resultant stress. OR If Compressive load is applied, the there is no tension anywhere in the section. $\mathrm{e}_{\text {max }}=\mathrm{d} / 8$ $\mathrm{e}=$ Core of section For Circular section	2 M 1 M 01 M

b) Give relationship between bending moment, slope and deflection.

Ans.

$$
\frac{d_{2} \mathrm{y}}{d x^{2}}=\frac{\mathrm{M}}{\mathrm{EI}}
$$

Where,
$\theta=$ Slope at any section
Y = Deflection of Beam
$\mathrm{M}=$ Bending Moment
$\mathrm{E}=$ Modulus of Elasticity
I=Moment of Inertia
c)

State the effect of continuity in continuous beam.
Solution:
Ans. Effect of continuity: If a beam is continuous, over the support, a hogging moment is developed at that support which tries to bring the beam back to its equilibrium condition, as it was before loading. Thus the beam deflection and consequently the load carrying of the is increased. Effects of continuity are as follows.
i) Produces support moment of hogging nature.
ii) Reduces bending moment along the span.
iii) Reduces deflection and increases load carrying capacity.
iv) Sagging moment occurs at mid span.

d)

Define
i) Carry over factor
ii) Stiffness factor

Ans.
i) Carry over factor: It is the ratio of moment produced at a joint to apply at the other end of the member. it is $(1 / 2)$.
ii) Stiffness factor: It is the moment required to obtain unit rotation at an end without translating it.

Q-2		Attempt any FIVE of the following:	12 M
	a)	Derive the expression for limit of eccentricity for rectangular section (b x d) dimensions. Solution: Let us consider a rectangular section of width b and thickness d as shown in fig. Area of section, $\mathrm{A}=\mathrm{bx} \mathrm{d}$ $\begin{aligned} & \mathrm{Zxx}=\frac{\mathrm{I}_{\mathrm{Xx}}}{\mathrm{Y}_{\max }}=\frac{\frac{b d^{3}}{12}}{\frac{d}{2}}=\frac{b d^{2}}{6} \\ & \mathrm{Zyy}=\frac{\mathrm{I}_{\mathrm{yy}}}{\mathrm{Y}_{\max }}=\frac{\frac{d b^{3}}{12}}{\frac{b}{2}}=\frac{d b^{2}}{6} \end{aligned}$ For no tension condition, $\begin{aligned} & \mathrm{e} \leq \frac{\mathrm{Zxx}}{\mathrm{~A}} \quad \text { and } \mathrm{e} \leq \frac{\text { Zyy }}{\mathrm{A}} \\ & \mathrm{e} \leq \frac{\frac{b d^{2}}{6}}{b d} \text { and } \mathrm{e} \leq \frac{\frac{d b^{2}}{6}}{b d} \\ & \mathrm{e} \leq \frac{d}{6} \quad \text { and } \mathrm{e} \leq \frac{b}{6} \\ & \text { ie } \\ & \mathrm{e}_{\mathrm{x}}=\frac{d}{6} \quad \text { and } \mathrm{e}_{\mathrm{y}}=\frac{b}{6} \quad \end{aligned} \quad 2 \mathrm{e}_{\mathrm{x}}=\frac{d}{3} \quad \text { and } \quad \text { 2 } \mathrm{e}_{\mathrm{y}}=\frac{b}{3}$	4 M $1 / 2 \mathrm{M}$ 1 M $1 / 2 \mathrm{M}$

SUMMER - 2022 EXAMINATION

Subject Name: Theory of Structure
Model Answer
Subject Code: 22402

\begin{tabular}{|c|c|c|c|}
\hline Q-3 \& \& Attempt any THREE of the following \& 12 M \\
\hline \& \multirow{6}{*}{Ans} \& Using Macaulay's method calculate slope under point load of 15 KN acting at 3 m from left hand support of simply supported beam of span 5 m in terms of EI. \& 4 M \\
\hline \& \& \begin{tabular}{l}
\[
\begin{array}{ll}
\Sigma \mathrm{Fy}=0, \& \mathrm{R}_{A}+\mathrm{R}_{B}=15 \\
M @ A=0, \& R B \times 5=15 \times 3, \\
R B=9 \mathrm{KN}, \& R A=6 \mathrm{KN}
\end{array}
\] \\
Consider section at \(x\) - \(x\) distance from Support \(A\)
\[
\begin{aligned}
\& \mathrm{Mx}=\mathrm{R}_{\mathrm{A}} \cdot \mathrm{xX}-15(\mathrm{X}-3) \\
\& \text { But } \mathrm{Mx}=\mathrm{El} \frac{d^{2} y}{d x^{2}}
\end{aligned}
\]
\end{tabular} \& \\
\hline \& \& \[
\text { EI } \frac{d^{2} y}{d x^{2}}=9 \mathrm{X}-15(\mathrm{X}-3)
\]
\(\qquad\) Equation 1 \& \(1 / 2 \mathrm{M}\)
\(1 / 2 \mathrm{M}\) \\
\hline \& \& \begin{tabular}{l}
Integrating Equation 1 , we get \\
El \(\frac{d y}{d x}=9 X^{2} / 2-15(X-3)^{2} / 2+\mathrm{C}_{1} \quad\) slope equation 2 \\
Integrating Equation 2, we get \\
El \(y=9 X^{3} / 6-15(X-3)^{3} / 6+C_{1} X+C_{2} \quad\) equation 3
\end{tabular} \& 1/2 M \\
\hline \& \& \begin{tabular}{l}
To calculate \(C_{2}\) apply boundary condition put \(x=0, y=0\) in equation 3 , we get
\[
\begin{aligned}
\& 0=0+0+C_{2} \\
\& C_{2}=0
\end{aligned}
\] \\
To calculate \(C_{1}\), apply boundary condition, at \(x=5, y=0\) in equation 3
\end{tabular} \& \(1 / 2 \mathrm{M}\)
01 M \\
\hline \& \& \begin{tabular}{l}
\[
\begin{aligned}
\& 0=6 \times \frac{5^{3}}{6}-15 \frac{(5-3)^{3}}{6}+C_{1} \times 5+0 \\
\& C_{1}=-21
\end{aligned}
\] \\
To calculate slope under point load, put \(x=3 m\) in slope equation 2 , we get
\[
\text { El } \frac{d y}{d x}=6 \times \frac{3^{2}}{2}-15 \times \frac{(3-3)^{2}}{2}-21=6
\] \\
\(\frac{d y}{d x}=6 /\) EI \(\quad\) Slope under point load.
\end{tabular} \& \(1 / 2 \mathrm{M}\)

$1 / 2 \mathrm{M}$

\hline
\end{tabular}

SUMMER - 2022 EXAMINATION

SUMMER - 2022 EXAMINATION

\begin{tabular}{|c|c|c|c|}
\hline \& d. Ans. \& \begin{tabular}{l}
\[
\begin{align*}
\& \mathrm{M}_{\mathrm{A}}=\frac{-W_{1} \cdot a_{1} \cdot b_{1}{ }^{2}}{L^{2}}-\frac{W_{2} \cdot a_{2} \cdot b_{2}{ }^{2}}{L^{2}}=\frac{-F x 1 \cdot 5 x 5 \cdot 5^{2}}{7^{2}}-\frac{15 x 4 x 3^{2}}{7^{2}}=-0.92 \mathrm{~F}-11.02 \tag{1}\\
\& \mathrm{M}_{\mathrm{B}}=\frac{-W_{1} \cdot b_{1} \cdot a_{1}{ }^{2}}{L^{2}}-\frac{W_{2} \cdot b_{2} \cdot a_{2}{ }^{2}}{L^{2}}=\frac{-F x 5 \cdot 5 \times 1.5^{2}}{7^{2}}-\frac{15 x 3 x 4^{2}}{7^{2}}=-0.25 \mathrm{~F}-14.93 \tag{2}
\end{align*}
\] \\
To get value of ' \(F\) ', use \(M_{A}=M_{B}\) \\
(Given)
\[
-0.92 \mathrm{~F}-11.02=-0.25 \mathrm{~F}-14.93
\]
\[
0.67 \mathrm{~F}=3.91
\]
\[
\mathrm{F}=5.835 \mathrm{KN} .
\] \\
Explain the concept of fixity with effect in fixed beam \\
If simply supported beam is considered subjected to any pattern of loading, beam bends and slopes will be developed at the ends. If however, the ends of beam are firmly built in supports i.e. ends are fixed, slopes at the supports are zero. Fixity at ends induces end moments. Due to fixity, deflection of beam at center of beam is also reduced as compared to simply supported beam. \\
Simply supported beam \\
Fixed Beam
\end{tabular} \& \begin{tabular}{c}
01 M \\
01 M \\
01 M \\
\\
\\
4 M \\
2 M \\
\hline
\end{tabular} \\
\hline Q-4 \& \& Attempt any THREE of the following \& 12 M \\
\hline \& a. Ans. \& \begin{tabular}{l}
Explain the concept of imaginary zero span in case of Clapeyron's theorem. \\
When the ends of the continuous beam are fixed, then an imaginary zero span is taken or considered to the left or right of the support as the case may be and the Clapeyron's theorem is applied to an imaginary span and its adjacent span. \\
From the following Fig, the concept of zero span is well understood. \\
The end A is fixed, hence assume an imaginary span A0A, (called as zero span) to the left of A so as to apply Clapeyron's theorem for span A0A, and AB
\end{tabular} \& \(4 M\)
\(2 M\)

$1 M$

\hline
\end{tabular}

SUMMER - 2022 EXAMINATION

SUMMER - 2022 EXAMINATION

		Fixed end moment at End A is $=\mathbf{- 5} \mathbf{K N} / \mathbf{m}$ (- ve sign indicates hogging moments) Draw μ^{\prime} diagram for above value. Steps 2) Calculate free end moments considering beam to be simply supported. For span AB $\mathrm{M}_{\max }=\frac{W L}{4}=\frac{5 x 4}{4}=5 \mathrm{kN} / \mathrm{m}$ Draw μ diagram for above value.	1 M
Q-5		Attempt any Two of the following:	12 M
	a Ans.	Calculate slope and deflection at free end of cantilever beam as shown in figure no. 06 having cross section 160 mm width and 220 mm depth. Using standard formulae and take $\mathbf{E}=201$ GPa $-$ Step 01: Moment of Inertia about X-X Axis $=\frac{b d^{3}}{12}=\frac{160 \times 220^{3}}{12}$ $\mathrm{Ixx}=141.97 \times 10^{6} \mathrm{~mm}^{4}$ Step 02: To find the slope at free end i.e. point B $\begin{aligned} & \boldsymbol{\theta B}=\boldsymbol{\theta} \boldsymbol{m a x}=\frac{W l^{3}}{6 E I}=\frac{20 \times 3000^{3}}{6 \times 201 \times 10^{3} \times 141.97 \times 10^{6}} \\ & \boldsymbol{\theta B}=\boldsymbol{\theta} \boldsymbol{m a x}=3.15 \times 10^{-3} \text { radian } \end{aligned}$ Step 03: To find the deflection at free end i.e. point B . Let, $\mathrm{Y}_{\mathrm{B}}=$ Deflection at free end $\mathrm{Y}_{\mathrm{B}}=\frac{-W l^{4}}{8 E I}=-\frac{20 \times 3000^{4}}{8 \times 201 \times 10^{3} \times 141.97 \times 10^{6}}=-7.09 \mathrm{~mm}(\text { Downward })$	6M

SUMMER - 2022 EXAMINATION

Subject Name: Theory of Structure
Model Answer
Subject Code: 22402

		The general bending moment equation at a distance X from D . (Considering, Clockwise moment $+\mathrm{Ve} \&$ Antilock wise moment -ve) $\begin{align*} \left(\text { EI } x \frac{d^{2} y}{d x^{2}}\right) & =M x-x \\ = & (3 \cdot x)+5(x-3)+2(x-5) \tag{i} \end{align*}$ Integrating above eq.(i) w. r. to x $\begin{equation*} \left(\operatorname{EI~x} \frac{d y}{d x}\right)=3 \frac{x^{2}}{2}+5 \frac{(x-3)^{2}}{2}+2 \frac{(x-5)^{2}}{2}+\mathrm{C}_{1} \tag{ii} \end{equation*}$ (Slope Equation) Integrating above eq.(ii) w. r. to x $(\text { EI x y })=\frac{3}{2} \mathrm{x} \frac{x^{3}}{3}+\frac{5}{2} \mathrm{X} \frac{(x-3)^{3}}{3}+\frac{2}{2} \mathrm{x} \frac{(x-5)^{3}}{3}+\mathrm{C}_{1} \cdot \mathrm{x}+\mathrm{C}_{2}$ $(E \operatorname{Ixy})=\frac{x^{3}}{2}+2.50 \mathrm{X} \frac{(x-3)^{3}}{3}+\frac{(x-5)^{3}}{3}+\mathrm{C}_{1} \cdot \mathrm{x}+\mathrm{C}_{2}$ (iii) (Deflection Equation) Step 02: Apply boundary condition for calculating the value of constant of integration C_{1} and C_{2} Condition 01: At point A , where $\mathrm{x}=6 \mathrm{~m}$ and $\frac{d y}{d x}=0$ Put these value in eq.(i) i.e. slope equation $\begin{aligned} & 0=\left(3 \times \frac{6^{2}}{2}\right)+\left(5 \times \frac{(6-3)^{2}}{2}\right)+\left(2 \times \frac{(6-5)^{2}}{2}\right)+\mathrm{C}_{1} \\ & 0=54+22.50+1+\mathrm{C}_{1} \\ & \mathrm{C}_{1}=-\mathbf{7 7 . 5 0} \mathbf{~ k N} \end{aligned}$ At point A, where $x=6 m$ and $y=0$ Put these value in eq.(ii) i.e. deflection equation $\begin{aligned} 0 & =\left(\frac{6^{3}}{2}\right)+\left(2.50 \times \frac{(6-3)^{3}}{3}\right)+\left(\frac{(6-5)^{3}}{3}\right)-(77.50 \times 6)+C_{2} \\ & =108+22.50+0.33-465+C_{2} \\ C_{2} & =334.17 \end{aligned}$	$1 / 2 \mathrm{M}$

SUMMER - 2022 EXAMINATION

		Step 03: Calculating Slope at point B in terms of EI, where $x=5 \mathrm{~m}$ from origin D. $\begin{aligned} & \left(\text { El } x \frac{d y}{d x}\right)_{B}=3 \frac{5^{2}}{2}+5 \frac{(5-3)^{2}}{2}+2 \frac{(5-5)^{2}}{2}-77.50 \\ & \left(\text { El } x \frac{d y}{d x}\right)_{B}=37.50+10+0-77.50 \\ & \qquad\left(\frac{\boldsymbol{d y}}{\boldsymbol{d x}}\right)_{\mathrm{B}}=\boldsymbol{\theta} \boldsymbol{B}=-\frac{\mathbf{3 0}}{\boldsymbol{E I}} \end{aligned}$ Step 04: Calculating deflection at point C in terms of EI, where $x=3 \mathrm{~m}$ from origin D. $\begin{aligned} & \left(E \mathrm{x} \mathrm{y}_{\mathrm{c}}\right)=\frac{3^{3}}{2}+2.50 \times \frac{(3-3)^{3}}{3}+\frac{(3-5)^{3}}{3}-(77.50 \times 3)+334.17 \\ & \left(E \mathrm{El} \mathrm{y}_{\mathrm{c}}\right)=13.50+0+0-232.50+334.17 \\ & \mathbf{y c}_{\mathrm{c}}=\frac{\mathbf{1 1 5 . 1 7}}{\boldsymbol{E I}} \end{aligned}$	1 M
Q-6		Attempt any Two of the following:	12 M
	a. Ans.	Using moment distribution method, calculate the support moments of beam as shown in figure no. 09 $\mathrm{L} 1=4 \mathrm{~m}, \mathrm{~L} 2=6 \mathrm{~m}, \mathrm{~W}=10 \mathrm{kN} / \mathrm{m} \mathrm{~W}=20 \mathrm{kN}$ For span $A B=21$ For span $B C=1$ Step 01: Assuming each span of given beam to be fixed and calculating Fixed End Moments (FEM) For Span AB: $\begin{aligned} & \mathrm{M}_{\mathrm{AB}}=-\frac{W L_{1}{ }^{2}}{12}=-\frac{10 \times 4^{2}}{12}=-13.33 \mathrm{kN}-\mathrm{m} \\ & \mathrm{M}_{\mathrm{BA}}=+\frac{W L_{1}^{2}}{12}=-\frac{10 \times 4^{2}}{12}=+13.33 \mathrm{kN}-\mathrm{m} \end{aligned}$	

SUMMER - 2022 EXAMINATION

Subject Name: Theory of Structure
Model Answer
Subject Code: 22402

