Subject Name: Basic Electronics

Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. } \\ & \text { N. } \end{aligned}$	Answer	Marking Scheme
1		Attempt any FIVE of the following:	12 M
	a)	Draw the symbols of resistor \& capacitor. State the unit of measurement of resistance \& capacitor.	2 M
	Ans	Symbol of resistor Symbol of capacitor Unit of resistance: ohm (Ω) Unit of capacitance: farad (F)	Each symbol $1 / 2$ M, each Unit $1 / 2$ M
	b)	Give two points of distinction between half wave \& full wave rectifier.	2 M
	Ans		Each point 1 M

	Ans	Operating Principle $>$ Operating range $>$ Accuracy \Rightarrow Range $>$ Sensitivity $>$ Loading effect $>$ Errors $>$ Environmental compatibility $>$ Frequency response: Usage and Ruggedness $>$ (Or any relevant point)	Each point 1 M
2.		Attempt any THREE of the following:	12 M
	a)	With suitable graph, define voltage source \& current source.	4 M
	Ans	Voltage Source: It is the source which supplies electrical energy in the form of a voltage. OR It is a device which delivers variable or constant voltage. Ideal voltage source Practical voltage source Current Source: It is the source which supplies electrical energy in the form of an electrical current. OR It is a device which produces variable or constant current.	Each definition 1 M, Each graph $1 / 2 \mathrm{M}$

	P-side and negative terminal to N -side of the diode. Electrons from N -side and holes from P-side are pushed towards the junction. Due to this the depletion layer's width decreases, and the current starts flowing through the diode. The Diode conduct current if applied voltage is above 0.7 V for silicon and 0.3 V for germanium. Reverse Bias: In reverse bias condition, positive terminal of the battery is connected to N -side and negative terminal to P -side of diode. Free electrons and holes move away from the junction. Hence, increasing the width of depletion layer. There is no current flowing in the PN junction diode. As the applied reverse voltage is increased, very small amount of current flows through the diode due to the minority charge carrier. This current is called reverse saturation current.	
d)	With suitable diagram, explain the working of NPN transistor.	4 M
Ans	1. In this emitter-base junction is forward biased and collector-base junction is reverse biased. The forward bias causes the electrons in the emitter to flow towards the base. This constitutes the emitter current I_{E}. 2. As these electrons flow through the base they tend to combined with holes. As the base is lightly doped and very thin therefore only a few electrons (2\%) combine with holes to constitute base current I_{B}. The remaining electrons (98\%) cross over into the collector region to constitute collector current I_{C}. This collector current is also called injected current.	Any other relevant diagram 2 M , Explanation 2 M

		3. The emitter current is sum of collector and base current.	
3.		Attempt any THREE of the following:	12 M
	a)	Draw the drain \& transfer characteristics of JFET.	4 M
	Ans	Drain characteristics of JFET Transfer characteristics of JFET Transfer Characteristics of JFET	Drain character istics of JFET 2M Transfer character istics of JFET 2M

| b) | Give the steps followed to measure temperature of metal using given
 transducer. Draw suitable diagram. | $\mathbf{4} \mathbf{4} \mathbf{M}$ |
| :--- | :--- | :--- | :--- | :--- |
| Note: Any other diagram with similar concept shall be considered | | |
| It is a mechanical device in which heat energy is converted into electrical energy. | | |

4.		Attempt any THREE of the following:	12 M
	a)	Explain: (i) Seebeck effect (ii) Peltier effect	4 M
	Ans	Seebeck effect: This states that whenever two dissimilar metals are connected together to form two junctions out of which, one junction is subjected to high temperature and another is subjected to low temperature then e.m.f is induced and it is proportional to the temperature difference between two junctions. Peltier effect: This states that for two dissimilar metals in a closed loop, if current is forced to flow through, then one junction will be heated and other will become cool.	Each explanation: 2 M
	b)	Draw block diagram of regulated power supply. Explain function of each block.	4 M
	Ans	Note: Any other block diagram with similar blocks shall be considered The block diagram of a Regulated Power supply unit is as shown below. A typical Regulated Power supply unit consists of the following. Transformer - An input transformer for the stepping down of the 230v AC power supply. Rectifier - A Rectifier circuit to convert the AC components present in the signal to DC components. Smoothing/Filter - A filtering circuit to smoothen the variations present in the rectified output. Regulator - A voltage regulator circuit in order to control the voltage to a desired output level. Load - The load which uses the pure dc output from the regulated output.	Diagram 2 M Working of each block : 2 M
	c)	With suitable diagram, explain the working of transistor as a switch.	4 M

Ans	a) When both junctions are forward bias, it works in saturation region \& act as closed switch. b) When both junctions are reverse biased, it works in cutoff region \& act as open switch. c) If input is not given to base, transistor remains off. Diode will be off. IC=0, Acts as open switch. d) When input is applied to base above 0.7 V , transistor becomes ON, Diode is ON. Current starts flowing, Transistor acts as close switch.	2 M for diagram 2 M for Explanation
d)	A JFET has a drain current of 3 mA . If Idss is $10 \mathrm{~mA} \& \mathrm{~V}_{\mathrm{GS}}(\mathrm{OFF})$ is -6 V . Find V_{GS} $\boldsymbol{\&}$ Vp.	4 M
Ans	Given $\begin{aligned} & \text { Idss }=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{GS}}(\mathrm{OFF})=-6 \mathrm{~V} \end{aligned}$ Find VGS ? Vp? $\begin{aligned} & \mathrm{ID}=\operatorname{IDSS}\left(1-\frac{\mathrm{VGS}}{\mathrm{VGS}(\mathrm{OFF})}\right)^{2} \\ & \mathrm{VGS}=\left(1-\frac{\sqrt{ } \mathrm{ID}}{\sqrt{\mathrm{IDSS}}}\right) \times \operatorname{VGS}(\mathrm{OFF}) \end{aligned}$ $\begin{aligned} & \mathrm{VGS}=\left(1-\frac{\sqrt{3 \mathrm{~mA}}}{\sqrt{10 \mathrm{~mA}}}\right) \times(-6) \\ & \mathrm{VGS}_{\mathrm{GS}}=2.7136 \mathrm{~V} \end{aligned}$	Formula for ID : 1 M VGS calculation: 2 M Vp calculation : 1 M

		Vp = VGS(OFF) $\therefore \mathrm{Vp}=-6 \mathrm{~V}$	
Ans	With suitable diagram, explain the working of capacitor filter with full wave rectifier. Draw i/p \& o/p waveforms.	4 M	
	During the positive half cycle, the diode (D1) current reaches the filter and charges the capacitor. However, the charging of the capacitor happens only when the applied AC voltage is greater than the capacitor voltage. Initially, the capacitor is uncharged. That means no voltage exists between the plates of the capacitor. So when the voltage is turned on, the charging of the capacitor happens immediately. During this conduction period, the capacitor charges to the maximum value of the input supply voltage. The capacitor stores a maximum charge exactly at the quarter positive half cycle in the waveform. At this point, the supply voltage is equal to the capacitor voltage. When the AC voltage starts decreasing and becomes less than the capacitor voltage, then the capacitor starts slowly discharging. The discharging of the capacitor is very slow as compared to the charging of the capacitor. So the capacitor does not get enough time to completely discharged. Before the complete discharge of the capacitor happens, the charging again takes place. So only half or more than half of the capacitor charge get discharged. When the input AC supply voltage reaches the negative half cycle, the diode D1 is The capacitor is not completely uncharged, so the charging of the capacitor does not happens immediately. When the supply voltage becomes greater than the capacitor voltage, the capacitor again starts charging. electric current). During the negative half cycle, the diode (D2) current reaches the filter and charges the capacitor. However, the charging of the capacitor happens only when the applied AC voltage is greater than the capacitor voltage.		

		In both positive and negative half cycles, the current flows in the same direction across the load resistor RL.	
5.		Attempt any TWO of the following:	12 M
	a)	i) From the sinusoidal wave given below, in fig. (i) \& fig. (ii) calculate Amplitude, Frequency. Fig. (i) Fig. (ii) (ii) Give the value of resistance for the following colour codes Red Blue Green Gold.	6 M
	Ans	i) Fig.I -Solution: - Amplitude $=5 \mathrm{~V}$ - Frequency $=1 / T=1 /(10 \mathrm{~ms})=100$ Hz Fig.II-Solution: - Assume(any value) Amplitude $=10$ V - \quad Frequency $=1 / \mathrm{T}=1 /(1 \mathrm{~ms})=1000$ $\mathrm{Hz}=1 \mathrm{KHz}$	For i : 3M For ii : 3M

	(ii) $\begin{aligned} & \text { Red }=2, \text { Blue }=6, \text { Green }=* 10^{5} \text { and Gold }=+-5 \% \\ & 26 * 10^{5}=2600000 \Omega=2.6 \mathrm{M} \Omega \end{aligned}$	
b)	(i) In NPN transistor, $\mathbf{I}_{\text {CEO }}=1000 \mu \mathrm{~A}, \boldsymbol{\beta}=50, \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$ Find Ic \& IE (ii) Define operating point of a transistor.	6 M
Ans	ii) Definition: The point which is obtained from the values of the I_{C} (collector current) or V_{CE} (collector-emitter voltage) when no signal is given to the input is known as the operating point or Q-point in a Transistor. It is called operating point because variations of I_{C} (collector current) and V_{CE} (collector-emitter voltage) takes place around this point when no signal is applied to the input.	Problem Solution: 4 M Definition Operating Point: 2 M
c)	(i) Identify the given circuit in fig. (iii) and explain its working. (ii) Draw the input and output for the same circuit.	6 M

	(iii) State application for the given circuit.	
Ans	i) Center tapped full wave rectifier ii) Working: - During the positive half cycle of the input voltage, the point A at the transformer secondary becomes positive. This makes the diode D1 forward biased. Hence current Il flows through the load resistor. - When the negative half cycle of the input voltage is applied, the point A at the transformer secondary becomes negative. This makes the diode D2 forward biased. Hence current I2 flows through the load resistor. ii) Input- Output Waveform: (iii) State application for the given circuit: - The conversion between high AC to low DC can be done by using this type of rectifiers. - The efficiency is high in these circuits make it capable of using it as a basic component in the power supply units. - In the criteria of powering on the devices like LED's or it may be motors this	Identify:1M Working, Waveform:3M Application: 2M

		type of rectifiers are preferred.	
6.		Attempt any TWO of the following:	12 M
	a)	Draw suitable diagrams showing depletion regions before $\boldsymbol{\&}$ after pinch-off for \mathbf{N} channel JFET.	6 M
	Ans	Depletion regions before pinch-off for N channel JFET Depletion regions after pinch-off for N channel JFET.	Diagram depletion regions before N channel JFET:3M Diagram Depletion regions after N channel JFET:3M

	Pinch off voltage: current becomes al only when gate to	nch off voltage is the st constant and JF rce voltage is zero	D N Channel JFET S drain to source volta enters into saturatio	after which the drain gion and is defined	
b)	Distinguish betwe most preferred co	$\overline{\mathrm{CB}, \mathrm{CC}, \mathrm{CE} \text { (foul }}$ nation.	oints). Explain why	configuration is the	6 M
Ans					Comparison Each Point:1M
	Parameter	Common Base	Common Emitter	Common Collector	Explanation CE configuration is
	Voltage Gain	High, Same as CE	High	Less than Unity	preferred:2M
	Current Gain	Less than Unity	High	High	
	Power Gain	Moderate	High	Moderate	
	Phase inversion	No	Yes	No	

Symbol:

Applications of Photodiode

- Photodiodes are used in many simple day to day applications. The reason for their use is the linear response of photodiode to a light illumination. When more amount of light falls on the sensor, it produces high amount of current. The increase in current will be displayed on a galvanometer connected to the circuit.
- Photodiodes help to provide an electric isolation with help of optocouplers. When two isolated circuits are illuminated by light, optocouplers is used to couple the circuit optically. But the circuits will be isolated electrically. Compared to conventional devices, optocouplers are fast.
- Photodiodes are also used in safety electronics like fire and smoke detectors. It is also used in TV units.

Phototransistor:
A phototransistor is similar to a regular BJT except that the base current is produced and controlled by light instead of a voltage source. The phototransistor effectively converts light energy to an electrical signal. In a phototransistor the base current is produced when light strikes the photosensitive semiconductor base region. The collector-base pn junction is exposed to incident light through a lens opening in the transistor package. When there is no incident light, there is only a small thermally generated collector-toemitter leakage current, $\mathrm{I}_{\mathrm{CEO}}$; this dark current is typically in the nA range. When light strikes the collector-base pn junction, a base current is produced that is directly proportional to the light intensity. This action produces a collector current. Except for the way base current is generated, the phototransistor behaves as a conventional BJT. In many cases, there is no electrical connection to the base.

Symbol:

