

SUMMER-22 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code :

22233

Page 1 of 24

Important Instructions to examiners:

- The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code :

22233

Page **2** of **24**

Q	Sub	Ans	swer	marks
No	q.no.			
1		Any five		10
1	a	Distinguish between Micro structure and Na	no structure	1 mark
		Micro structure	Nano structure	each for
		1. Microstructures are structures 1	. Nanostructures are structures that	any two
		that are revealed by a microscope	ange between 1nm and 100nm	points
		of 25x or greater magnification. (1nm=10-9m) in at least one	
		d	limension.	
		2. A microstructure has very small 2	2. A nanostructure is a structure of	
		size than other structures.	ntermediate size between	
		n	nicrostructures and molecular	
		s	tructures.	
		3. Microstructures are one 3	3. Nanostructures are one dimension,	
		dimension in scale. t	wo dimension and three dimension in	
		s	cale.	
		4. The microstructure of a material 4	I. The nanostructure of a material	
		influences physical properties of the	nfluences physical properties of the	
		material such as strength , n	naterial such as size , shape , specific	
		toughness , wear resistance etc.	urface area, aspect ratio etc.	
1	b	Define elasticity and plasticity.		
		Ans. Elasticity – The ability of a material to	deform under load and return to its original	1
		shape when the load is removed is called elas	sticity.	
		Plasticity – The ability of a material to deform	n under load and retain its new shape when	
		the load is removed is called plasticity.		1

ject T	itle: Ch	emistry of Engineering materials	Subject code :	22233	Page 3 c
1	c	Compare thermoplastic and thermosetting	g polymers.		1 mark
					each for
		Thermoplastic	Monomer used in this poly	mer bi	any 2
			functional.		points
		1. Polymers whose shape can be	1. Polymers which once	mould	
		changed on application of Polymers	/shaped do not soften	when	
		whose shape can be changed on	heated and thus canno	ot be	
		application of	reshaped.		
		2. These are soften by heating ,	2. It can be heated and	shaped	
		shaped when hot, harden when	once.		
		cooled, reshaped when heated			
		again.			
		3. These are soften for no. of times	3. It can be decamped	when	
		on heating without change in their	reheated. No plasticity.		
		properties.			
		4. e.g. polyethylene, polypropylene	4. e.g. epoxy resins,	urea	
		etc.	formaldehyde etc.		
		5. They have long chain linear	5. They have 3 dimensiona	I cross	
		structure	linked structure.		
		6. Produced by addition	6. Produced by conder	nsation	
		polymerization process.	polymerization process.		
		7. Low molecular weight	7. High molecular weight.		
		8. These are soft, less brittle and	8. High molecular weight.		
		weak.			
		9. Monomer used in this polymer is	9. Monomer used in this poly	ymer is	
		bi-functional.	tri, tetra or poly functional.		

ct Ti	tle: Ch	emistry of Engineering materials Subject code : 22233	Page 4 c
1	d	(a) Define corrosion with example.	
		Ans. <u>Corrosion - Definition</u> –	1
		• Corrosion is the gradual deterioration or destruction of materials (usually metals	
		and alloys) by chemical or electrochemical reactions with its environment.	
		• Corrosion is defined as the gradual deterioration or destruction of a metal by	
		chemical or electrochemical reactions with its environment.	
		• Any process of deterioration and consequent loss of a solid metallic material	
		through undesired chemical or electrochemical attack by its environment starting at	
		the surface.	
		Example –	1 Mark
		1. Rusting of iron (i.e. the formation of iron oxide $Fe_2O_3.H_2O$) when exposed to	for any
		atmospheric conditions.	1
		2. Formation of green film of basic carbonate $CuCO_3+Cu(OH)_2$ on the surface of	
		copper when exposed to moist air containing CO ₂ .	
1	e	Give the meaning of pig iron and cast iron.	
		Pig Iron – It is a semi finished product produced in the form of a chunky moulded	1
		blocks known as pigs, by heating an iron ore in a blast furnace.	
		It contains about 91-94% Fe and high amounts of carbon , typically 3.5 to 4.5% along	
		with small amounts of P , Mn , Si and S.	
		Cast Iron – It is primarily comprised of iron (Fe) , carbon (C) and silicon (Si).In addition	1
		it also contains traces of sulphur , manganese (Mn) and phosphorous (P). The carbon	
		content of cast iron ranges from 2 to 4.5% and its silicon content ranges from 0.5 to	
		3%.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ect T	itle: Ch	emistry of Engineering materials	Subject code :	22233	Page 5 of 2
		Classification of steels based on de	e-oxidation process (oxygen r	emoved from st	teel each
		making process)-			
		1. Killed steels			
		2. Semi-killed steels			
		3. Rimmed steels			
		4. Capped steels			
1	g	List out the factors which affects on cor	rosion		1 mark
		Factors affecting rate of corrosion -	- The factors affecting rate of	corrosion are :	each
		A) Nature of the material (metal dep	pendent factors) –		
		1) Position of the metal in the ele	ectrochemical or galvanic serie	es	
		2) Purity of the metal			
		3) Surface of the metal			
		4) Relative area of cathodic and	anodic part (anode-cathode a	rea ratio)	
		5) Nature of the oxide film			
		6) Solubility of the corrosion pro	duct		
		7) Physical state of the metal			
		8) Volatility of the corrosion proc	duct		
		B) Nature of the environment (envir	ronment dependent factors) –		
		1) Temperature of the environm	ent		
		2) pH of the environment			
		3) Humidity of the environment/	presence of the moisture in the	ne environment	
		4) Presence of impurities in the e	environment		
		5) Amount of oxygen in the envi	ronment		
		6) Nature of anions and cations p	present in the environment		
		7) Presence of suspended particl	les in the environment		
2		Any three			12

2	a	Explain thermal insulator and electrical insulator with example.	
		<u>Thermal Insulators</u> –	
		• The process of insulating against transmission of heat is called heat insulation and	1
		the materials are known as thermal insulating materials.	
		• A material of relatively low thermal conductivity is used to cover a volume against	
		loss or entrance of heat by conduction , convection and radiation.	
		• The insulating capacity of a material is measured in terms of thermal conductivity	
		of the material.Low thermal capacity is equivalent to high insulating capacity.	
		Insulating materials conserve energy by reducing heat loss or gain , lower energy	
		bills/reduce energy costs , control surface temperatures for personnel protection	
		and comfort , reduce emissions of pollutants to the atmosphere/reduce	
		greenhouse emissions , provide comfortable/acceptable living/working	
		environment, enhance process performance and reduce noise levels.	
		Examples:	
		Commonly used thermal insulating materials are glass wool (fiber glass) ,	1
		polyurethane foam , ceramic wool , cork , expanded rock wool , slag wool ,	
		polystyrene (thermocol) , extruded polystyrene foam.	
		Electrical Insulators –	
		• Electrical shocks caused by the flow of current through the human body can result	
		in injuries, disablement or death.D.C. voltage upto 40 volts and A.C. voltage upto	
		60 volts are considered as safe limits to the human body. Electricity is considered	1
		as a hazard beyond these limits and to prevent it , electrical insulation is required.	-
		• An insulating material used to cover electrical wires, cables or other equipments is	
		called electrical insulation.	
		• A material which does not allow the electricity to pass through it is called as an	
		insulating material. A material that is unable to conduct electricity due to its very	
		high electrical resistivity is called as an electrical insulator/insulating material.	

ject T	itle: Ch	memistry of Engineering materials Subject code : 22233	Page 7 of 2 4
		 Electrical insulating materials are usually used as protective coatings on electrical wires and cables , electrical machines as bushings for high voltage overhead transmission lines etc. Examples: Materials like ceramic , mica impregnated paper , porcelain , epoxy resin , polystyrene , polyester resin , silicone , polyurethane , butyl rubber silicone rubber , polyethylene , polyvinyl chloride , cross-linked polyethylene , teflon and fiber glass are very good electrical insulators. 	1
2	b	Define chemical reactivity.Explain it with air , water and acid. Definition -Chemical reactivity is the ability of a material to combine with other	1
		materials such as water , air , acids , steam etc. With Air – e.g. mild steel reacts with air to form iron oxide (Fe_2O_3) – mild steel reacts with oxygen from air in the presence of moisture or dissolved oxygen from	1
		water to produce hydrated iron oxide Fe ₂ O ₃ .xH ₂ O. With Water – stainless steel does not react with water (i.e. stainless steel resists attack by air and water) due to the presence of a passive film of chromium oxide	
		(Cr_2O_3) on its surface. This film is protective , stable , invisible , tightly adhered to the surface. i.e. it will not flake-off and self healing. If the surface is scratched then also the film of Cr_2O_3 will quickly be formed on its surface. This chromium oxide film acts as a barrier that prevents the access of oxygen and water to the	1
		underlying metal surface and consequently prevents further reaction of the material surface with air and water.	
		 With acid – 1. Iron (mild Steel) does not react with commercial grade sulphuric acid i.e. with conc. Sulphuric acid. 2. Iron (mild Steel) reacts with dilute sulphuric acid producing ferrous 	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

bject T	itle: Che	emistry of Engineering materials Subject code : 22233	Page 8 of 24
		sulphate as corrosion product.	1
		Fe + 2H ₂ SO ₄ > FeSO ₄ + SO ₂ +2H ₂ O	
		3. Iron (mild Steel) reacts with hydrochloric acid producing ferric chloride	
		and hydrogen gas.	
		2Fe + 6HCl> 2FeCl ₃ + 3H ₂	
2	c	List out the engineering applications of ceramics.	¹∕₂ mark
			each for
		Ceramics are used for following engineering applications,	any 8
		1. Cutting tools and dies	
		2. Molten metal filters	
		3. Bearings	
		4. Sealing rings	
		5. Bushes	
		6. Fuel injection components	
		7. Spark plug insulators	
		8. Disk brakes and clutches	
		9. Jet turbine blades	
		10. Fuel cells	
		11. Body armour	
		12. Tank power trains	
		13. Gas burner nozzles	
		14. Catalytic converters	
		15. Catalyst supports	
		16. Catalyst	
		17. Heat exchangers	
		18. Reformers	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ect T	itle: Che	emistry of Engineering materials	Subject code :	22233	Page 9 of
		19. Kiln linings			
		20. Crucibles for glass ma	king		
		21. Firebricks for furnace	and ovens		
		22. Cylinder liners			
		23. Capacitors			
		24. Resistance heating ele	ements		
		25. Flow control valves			
		26. Light emitting diodes	, laser diodes		
		27. Optical communicatio	n cables		
		28. Heat sink for electron	ic parts		
		29. Filters			
		30. Rotors and gears			
		31. Electrode materials			
		32. Precise instrument pa	rts		
		33. Grinding media			
		34. Ballistic armour			
		35. Bullet proof vests			
		36. Thread processing not	zzles , oiling nozzles , rollers	s and twister parts.	
2	d	Explain corrosion in acidic and alkaline en	nvironments.		
		Corrosion in acidic medium :			
		An acidic environmer	nt refers to an environment	having a pH value	of 2
		less than seven. Ac	idic environments are m	ore prone to caus	se
		corrosion than alkalin	e and neutral environment	S.	
		When an acid reacts with the second sec	with a metal , salt is produc	ed with the evolution	n
		of hydrogen gas. The	general chemical reaction	between an acid ar	d
		a metal is ,			
		Metal + Acid → Sa	alt + Hydrogen gas		

ect Title:	Chemistry of Engineering materials Subject code : 22233	Page 10 of 24
	e.g. $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$	
	• Acid contains H+ ions and tend to accept electrons. They tend to grab	
	electrons and form hydrogen gas. Metals give up electrons and from	
	metal ions.	
	$Fe \rightarrow Fe^{2+} + 2e^{-}$ and $2H^+ + 2e^{-} \rightarrow H_2$	
	• Thus , when we put an iron nail in an acid , the H^+ ions present in the	
	acid grab electrons from the iron. Iron gives up electrons and gets	
	converted into soluble Fe ²⁺ ions and the solid material (nail) gradually	
	disappears. The electrochemical reaction is ,	
	$Fe + 2H^+ \rightarrow Fe^{2+} + H^2$	
	Corrosion in alkaline medium:	
	Cathodic reaction is : absorption of oxygen	
	$O_2 + 2H_2O + 4 e^- \rightarrow 4 OH^-$	
	Corrosion is less in alkaline medium	
	• Example of alkaline medium is NaCl solution, e.g. a piece of iron is	2
	immersed in sodium	
	chloride solution	
	$Fe \rightarrow Fe^{2+} + 2e^{-}$	
	$NaCl \rightarrow Na^+ + Cl^-$	
	$\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2 OH^-$	
	$Na^+ + OH^- \rightarrow NaOH$	
	$Fe^{2+} + 2Cl^- \rightarrow FeCl^2$	
3	Any three	12
3 a	Effect on Iron on:	
	i)Chromium: It increases hardenability. It increases corrosion resistance and	1
	oxidation resistance. It increases resistance to scaling at high temperature.	

ıbject T	Title: C	hemistry of Engineering materials Subject code : 22233	Page 11 (of 24
		ii)Copper: it improves the resistance to atmospheric corrosion. It strengthens steel.		
		It may be added to improve formability. It improves pains adhesion	1	
		iii)Magnesium: Magnesium is used in alloys because it is a light metal,		
		which improves the mechanical properties of steels. At the same time, the strength		
		and hardness also increase, while the relative elongation and impact toughness	1	
		decrease. It is also used in alloys with iron, which improves its strength and		
		ductility.		
		iv)Nickel: It increases hardenability, improves toughness, ductility and corrosion	1	
		resistance.		
3	b	Prevention and control of corrosion:	List of	
		1.Material selection and choice of materials	any 4	
			methods	
		2.Proper design and fabrication of components	2M and	
			explanati	
		3. Use of high purity metals: The impurities present in a metal cause heterogeneity	on of any	
		and form tiny electrochemical cells with rest of the metal. Due to this, metal	1 method	
		undergoes corrosion at the region where impurities are present. Pure metal does not	2 M	
		corrode.		
		4.Specific heat treatment		
		5.Modification of corrosion environment		
		6. Use of alloying: Corrosion resistance of many metals can be increased by		
		alloying them with suitable alloying elements.		

ject T	'itle: Ch	nemistry of Engineering materials Subject code :	22233	Page 12 o
		7. Use of inhibitors: Inhibitors are organic chemicals which a	re added in sn	nall
		amounts to a corrosive medium in order to reduce its corrosive e	ffect. Usually the	hey
		form and maintain a protective film on the metal surface and the	us acts as a bar	rier
		for further corrosion.		
		8.Cathodic protection (electrochemical protection): In this, the	metal is forced	l to
		behave like a cathode thus protecting it from corrosion. The	is is achieved	by
		supplying electrons to the metal surface to be protected. Additi	ion of electrons	s to
		the metal suppresses its dissolution into metal ions. Different typ	pes are: Sacrifi	cial
		anodic method Impressed current method		
		9.Use of protective surface coatings: Protective coatings prov	vide a continu	ous
		physical barrier between the surface to be protected and the envir	onment.	
		These are classified as:		
		Metallic coatings		
		Inorganic coatings		
		Organic coatings		
3	c	Properties of Ceramics (In General)		1mark
				each
		1 Mechanical Properties		
		High compressive strength.		
		High Young's modulus.		
		High hardness		
		Low toughness		
		Very brittle		
		High wear resistance.		

ect Title: C	hemistry of Engineering materials Subject code : 22233	Page 13 c
	Low tensile strength	
	2 Electrical Properties	
	2 Electrical Properties	
	High electrical resistivity- very low electrical conductivity	
	High dielectric strength.	
	High dielectric constant	
	Very low dielectric losses	
	Some ceramics conduct electricity well and are used as semiconductors, Le. NTC	
	and PTC resistors	
	Some ceramics exhibit plezoelectric properties and can transfer mechanical	
	deformations into voltage changes	
	3 Chemical Properties	
	Very good resistance to all chemicals and organic solvents-chemically inert, Le	
	very good corrosion resistance	
	Completely resistant to oxidation even at high temperatures.	
	4 Thermal Properties	
	Very low thermal conductivity-thermal insulators	
	Very low coefficient of thermal expansion	
	High thermal shock resistance	
	High heat capacities.	
	Ability to withstand very high temperatures.	
3 d	(i) Specific heat –	1
	• The specific heat of a material is the amount of heat energy per unit mass	
	required to raise the temperature of the material by one degree Celsius.	

ect Title	e: Che	mistry of Engineering materials	Subject code :	22233		Page 14 of 2
		(ii) Heat capacity –				1
		• Heat capacity is the quantity of heat e	nergy needed to raise the	temperature of	of a	
		specific material by one degree Celsius.				
		• Heat capacity is the ratio of the quant	ty of heat energy transfer	rred to a mate	rial	
		and the resultant temperature rise.				
		iii)Thermal conductivity-				
		Thermal conductivity of engineering material is the property of a material that				
		determines the rate at which it can transfer heat.				1
		It is a measure of the ability of a materia				
		Thermal conductivity of material is the property to conduct heat.				
		iv)Thermal stability:				
		The ability of a material to withstand long time exposure to elevated/high				
		temperatures without getting degraded.	A thermally stable mat	erial will not	be	1
		destroyed/degraded/decomposed by hea	under high operating ter	nperatures of	the	
		application.				
4		Any three				12
4 a	a	Relevant Organic and Inorganic Insul	ations:			
		i)Refrigeration system:				1
		Extruded Polystyrene Insulation.				
		Cellular Glass, Polytechnic isocyanurate	(PIR)			
		Polyurethane (PU)				
		Reason: polyurethanes are used to ins	ulate freezers is that of t	their low ther	nal	
		conductivity. These plastic foams are s				
		shrink or become deformed), thus th	•			
		temperatures.	· · · · · · · · · ·			
		L				

ect T	Title: Cl	nemistry of Engineering materials	Subject code :	22233		Page 15 (of
		ii)Steam pipeline:					
		calcium silicate and mineral fibres, F	ibre glass (or cellular glass	s)		1	
		Reason: Both can handle high temper	atures and provide a good	insulation value.			
		iii)Thermal incinerator:					
		Plastics.				1	
		Ceramics.					
		Fiberglass.					
		Foam.					
		Reason: Ceramic insulators are wide	ly used in high heat. Cer	amic's resistance	e to		
		abrasion and long life and its ability to	sion and long life and its ability to hold its shape and size under pressure makes				
		it the perfect insulation material for heated applications. (iv)Storage vessel:					
		polyurethane foam, mineral wool .				1	
		Reason:				1	
		good thermal insulation and fire resist	ance. It is highly fire-resis	tant.			
4	b	Q = m x Cp x(T2-T1)				1	
		= 20g x 4.18 7 J/g C X (90-0) C				2	
		= 7536.6 joules				1	
4	c	Addition polymerization:					
		1)the polymerization reaction involv	ves the joining of unsatur	rated monomers	by	2	
		breaking of bonds in a chain like ma	anner without loss of any	by products is k	z/as		
		addition polymerization.					
		2)monomers must have at least double	e or triple				
		3)monomers add to produce polymers					

ect T	ïtle: Cł	emistry of Engineering materials	Subject code :	22233	Page 10	6 of
		4)no by product is form				
		5)it produces thermoplastics				
		Example: pvc(poly vinyl chloride)				
		Condensation polymerization:				
		1)Many monomers molecules join t	or			
		elimination of a small by products s	such as water or methanol	is k/as condensat	ion 2	
		polymerization				
		2)Monomers must have at least two	dis similar of different func	tional groups.		
		3)Monomers are condensed to produ	ce polymers			
		4)By product is formed such as wate	r or methanol			
		5)It produces thermosetting polymer	5)It produces thermosetting polymers			
		Example: formaldehyde				
4	d	Applications of special alloy steel:				_
		Heat resistant steels :				
		Heat resistant steels are hard wear	ring and offer resistance t	o large variation	in	
		temperatures. Other characteristics/	properties of these steels	s include corros	ion 2	
		resistance, oxidation resistance, cre	ep resistance and hydroge	en brittleness un	der	
		very high temperature:				
		Heat resistant steels are available in	the form of plate, sheet, b	ar, pipe, tubing a	and	
		fitting.				
		Heat resistant steels are used in ind	ustrial furnaces, heat excha	angers, steam tub	ves,	
		steam boilers, recuperators gas and	l fuel lines, heaters, resist	ors, fire boxes a	and	
		incinerators/waste incineration plants	s.			
		Stainless Steels:				
		Ferrite Stainless Steels				
		renne Stanness Steers				

ect T	itle: Ch	memistry of Engineering materials Subject code : 22233	Page 17 of
		Austenitic Stainless Steels Uses: It is used for process equipments, piping, valves, fittings and flanges in milk processing (dairy), wine making brewing, fruit juice and chemical industry. In chemical industry it is used especially for process equipments for nitration plants. It is used for storage tanks tankers and containers. It is used for handling nitric acid, phosphoric acid, citric acid, dyestuffs, crude and refined oils and organic and inorganic chemicals.	
5		Any two	12
5	a	Ferrous metal e.g. Gray cast iron	2 M for
		White cast iron	list & 2
		Plain carbon steel	M for
		Low alloy steel	e.g.
		Stainless steel	&
		e.g. making kitchen cutlery, appliances, and cookware. hospital equipment.	2 M for
		machinery and tools, vehicles, hulls of ships, structural elements for buildings,	chemical
		bridges, and aircraft.	compositi
		2) Non Ferrous metals: e.g. copper and its alloys	on
		Aluminium and its alloys	
		Nickel and its alloys	
		Lead and its alloys	
		e.g. copper is used in electrical equipment such as wiring and motors.	
		Aluminium is used in cans, foils, kitchen utensils, window frames, beer kegs and	
		aeroplane parts.	
		Gold is use in making wedding rings, Olympic medals, money, jewellery e.t.c	
		Composition of Some Alloy Steels	

ect Ti	tle: Ch	emistry of Engineering materials Subject code : 22233	Page 18 of
		(1) Hadfield manganese steel: 11-14% Mn, 1-1.3% C 0.60% max Si 0.05% max P, 0.04% max 5 and the rest Fe.	
		(2) High speed steel/High speed tool steel/Tungsten high speed steel:18% tungsten (W), 4% chromium (Cr), 1% vanadium (V), 0.7% carbon (C), small amounts of Si, S, P and Mn and the rest Fe.	
		(3)Molybdenum high speed steel8-7.5% Mo, 1.6% W, 2% V. 3.4% Cr, 0.8 to 1% C, small amounts of St. S. P and Mn and the rest Fe	
		 (4) Maraging steel 300: 18-19% Ni 8-9.5% Co, 4.6-5.2% Mo, 0.5-0.8% Ti 0.05 -0.15% Al, 0.03% C+ small amounts of S, P. Si and Mn and 	
5	b	Dry corrosion :	3 Marks
		It is also known as chemical corrosion. It occurs due to direct chemical attack of metals surface by the atmospheric gases	each
		Wet corrosion: It is also known as electrochemical corrosion, Such type of corrosion is due to the	
		flow of electron from metal surface anodic area towards cathodic area through a conducting solution.	
		DRY CORROSION: OXIDATION CORROSION	
		LIQUID METAL CORROSION	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ect Title: Ch	emistry of Engineering materials	Subject code :	22233	Page 19 of 24
	CORROSION BY OTHER GASES			
	WET CORROSION:			
	GALVANIC/BIMETALLIC CORR	OSION		
	DIFFERENTIAL AERATION/CON	CENTRATION CELL COR	ROSION	
	Characteristics of Chemical Corro	sion(Dry corrosion)		
	It occurs in dry condition.			
	It is due to the direct chemical attack	of the metal by the environm	nent.	
	Even a homogeneous metal surface g	gets corroded.		
	Corrosion product accumulate at the	place of corrosion.		
	It is self-controlled process.			
	It adopt adsorption Mechanism Characteristics of Electrochemical corrosion (Wet corrosion):			
	It occurs in the presence of moistur	e or electrolyte		
	It is due to the formation of a large n	umber of anodic and cathodic	e areas.	
	Heterogeneous (bimetallic) surface a	lone gets corroded		
	Corrosion occurs at the anode while	the products are formed else	where .	
	It is a self continuous process.			
	Corrosion occurs at the anode while	the products are formed elsev	vhere	
	It follows electrochemical reaction.			
5 c	Properties and Applications of:			
	Silicon carbide:			3
	Properties:			
	Density = 3.2 g/cu.cm			
	M.P = 2800 deg C Hardness = 9 Mol	hs		
	Modulus of elasticity $= 6.5$			
	High wear resistance			
	Excellent corrosion resistance			

ect T	itle: Cl	nemistry of Engineering materials Subject code : 22233	Page 20 c
		Very hard materials	
		High thermal conductivity	
		Uses:	
		It is used in car brakes and clutches.	
		Ceramic plates in bulletproof vests Bearings Semiconductors wafer processi	ing
		equipment Light emitting diode Cutting tools and burner nozzles.	
		Aluminium Carbide:	
		Properties:	
		Density = 2.36 g/cu.cm	3
		M.P = 2200 deg C	
		B.P.= 1400 deg.C	
		Colourless hexagonal crystal	
		High wear Resistance	
		Excellent dielectric properties	
		Good chemical resistance	
		Uses:	
		Use for bearing liners and seals	
		Cutting tools	
		Turbine parts	
		Engine parts	
		Refractories	
		Insulators	
6		Any two	12
6	a	Hardness	
		It is the resistance of a material to plastic deformation-penetration, scratching	ng, 1

abrasion . The greater the hardness of the metal the greater the resistance it has for deformation. Malleability Maleability Matore	Subject Title: Chemistry of Engineering materials Subject code : 2		22233	Page 21 of 24
deformation. Malleability Malleability Malleability Properties of Engineering Materials 1 It is the ability of a material to deform plastically without fracture under compressive load 1 Because of this property, metals are hammered and rolled into thin sheets. 1 Ductility Ductility is the ability of a material to be deformed plastically without fracture 1 1 under tensile load 1 1 1 Because of this property, materials can be drawn out into fine wire without fracture 1 1 Brittleness 1 1 1 1 It is the property of sudden fracture without any visible permanent deformation 1 1 Brittleness is the opposite of ductility (eg, cast iron and glass products). 1 1 Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation. 1 Brittleness is the opposite of plasticity. Tensile Strength 1 The tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture. 1 Vield Strength The yield strength or yield str	abrasion .			
Image: state of the state of	The greater the hardness of the met	al the greater the resis	stance it has	for
Malleability Properties of Engineering Materials1It is the ability of a material to deform plastically without fracture under compressive load1Because of this property, metals are hammered and rolled into thin sheets.1DuctilityDuctility is the ability of a material to be deformed plastically without fracture1Under tensile load11Because of this property, materials can be drawn out into fine wire without fracture1Brittleness11It is the property of sudden fracture without any visible permanent deformation1Brittleness is the opposite of ductility (eg, cast iron and glass products).1Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation. Brittleness is the opposite of plasticity.1Tensile StrengthThe tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture.1Vield StrengthThe yield stress is defined as the stress at which a material begins1Load without fracture.Vield Strength1Load without fracture.1Load witho	deformation.			
It is the ability of a material to deform plastically without fracture under compressive load Because of this property, metals are hammered and rolled into thin sheets. Ductility Ductility Ductility Ductility is the ability of a material to be deformed plastically without fracture under tensile load Because of this property, materials can be drawn out into fine wire without fracture Brittleness It is the property of sudden fracture without any visible permanent deformation Brittleness is the opposite of ductility (eg, cast iron and glass products). Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation. Brittleness is the opposite of plasticity. Tensile Strength The tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture. Yield Strength The yield strength or yield stress is defined as the stress at which a material begins 1 to deform plastically.	Malleability			
compressive loadBecause of this property, metals are hammered and rolled into thin sheets.DuctilityDuctilityDuctility is the ability of a material to be deformed plastically without fractureunder tensile loadBecause of this property, materials can be drawn out into fine wire without fractureBrittlenessIt is the property of sudden fracture without any visible permanent deformationBrittleness is the opposite of ductility (eg, cast iron and glass products).Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation.Brittleness is the opposite of plasticity.Tensile StrengthThe tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture.Vield Strength The yield strength or yield stress is defined as the stress at which a material begins to deform plastically.	Malleability Properties of Engineering M	aterials		1
Because of this property, metals are hammered and rolled into thin sheets.DuctilityDuctilityDuctility is the ability of a material to be deformed plastically without fractureunder tensile loadBecause of this property, materials can be drawn out into fine wire without fractureBrittlenessIt is the property of sudden fracture without any visible permanent deformationBrittleness is the opposite of ductility (eg, cast iron and glass products).Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation.Brittleness is the opposite of plasticity.Tensile StrengthThe tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture.Vield Strength The yield stress is defined as the stress at which a material begins to deform plastically.	It is the ability of a material to de	form plastically without	it fracture un	der
DuctilityDuctilityDuctility is the ability of a material to be deformed plastically without fractureunder tensile loadBecause of this property, materials can be drawn out into fine wire without fractureBrittlenessIt is the property of sudden fracture without any visible permanent deformationBrittleness is the opposite of ductility (eg, cast iron and glass products).Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation. Brittleness is the opposite of plasticity.Tensile StrengthThe tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture.Yield Strength The yield strength or yield stress is defined as the stress at which a material begins1to deform plastically.	compressive load			
Ductility is the ability of a material to be deformed plastically without fracture1under tensile loadBecause of this property, materials can be drawn out into fine wire without fractureBrittlenessIt is the property of sudden fracture without any visible permanent deformationBrittleness is the opposite of ductility (eg, cast iron and glass products).1Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation. Brittleness is the opposite of plasticity.1Tensile StrengthThe tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture.1Vield Strength The yield strength or yield stress is defined as the stress at which a material begins1	Because of this property, metals are ham	mered and rolled into thin	n sheets.	
under tensile loadBecause of this property, materials can be drawn out into fine wire without fractureBrittlenessIt is the property of sudden fracture without any visible permanent deformationBrittleness is the opposite of ductility (eg, cast iron and glass products).Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation.Brittleness is the opposite of plasticity.Tensile StrengthThe tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture.Yield Strength The yield strength or yield stress is defined as the stress at which a material begins1to deform plastically.	Ductility			
Because of this property, materials can be drawn out into fine wire without fracture BrittlenessIt is the property of sudden fracture without any visible permanent deformation Brittleness is the opposite of ductility (eg, cast iron and glass products).Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation. Brittleness is the opposite of plasticity.Tensile Strength The tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture.Vield Strength The yield strength or yield stress is defined as the stress at which a material begins1to deform plastically.	Ductility is the ability of a material to	be deformed plastically	without fract	ure 1
BrittlenessIt is the property of sudden fracture without any visible permanent deformationBrittleness is the opposite of ductility (eg, cast iron and glass products).Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation.Brittleness is the opposite of plasticity.Tensile StrengthThe tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture.Yield StrengthThe yield strength or yield stress is defined as the stress at which a material begins1to deform plastically.	under tensile load			
Image: state in the property of sudden fracture without any visible permanent deformation1Brittleness is the opposite of ductility (eg, cast iron and glass products).Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation. Brittleness is the opposite of plasticity.Tensile StrengthThe tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture.Vield Strength The yield strength or yield stress is defined as the stress at which a material begins1	Because of this property, materials can b	e drawn out into fine wire	e without fractu	ire
Brittleness is the opposite of ductility (eg, cast iron and glass products). Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation. Brittleness is the opposite of plasticity. Tensile Strength The tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture. Yield Strength The yield strength or yield stress is defined as the stress at which a material begins 1 to deform plastically.	Brittleness			
Brittleness is the tendency/ability of a material to break into pieces upon application of tensile force without any elongation or plastic deformation. Brittleness is the opposite of plasticity.Tensile Strength The tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture.Vield Strength The yield strength or yield stress is defined as the stress at which a material begins1to deform plastically.	It is the property of sudden fracture w	ithout any visible perma	nent deformation	ion 1
application of tensile force without any elongation or plastic deformation. Brittleness is the opposite of plasticity.Tensile StrengthThe tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture.Yield Strength The yield strength or yield stress is defined as the stress at which a material begins1to deform plastically.	Brittleness is the opposite of ductility (eg	, cast iron and glass prod	ucts).	
Brittleness is the opposite of plasticity. Tensile Strength The tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture. Yield Strength The yield strength or yield stress is defined as the stress at which a material begins to deform plastically.	Brittleness is the tendency/ability of	a material to break i	nto pieces up	oon
Tensile Strength The tensile strength is defined as the maximum tensile load a material abject can withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture. Yield Strength The yield strength or yield stress is defined as the stress at which a material begins to deform plastically.	application of tensile force without	any elongation or pla	stic deformati	on.
The tensile strength is defined as the maximum tensile load a material abject can1withstand before fracture/failure divided by its cross-sectional area. The tensile1strength is defined as the ability of a material to resist stretching (tensile/pulling1load without fracture.Yield StrengthYield StrengthThe yield strength or yield stress is defined as the stress at which a material beginsto deform plastically.1	Brittleness is the opposite of plasticity.			
 withstand before fracture/failure divided by its cross-sectional area. The tensile strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture. Yield Strength The yield strength or yield stress is defined as the stress at which a material begins 1 to deform plastically. 	Tensile Strength			
strength is defined as the ability of a material to resist stretching (tensile/pulling load without fracture. Yield Strength The yield strength or yield stress is defined as the stress at which a material begins to deform plastically.	The tensile strength is defined as the m	aximum tensile load a m	aterial abject o	can 1
Ioad without fracture. Yield Strength Yield Strength The yield strength or yield stress is defined as the stress at which a material begins 1 to deform plastically.	withstand before fracture/failure divide	d by its cross-sectional	area. The tens	sile
Yield Strength The yield strength or yield stress is defined as the stress at which a material begins to deform plastically.	strength is defined as the ability of a n	naterial to resist stretchir	ng (tensile/pulli	ing
The yield strength or yield stress is defined as the stress at which a material begins 1 to deform plastically.	load without fracture.			
to deform plastically.	Yield Strength			
	The yield strength or yield stress is defined	ed as the stress at which	a material beg	ins 1
Stress is the amount of force/energy that is being exerted on a material object	to deform plastically.			
	Stress is the amount of force/energy th	nat is being exerted on	a material obj	ect

ct T	itle: Cl	hemistry of Engineering materials Subject code : 22233	Page 22 o
		divided by its cross-sectional area	
6	b	Resistivity	3
0	0	The resistivity of a material is a measure of its resisting power to the flow of an	5
		electric current	
		The resistivity of a material is the resistance of a wire of that material of unit length	
		and unit cross-sectional area of the flow of electric current	
		Resistivity is the reciprocal of conductivity. Thus, a material that has a high	
		resistivity will have a low (electrica conductivity and vice versa.	
		The resistivity (also known as specific resistance) depends on the nature and	
		temperature of a material. A good conductor has a low resistivity, while a bad	
		conductor has a high resistivity. The SI unit of resistivity a ohm meter (ohm.m)	
		(Resistivity) = $(V/I) * (A/L)$	
		V=Voltage	
		I= Current	
		A = c/s Area	
		L= length	
		Unit is = Ohm.cm	
		Conductivity (Electrical Conductivity)	
		Is a measure of the ability of a material to conduct an electric current (or to conduct	
		electricity).	
		Electrical conductivity is also known as specific conductance and has SI units of	
		siemen per meter (S /m). Electrical Conductivity can flow easily through a	3
		material having a high conductivity. For example, copper,	
		As per order of conductivity, we have conductors-copper, alumiinium,	
		semiconductors-silicon and insulators	
	1		

ect T	Title: C	hemistry of Engineering materials Subject code : 22233	B Page 23
		Conductivity = 1/ (Resistivity)	
		Unit is = Siemens per meter	
6	c	Metals and Non Metals:	3 marks
			for
		Classification of metals:	metals
		Metals:	and 3
		1. Ferrous. example: cast iron, stainless steel	marks for
		2. Non ferrous. example: Al and its alloys, Cu and its alloys	non
		Classification of non metals:	metals
		1. Plastic	
		2. Rubber	
		3. Glass	
		4. Ceramics e.g. wood, asbestoses etc.	
		Uses of metals:	
		metals are used for MOC in steam boiler and steam pipeline	
		it is used in storage and transporting	
		it used for distillation column, storage tank, pump, pipe etc.	
		Uses of non metals:	
		non-metals are used for gaskets.	
		It is used for seals, bushes, glands etc.	
		Used for vessel and reaction kettle lining. Etc.	
		Physical properties of Metals:	
		Metals are ductile.	
		Metals are malleable.	
		Metals have high to moderate density.	
		It has electricity conductivity	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Che	mistry of Engineering materials	Subject code :	22233	Page 24 of 24
	These have metallic lusters.			
	Metals are opaque			
	Chemical properties:			
	Metals form oxides that are acidic.			
	Metals have one to three electrons in t	heir outer shell		
	Metals tend to loose their electrons.			
	Metals are very good reducing agents.			
	Metals are more prone to corrosion.			
	Examples: Steel, aluminium, copper, o	cast iron,		
	stainless steel.			
	Non-metals			
	Non-metals are poor conductors (or no	onconductors) of heat and	electricity	
	These have no lusters.			
	Non-metals are transparent.			
	Non-metals have four to eight electron	18.		
	Non-metals gain or share electrons.			
	Non-metals are very good reducing ag	gents		
	(plastics and rubbers).			
	Non-metals			
	Non-metals are not ductile.			
	Non-metals are brittle.			
	Non-metals have low to moderate den	sity.		
	Non-metals form oxides that are basic			
	Non-metals are less prone to corrosion	1.		
	Examples: Ceramics, glass, polymers			