

SUMMER-22 EXAMINATION Model Answer

Subject Title: Fundamentals of Chemical Engineering

Subject code :

22231

Page **1** of **18**

Important Instructions to examiners:

- The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION Model Answer

Subject Title: Fundamentals of Chemical Engineering

Subject code :

22231

Page **2** of **18**

Q	Sub	Answer	marks
No	q.no		
	1	Any five	10
1	a	Chemical Kinetics: It is the study of the rates at which chemical reactions	1
		occur and the effect of parameters such as temperature, pressure, reactant	
		concentration/ composition on the reaction rates.	
		Use: Chemical kinetics provides us information about the reaction mechanism,	1
		speed of a chemical reaction and type of rate equation which is to be used in the	
		design of reactors.	
1	b	Types of chemical industries on the basis of application:	2
		On the basis of application, Chemical industries are classified as	
		1. Industries manufacturing Basic chemicals	
		2. Industries manufacturing Fine chemicals	
		3. Industries manufacturing Specialty chemicals	
1	с	Unsafe conditions in a laboratory :	1⁄2
		1. Wet and slippery floor	mark
		2. Improper ventilation	each
		3. Unavailability of personal protective equipment	for any
		4. Insufficient information about chemical hazard	4
		5. Unsafe acts	
		6. Lack of written procedures regarding safety and emergency	
		7. Improper material handling	
1	d	Hazard Symbol of :	
		Flammable material	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Title	itle: Fundamentals of Chemical Engineering Subject code : 22231			
		Toxic material	1	
			1	
1		Definition of specific gravity:	2	
		Specific gravity is the ratio of density of substance to density of water at 4^{0} C		
1	f	Dalton's law:	2	
		It states that the total pressure exerted by a gas mixture is equal to the sum of		
		partial pressures of its component gases.		
		$\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3$		
		Where P is total pressure of gas mixture		
		P_1 , P_2 , P_3 are the partial pressures.		
1	g	Definition of Refractive Index:	2	
		The Refractive index of a medium is defined as the ratio of speed of lignt in		
		vacuum to the speed of light in the medium		
		Speed of light in vacuum		
		Refractive index =		
		Speed of light in medium		
2		Any three	12	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title:	: Funda	mentals of Chemical Engineering Subject code :	22231	Page 4 of 18		
2	2aRelation between Chemical Kinetics and Thermodynamics:					
		Chemical kinetics is a study of the rates at which chemical reaction				
		the effect of parameters such as temperature, pressure and reactan	nt			
		concentration on reaction rates.				
		Thermodynamics provide us information about the feasibility of	a reaction, the			
		heat absorbed or liberated during the course of reaction and the n	naximum			
		possible extent of a reaction.				
		We need information from thermodynamics and chemical kinetic	es for the			
		designing of a chemical reactor.				
		According to chemical kinetics, for a reaction to take place, the r	eacting			
		molecules have to overcome the energy barrier in the path of read	ction to			
		products. The energy barrier or the minimum amount of energy p	ossessed by			
		the reacting molecule is known as activation energy or free energ	gy of			
		activation. Lower the activation energy, higher will be the rate at	which a given	1		
		reaction proceeds. Thus for a reaction to proceed faster, its activa	ation energy			
		must be low.				
		Activation energy is the minimum energy required to start a react	tion.			
2		First aid measures for:				
	b	i)Eye injury :				
		a) Have the person immediately rinse the eye with clean wate	er.	2		
		b) Flush with lukewarm water for 15-30 minutes				
		c) Flush the eye to remove contact lenses.				
		d) Do not rub the eye or place a bandage over the eye.				
		e) While waiting for medical care, have the person wear sun	glasses.			
		f) Get doctor's help immediately.				
		g) Make sure you know what chemical got into the eye.				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Tit	ubject Title: Fundamentals of Chemical Engineering Subject code : 22231						
	ii) Skin Burn:						
	a) Most chemical burns of the skin are treated first by rinsing the chemical						
		off your body with a large amount	of room temperature	water.	2		
		b) Flood affected area with cool wate	r for 20 minutes.				
		c) Make sure water doesnot flow into	other parts of the per	rson s body or			
		onto you.					
		d) Remove the chemical causing burr	1.				
		e) Remove contaminated clothing or	jewellery.				
		f) Loosely apply a bandage.					
		g) Consider a tetanus shot.					
2	c	Basis: 100 ml solution.					
		Weight of NaOH = 4 gm			1		
		Molecular weight of $NaOH = 40$					
		Gram moles of solute $= 4/40 = 0.1$			1		
		Molarity = Gram moles/ Volume of solution	on in lit				
		0.1/0.1 = 1 M			1		
		Normality = gram equivalent of solute/ vo	lume of solution in li	t			
		= 0.1/0.1 = 1N			1		
2	d	Applications of Electrical Conductivity	measurement: (any	4)	1 mark		
		1. Water treatment: In controlling and	d monitoring drinking	g water quality,	each		
		water for pharmaceutical products,	, water from waste wa	ater treatment			
		and sewage treatment plants, medi-	cal water.				
		2. Leak detection: Leakage of cooling	g water into process f	luid which			
		affects production process.					

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject	Title:	Funda	amentals of Chemical Engineering Subject code : 22231		Pag	e 6 of 18
			 Desalination: Drinking water desalination plants make use of conductivity measurement to monitor how completely dissolved i solids are removed. Interface detection: A conductivity sensor can easily detect the in between two liquids if they have appreciably different conductivity 	terface		
	3	1	Any three		12	
	3	a	Formulas for:			
			1. weight %			
			Let a mixture contains components A,B & C of weights W_A , W_B & W_C		2	
			Weight % of A =(Weight of A/ Total weight of mixture) * 100			
			$= W_A / (W_A + W_B + W_C)^* 100$			
			2. mole %			
			Let the moles of the components be $n_A, n_B \& n_C$			
			Mol% of A = (moles of A/total moles)*100		2	
			$= (n_A/n_A + n_B + n_C) * 100$			
	3	b	Weight of $NaCl = 300 \text{ kg}$			
			Weight of $KCl = 600 \text{ kg}$			
			Total weight = 900 kg		1	
			Weight % of NaCl = (300/900) * 100 = 33.33%			
			Weight % of KCl = $(600/900) * 100 = 66.67\%$		1	
			Molecular weight of NaCl $= 58.5$			
			k moles of NaCl = $300/58.5 = 5.13$			
			Molecular weight of KCl $= 74.5$			
			k moles of $KCl = 600/74.5 = 8.05$			
			Total moles = $5.13 + 8.05 = 13.18$		1	
			Mol % of NaCl = (moles of NaCl / Total moles)*100			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject	Subject Title: Fundamentals of Chemical Engineering Subject code : 22231						ge 7 of 18	
			= (5.13/13.18)*100 = 3	8.92%		1		
	Mol % of KCl = (moles of KCl / Total moles)*100							
			= (8.05/13.18)*100	= 61.07%				
	3	c	pH meter:					
			Construction:					
			pH meter consists of (i)a glass elec	ctrode, (ii)reference elect	rode and (iii)an			
			electronic meter- it measures and o	displays the pH reading.		2		
			The glass electrode consists of a st	trong and thick walled gl	ass tube. A very	7		
			thin glass bulb which is sensitive t	o hydrogen ion is connec	ted to the lower	r		
			end of glass tube. A silver wire wh	nich is coated with AgCl	at the end is			
			immersed in a 0.1M HCl solution	of constant pH contained	in the glass			
			tube. The potential of this electrod	e changes with a change	in the pH value	:		
			of a sample solution. Reference ele	ectrode consist of a Ag w	vire with its			
			lower portion covered with AgCl a	and immersed in a satura	ted KCl solution	n		
			contained in a glass tube which is	fitted with porous plug a	t the bottom. Th	ie		
			potential of this electrode is consta	ant. Each of these electro	des is a half cell	l.		
			The two half cells arranged togeth	er constitute an electroch	emical cell in			
			which one of the half cells is at a c	constant potential and the	potential of the	•		
			other half cell varies with pH value	e of the test sample.				
			Working:					
			In order to measure the pH of a tes	st solution, electrodes are	dipped into the			
			test solution. The difference in the	hydrogen ion concentrat	ion in the test	2		
			solution and the inside solution in	the glass tube creates a p	otential			
			difference at the glass bulb. The gl	lass electrode gives this s	ignal to the			
			meter which then displays the pH	of the test solution corres	ponding to the			
			potential difference created.					
	L	I					l	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Funda	amentals of Chemical Engineering	Subject code :	22231	Рав	ge 8 of 18
3 d	Symbols of:			1 mark	
	i) Centrifugal Pump			each	
	(ii) Tray Drier				
	(iii)Evaporator				
	(iv) Spray Column				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Fu	Subject Title: Fundamentals of Chemical Engineering Subject code : 22231					
	Gas					
4	Any three			12		
4 a	Classification of chemical reactors:			4		
	1. Based on shape of reactor					
	a) Tank reactor					
	b) Tubular reactor					
	2. Based on mode of operation					
	a) Batch reactor					
	b) Semi batch reactor					
	c) Continuous reactor					
4 b	Emergency exit routes:					
	An emergency exit is an exit other than	n regular exit in a workp	lace which is	2		
	used for prompt evacuation of employe	ees from the workplace of	luring			
	emergencies such as fire, explosion etc	E. Exit route must be uno	bstructed by			
	materials, equipment etc., it must be se	parated from explosives	and flammable			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

4 c Importance of safety in chemical industries: 4 1 To rotect the life and limbs of the workers 4 4 d Basis: 100 kg spent acid Weight of HNO3 = 35 kg 4 d Basis: 100 kg spent acid 1 Moles of HNO3 = 35/63 = 0.556 kmoles Moles of HNO3 = 35/63 = 0.557 kmoles 1	Subject Title:	: Funda	mentals of Chemical Engineering	Subject code :	22231	Pag	e 10 of 18
4 c Importance of safety in chemical industries: 4 4 d Basis: 100 kg spent acid Weight of HNO3 = 35 kg 4 d Basis: 100 kg spent acid 1 Moles of H2SO4 = 35/98 = 0.357 kmoles 1 1			materials and it must not be locked.	Adequate lighting must be	provided for ex	it	
Assembly point is a predetermined safe area outside the building where all occupants of the building should assemble / gather and remains there till the end of the emergency. In the event of a fire or emergency, whenever it is necessary to evacuate the building, people must move promptly to the assembly point of the building. Assembly point should be easily and safely accessible and must have sufficient space to accommodate all occupants. It should have unobstructed pathway to them and should be located away from power lines. 4 c Importance of safety in chemical industries: 4 4 c Importance of safety in chemical industries: 4 4 1 To increase the rate of production 2. 7 2 To reduce the damage to equipment and machinery 4. 4. 7 4 d Basis: 100 kg spent acid Weight of HNO3 = 35 kg 1 Moles of HNO3 = 35/63 = 0.556 kmoles Moles of HNO3 = 35/63 = 0.556 kmoles 1		route and the EXIT sign must be able to be seen from a distance.					
4 c Importance of safety in chemical industries: 4 4 c Importance of safety in chemical industries: 4 4 c Importance of safety in chemical industries: 4 4 d Basis: 100 kg spent acid Weight of HNO3 = 35 kg 1 4 d Basis: 100 kg spent acid Weight of H2SO4 = 35 kg 1 4 d Basis: 100 kg spent acid 1 1 Moles of H2SO4 = 35/83 = 0.556 kmoles Moles of H2SO4 = 35/98 = 0.357 kmoles 1			Assembly point:				
4 d Basis: 100 kg spent acid 4 big			Assembly point is a predetermined	safe area outside the bu	uilding where a	11 2	
4 c Importance of safety in chemical industries: 4 4 c Importance of safety in chemical industries: 4 1 To increase the rate of production 2. To reduce the cost of production 3 To reduce the damage to equipment and machinery 4. To protect the life and limbs of the workers 4 d Basis: 100 kg spent acid Weight of HNO3 = 35 kg 1 Moles of HNO3 = 35/63 = 0.556 kmoles Moles of HNO3 = 35/98 = 0.357 kmoles 1			occupants of the building should asse	mble / gather and remains	s there till the en	d	
4 c Importance of safety in chemical industries: 4 4 c Importance of safety in chemical industries: 4 1 To increase the rate of production 2 7 2 To reduce the cost of production 3 7 3 To reduce the damage to equipment and machinery 4 4 4 d Basis: 100 kg spent acid Weight of HNO3 = 35 kg Weight of H2O = 30 kg 1 1 Moles of HNO3 = 35/63 = 0.556 kmoles 1 1							
4 c Importance of safety in chemical industries: 4 1. To increase the rate of production 2. 2. To reduce the cost of production 3. 3. To reduce the damage to equipment and machinery 4 4 d Basis: 100 kg spent acid 4 Weight of HNO3 = 35 kg Weight of H2SO4 = 35 kg 1 Moles of H2SO4 = 35/63= 0.556 kmoles Moles of H2SO4 = 35/98= 0.357 kmoles 1							
4 c Importance of safety in chemical industries: 4 1 To increase the rate of production 2. To reduce the cost of production 4 3 To reduce the damage to equipment and machinery 4 4 4 d Basis: 100 kg spent acid 4 4 d Basis: 100 kg spent acid 4 Weight of HNO3 = 35 kg Weight of H2SO4 = 35 kg 1 Moles of HNO3 = 35/63 = 0.556 kmoles Moles of H2SO4 = 35/98 = 0.357 kmoles 1		the building. Assembly point should be easily and safely accessible and must					
4 c Importance of safety in chemical industries: 4 1 To increase the rate of production 2. To reduce the cost of production 3. To reduce the damage to equipment and machinery 4. To protect the life and limbs of the workers 4 d Basis: 100 kg spent acid Weight of HNO3 = 35 kg Weight of H2SO4 = 35 kg Weight of H2O = 30 kg Moles of HNO3 = 35/63= 0.556 kmoles Moles of H2SO4 = 35/98= 0.357 kmoles		have sufficient space to accommodate all occupants. It should have unobstructed					
1. To increase the rate of production 2. To reduce the cost of production 3. To reduce the damage to equipment and machinery 4. To protect the life and limbs of the workers 4 d Basis: 100 kg spent acid Weight of HNO3 = 35 kg Weight of H2SO4 = 35 kg Weight of H2O = 30 kg Moles of HNO3 = 35/63 = 0.556 kmoles Moles of H2SO4 = 35/98 = 0.357 kmoles		pathway to them and should be located away from power lines.					
2. To reduce the cost of production 3. To reduce the damage to equipment and machinery 4. To protect the life and limbs of the workers 4 d Basis: 100 kg spent acid Weight of HNO3 = 35 kg Weight of H2SO4 = 35 kg Weight of H2O = 30 kg Moles of HNO3 = 35/63= 0.556 kmoles Moles of H2SO4 = 35/98= 0.357 kmoles	4	с	Importance of safety in chemical in	idustries:		4	
3. To reduce the damage to equipment and machinery 4. To protect the life and limbs of the workers 4 d Basis: 100 kg spent acid Weight of HNO3 = 35 kg Weight of H2SO4 = 35 kg Weight of H2O =30 kg Moles of HNO3 = 35/63 = 0.556 kmoles Moles of H2SO4 = 35/98 = 0.357 kmoles			1. To increase the rate of produ	ction			
44. To protect the life and limbs of the workers4dBasis: 100 kg spent acid Weight of HNO3 = 35 kg Weight of H2SO4 = 35 kg Weight of H2O = 30 kg1Moles of HNO3 = 35/63 = 0.556 kmoles Moles of H2SO4 = 35/98 = 0.357 kmoles			2. To reduce the cost of product	ion			
4dBasis: 100 kg spent acid Weight of HNO3 = 35 kg Weight of H2SO4 = 35 kg Weight of H2O = 30 kg1Moles of HNO3 = $35/63 = 0.556$ kmoles Moles of H2SO4 = $35/98 = 0.357$ kmoles1			3. To reduce the damage to equi	pment and machinery			
Weight of HNO3 = 35 kgWeight of H2SO4 = 35 kgWeight of H2O = 30 kgMoles of HNO3 = $35/63$ = 0.556 kmolesMoles of HNO3 = $35/98$ = 0.357 kmoles			4. To protect the life and limbs of	of the workers			
Weight of H2SO4 = 35 kg 1 Weight of H2O = 30 kg 1 Moles of HNO3 = $35/63$ = 0.556 kmoles 1 Moles of H2SO4 = $35/98$ = 0.357 kmoles 1	4	d	Basis: 100 kg spent acid				
Weight of H2O =30 kg 1 Moles of HNO3 = 35/63= 0.556 kmoles 1 Moles of H2SO4 = 35/98= 0.357 kmoles 1			Weight of $HNO3 = 35 \text{ kg}$				
Moles of HNO3 = 35/63= 0.556 kmoles Moles of H2SO4 = 35/98= 0.357 kmoles			Weight of H2SO4 = 35 kg				
Moles of H2SO4 = 35/98= 0.357 kmoles			Weight of H2O =30 kg			1	
			Moles of HNO3 = 35/63= 0.556 km	les			
Moles of H2O $= 30/18 = 1.667$ kg 1			Moles of H2SO4 = 35/98= 0.357 km	oles			
			Moles of H2O =30/18= 1.667 kg			1	
Total Moles = 2.58 kmoles			Total Moles = 2.58 kmoles				
Mole% of HNO3 =(0.556/2.58)*100 = 21.55%			Mole% of HNO3 =(0.556/2.58)*100) = 21.55%			
Mole% of H2SO4 =(0.357/2.58)*100 = 13.84%			Mole% of H2SO4 =(0.357/2.58)*10	0 = 13.84%		2	
Mole% of H2O =(1.667/2.58)*100 = 64.61%			Mole% of H2O =(1.667/2.58)*100 =	= 64.61%			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

t Title: Fundamentals of Chemical Engineering Subject code : 22231		Page	e 11 of 18			
4	e	Different unit processes used in C	Chemical Industries(Any	4)	1/2	
		1. Oxidation			mark	
		2. Reduction			each	
		3. Nitration				
		4. Sulphonation				
		5. Hydration				
		6. Hydrogenation				
		7. Dehydrogenation				
		8. Esterification				
		9. Calcination				
		10. Pyrolysis				
		11. Halogenation				
		Nitration reaction of phenol:				
		Phenol is reacted with con.HNO ₃ to	produce 2,4,6 trinitro ph	enol.	2	
		Phenol is reacted with dil.HNO ₃ to j	produce 2,4,nitro phenol.			
		The mixture of nitrophenols so obta	ined is separated using ste	am distillation.		
		Both these products show hydrogen	bonding.			
		ОН ОН	NO ₂ OH			
		$20\% \text{HNO}_3 \longrightarrow 0$	J + ()			
		Phenol 2-Nitrop (0-Nitrop (30-40	henol) (p-Nitrophenol)			
5		Any two			12	
5	a	Abbes Refractometer:				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

bject Title: Funda	mentals of Chemical Engineering Subject code : 22231	Pag	ge 13 of 18
	The illuminating and measuring prisms are right angle prism, usually of 30-60-		
	90^{0} construction and made of flint glass. The refractive index of this prism		
	(1.75) is higher then the upper limit of the instrument range (i.e., the		
	refractometer is designed to use with samples having the refractive index		
	smaller than that of the prism, i.e., smaller than 1.75).		
	The surface of illuminating prism is matted so that the light enters the sample		
	(from the prism) at all possible angles, including that almost parallel to the		
	surface.		
	The lower face of the measuring prism (also known as the refracting prism)is		
	highly polished.		
	Two compensating Amici prisms are provided to prevent the dispersion of light		
	and thus to get a shadow boundary clear		
	An eyepiece of telescope is provided with cross hairs. For controlling		
	temperature during measurements, water from the thermostat is circulated		
	through jackets surrounding the prisms.		
	Working:		
	The sample is put between illuminating and measuring prisms in the form of		
	film of thickness of about 0.10 to 0.14 mm. Light from a light source is directed	2	
	towards the prisms. It enters the sample from illuminating prism and get	2	
	refracted at critical angle at the bottom surface of the measuring prism, and then		
	passes into a fixed telescope. The field of view gets divided into bright and dark		
	areas. Using a rotating knob, the shadow boundary (border line)separating		
	the bright and dark areas is placed exactly on the cross hairs of an eyepiece of		
	the telescope and the refractive index is then read from the scale provided.		
	The accuracy of this instrument is about ± 0.0002 .		
5 b	Operations used for solid-liquid separation:	2	
	1. Sedimentation		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title:	Funda	mentals of	Chemical Engineering	Subject code :	22231	Pa	ge 15 of 18
		and is eff	ected by passing the slurry th	rough a porous medium.	The pressure		
		difference					
	small holes of a filter cloth or screen which blocks the passage of the larger						
		solid part	icles. Filter aids are used as a	a pre coat to the filter med	dium before the		
		slurry is f	iltered. This will prevent sma	all particles from pluggin	g the filter		
		medium a	and also give a clearer filtrate	2.			
		Filters are	e of two types- Pressure filter	and Vacuum filter. Diffe	erent filters used	ł	
		in industr	y are drum filter, plate and fr	rame filter press			
		→					
5	5 c Principle of:						-
		ii)	Adsorption: Adsorption is	s a process that involves	the accumulation	on 1.5	
			of a substance in molecula	ar species in higher conc	entrations on th	ne	
			surface. If we look at Hyd	rogen, Nitrogen and Oxy	gen, these gase	es	
			adsorb on activated ch	arcoal. Meanwhile, we	have to not	te	
			that adsorption is differen	nt from absorption. The	e two processe	es	
			involve totally different me	echanisms.			
		iii)	Leaching is an operation in	n which a solid mixture is	contacted with	a 1.5	
			liquid solvent for the remo-	val of one or more consti	tuent of the soli	id	
			mixture.				
		iv)	Distillation is an operation	on where by the component	nents of a liqui	id 1.5	
			mixture containing miscibl	e and volatile substances	are separated b	у	
			partial vaporization by virtu	ue of difference in vapour	pressure. It is a	in	
			operation in which the con	ponents of a liquid mixt	ure are separate	ed	
			using thermal energy.			1.5	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

		v) Sedimentation: The separation of solids from a suspension in a liquid				
		by gravity settling is called sedimentation. The force responsible for				
		sedimentation is gravitational force .				
6		Any two	12			
6	a Electrical Conductivity meter:					
		Principle:				
		Two electrodes (platinum plates) are placed in a sample , a potential is applied	2			
		across the electrodes, and the current is measured.				
		Construction :				
		The meter consists of a conductivity probe and an EC meter. The probe consists	2			
		of two electrodes (platinum plates) set at a constant distance from each other. The				
		probe is connected by a cable to the meter.				
		Working:				
		The probe is placed into the solution under consideration such that the solution				
		covers the electrodes and an alternating voltage is applied by the meter to the				
		electrodes. The meter measures the resulting current that flows between the	2			
		electrodes and uses Ohm's law to calculate first the conductance of the solution				
		and then the conductivity of the solution using the conductance and cell constant.				
		R = V/I				
		Conductance = I/resistance conductivity = Conductance * cell constant				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: F	ndamentals of Chemical Engineering	Subject code :	22231	Page 17 of 1	
	Cable E.C. Meter Epoxy/Glass body Internal wiring Platinum electrodes Sensor Conductivity probe	3			
6 1	Reasons for carrying out size reduct Size reduction helps in: Easy handling Easy transportation	tion :		3	
	 Increase in reaction rate For having intimate mixing of 				
	 To separate various ingredient Crushing Operation: Crushing is the process of reducing the further processed. In addition to being crushing equipment can be very useful include, but are not limited to, waste a construction, and coal. Industrial crushers are primarily used make them smaller. Having smaller piece. 	e size of materials so that gused in the chemical indu l in a variety of businesses and recycling, mining, food to take very large pieces o	astry, industrial s. These d processing, of material and	3	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject	Subject Title: Fundamentals of Chemical Engineering Subject code : 22231				Pa	Page 18 of 18	
	transportation, further processing, and/or better ability to differentiate the						
			different compositions of the material				
			Principle used in crushing is Compression.				
	Jaw crusher, gyratory crusher are industrially used crushers.						
	6 c Reaction for preparation of ethane from ethylene:						
	(i)Ethane is prepared from ethylene by Hydrogenation: It refers to the					3	
			chemical reaction of an organic comp	ound with molecular hyd	rogen in the		
			presence of a catalyst.				
			$CH_2 = CH_2 + H_2 \rightarrow CH_3 - CH_3$				
			Ethylene ethane				
			(ii)Preparation of ethyl acetate from	n acetic acid and ethyl a	lcohol:		
			Preparation of ethyl acetate from a	cetic acid and ethyl alco	hol is done by	3	
			esterification. Esterification of an acid	l such as acetic acid by ar	n alcohol such a	s	
			ethyl alcohol results in the production	of ethyl acetate. Sulphur	ic acid and		
			hydrochloric acids are the catalysts us	ed for esterification.			
			СН ₃ СООН + С ₂ Н ₅ ОН	\rightarrow CH ₃ COOC ₂ H ₅	$+ H_2O$		
			acetic acid ethanol	ethyl acetate			