

SUMMER - 2022 EXAMINATION

Subject Name: Basic Electronics

Model Answer

Subject Code:

22225

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q.	Sub	Answer	Marking
No.	Q.		Scheme
	N.		
1		Attempt any <u>FIVE</u> of the following:	12 M
	a)	Draw the symbols of resistor & capacitor. State the unit of measurement of resistance & capacitor.	2 M
	Ans	Symbol of resistor	Each symbol ¹ / ₂
			M, each Unit $\frac{1}{2}$
		$-\!$	M
		Symbol of capacitor	
		$\frac{1}{T}$ or $\frac{1}{T}$	
		Unit of resistance: ohm (Ω)	
		Unit of capacitance: farad (F)	
	b)	Give two points of distinction between half wave & full wave rectifier.	2 M
	Ans		Each point 1 M

		Parameter	Half wave rectifier	Full wave	rectifier		
				Centre	Bridge		
				tappeu			
		No. of diode	1	2	4		
		PIV	Vm	2Vm	Vm		
		Rectification efficiency	40.6%	81.2%	81.2%		
		Ripple frequency	f	2f	2f		
		Ripple factor	1.21	0.482	0.482		
		TUF	0.287	0.693	0.812		
		DC voltage	Vm/π	2Vm/π	2Vm/π		
		DC load current	Im/π	2Im/π	2im/π		
 c)	Define a &	β of a transistor.					2 M
Ans	COMMON	BASE D.C CUR	RENT GAIN (<u>α):</u> `			Each Definition 1 M
	The ratio of alpha (α)	collector current l	$I_{\rm C}$ to emitter curr	rent I _E in the CB	configuration is	called	
			$\alpha =]$	$I_{\rm C}/I_{\rm E}$			
	COMMON	EMITTER D.C	CURRENT GA	AIN (β) :			
	The ratio of (β)	collector current l	$I_{\rm C}$ to base curren	t I_B in the CE cost	nfiguration is ca	lled beta	
				$\beta~=I_C/I_B$			
 d)	Draw the sy	ymbols of N chan	nel & P channe	el JFET.			2 M
 Ans							Each symbol 1 M

	G	ate Drain Source	(Gate Drain Source	
		P-Channel		N-Channel	
e)	Give two points of	distinction between ac	tive &	passive components.	2 M
Ans	Passiv	e components		Active components	Each point 1 M
	Components w amplify or pro- signals are cal components	which are not able to ocessing electrical led passive	Comp or pro called	ponents which are able to amplify pocessing electrical signals are l active components	
	They do not in They are bidir	ntroduce any gain	They They	may introduce gain are unidirectional	
	Eg. Resistor, c sensors, transf	capacitor, inductor, former	Eg: d MOS tubes	iode, transistor, IC, FET, FET, logic gates, triode vacuum (valves)	
f)	Give two points of	distinction between ac	tive &	passive transducers.	2 M
Ans					Each point 1 M
	Parameter Working	Active transducer		Passive transducer	
	Principle	conversion principle	у	controlling principle	
	Advantages	They do not require expower supply for their operation	ternal	They require external power supply for their operation	
	output	They produce voltage/current proport to the physical quantitie	ional es	They produce change in resistance, capacitance in the response to the physical quantity.	
	Example	Eg. Thermocouple, photocell, piezoelectric transducer, Photovoltaic cell		Eg. Thermistor, LVDT, LDR, phototransistor, capacitive transducer	
	Application	Used for measuremen Surface roughness in accelerometers and vibration pickups.	t of	Used for measurement of power at high frequency	
 g)	State the selection	criterion of transducer	rs.		 2 M

	Ans	> Operating Principle	Each point I M
		> Operating range	
		> Accuracy	
		Kange	
		Loading effect	
		> Errors	
		Environmental compatibility	
		Frequency response: Usage and Ruggedness	
		(Or any relevant point)	
2.		Attempt any <u>THREE</u> of the following:	12 M
	a)	With suitable graph, define voltage source & current source.	4 M
	Ang	Voltage Source. It is the source which supplies electrical energy in the form of a	Fach definition
	Alls	voltage Source. It is the source which supplies electrical energy in the form of a	1 M Fach
		voltage. OR it is a device which delivers variable or constant voltage.	$\frac{1}{3}$ M
			gruph /2 W
		VL=Vs	
		VL	
		Ideal voltage source Practical voltage source	
		Current Source: It is the source which supplies electrical energy in the form of an	
		electrical current OR It is a device which produces variable or constant current	
		electrical current. OK it is a device which produces variable of constant current.	
		(I)	
		Valence 0.0 as Desidence (D)	
		voltage (v) of Resistance (R)	
		Current deal	
		0	
		Practical	
		Voltage (V) or Resistance (R)	
		Voltage (V) or Resistance (R) Current (I) Practical Voltage (V) or Resistance (R)	

	P-side and negative terminal to N-side of the diode. Electrons from N-side and holes from P-side are pushed towards the junction. Due to this the depletion layer's width decreases, and the current starts flowing through the diode. The Diode conduct current if	
	applied voltage is above 0.7V for silicon and 0.3V for germanium.	
	HOLES ELECTRON	
	000 • • •	
	000 • • •	
	• • •	
	P N	
	_1 +	
	V	
	Reverse Bias: In reverse bias condition, positive terminal of the battery is connected to	
	N-side and negative terminal to P-side of diode. Free electrons and holes move away	
	from the junction. Hence, increasing the width of depletion layer. There is no current	
	flowing in the PN junction diode. As the applied reverse voltage is increased, very small amount of current flows through the diode due to the minority charge carrier. This	
	current is called reverse saturation current.	
-1)		4 3 4
a)	with suitable diagram, explain the working of NPN transistor.	4 M
Ans		Any other
		diagram 2 M,
		Explanation 2
		M
	VEB Movement of Late Movement of Collector	
	B	
	1. In this emitter-base junction is forward biased and collector-base junction is reverse biased. The forward bias causes the electrons in the emitter to flow	
	towards the base. This constitutes the emitter current I_E .	
	2. As these electrons flow through the base they tend to combined with holes. As	
	the base is lightly doped and very thin therefore only a few electrons (2%)	
	cross over into the collector region to constitute collector current I_C This	
	collector current is also called injected current.	

b)	Give the steps followed to measure temperature of metal using given transducer. Draw suitable diagram.	4 M
Ans	 Note: Any other diagram with similar concept shall be considered It is a mechanical device in which heat energy is converted into electrical energy. If is a mechanical device in which heat energy is converted into electrical energy. If is a mechanical device in which heat energy is converted into electrical energy. If is a mechanical device in which heat energy is converted into electrical energy. If is a mechanical device in which heat energy is converted into electrical energy. If is a mechanical device in which heat energy is converted into electrical energy. It consists of two different metal wires which are connected together so as to form two junctions. One junction is kept at constant temperature (cold junction) and other is heated (hot junction). Hot junction is called measuring junction and cold junction is called reference junction. The whole arrangement is enclosed in a tube made up of glass i.e., quartz. Materials used Bismuth-lead, iron constantan, bismuth-silver, copper-constantan alloy. Its working principle is based on seeback effect and peilter effect. 	2 M for diagram 2 M for Explanation
c)	List two advantages of Integrated Circuits. Distinguish between analog & digital ICs.	4 M
Ans	 Its size is thousand times smaller than a discrete circuit. Its weight is very less as compared to that of equivalent discrete circuits In case of circuit failure, it is easy to replace Ic by new one Due to smaller size, power consumption is less 	Any 2 advantages 2 M Comparison (Any 2 points) 2 M

	Items	Analog IC	Digital IC	
	Signal	Continuous, such as light, sound, speed,	Discrete 0 and 1	
	Characteristics	temperature, etc.	District, o and 1.	
	Technological	High entry barrier with 10~15 years	Relying on Computer Aided Design (CAD)	
	Complexity Drughust A sound its tion	learning curve	tools with 3~5 year learning curve	
	Substitution	Low	5~6 monus	
	Substitution	Low volume	High volume	
	Product Portfolio	High variety	Low variety	
		Power management,	Logic computation,	
	Applications	Audio amplification,	Control,	
		Signal transformation and monitoring	Digital signal coding/decoding	
	Price	Stable	Volatile	
d)	With suitable diagram	, explain the working of trai	nsistor as an amplifier.	4 M
Ang				Circuit
Alls				diagram:2 M
	R1			Explanation 2
	KESISTOR	Vout		
				M
	TTA C1			
	R2 RESISTOR	R4		
	{			
		=		
	The signal is fed at the i	nput terminal and output is tal	ken from collector end. The total	
	instantaneous output vo	ltage Vce is given by		
	instantaneous output vo	luge vee is given by		
	Vce=Vcc-Ic Rc(1)			
	When the signal voltage	increases in the positive half	cycle, the base current also	
	increases.			
	The result is that collect	or current and hence voltage of	lrop IcRc increases.	
	As Vcc is constant, the	refore output voltage Vce deci	eases.	
	As the signal voltage is	increasing in the positive half	cycle, the output voltage is	
	increasing in the negativ	ve sense i.e. output is 180 degi	ree out of phase with input.	
	Therefore in a CE ampl	lifier the positive half cycle of	the signal appears as amplified	
	negative half cycle in th	e output and vice versa.	_	

4.		Attempt any <u>THREE</u> of the following:	12 M
	a)	Explain: (i) Seebeck effect (ii) Peltier effect	4 M
	Ans	 Seebeck effect: This states that whenever two dissimilar metals are connected together to form two junctions out of which, one junction is subjected to high temperature and another is subjected to low temperature then e.m.f is induced and it is proportional to the temperature difference between two junctions. Peltier effect: This states that for two dissimilar metals in a closed loop, if current is forced to flow through, then one junction will be heated and other will become cool. 	Each explanation : 2 M
	b)	Draw block diagram of regulated power supply. Explain function of each block.	4 M
	Alls	The block diagram of a Regulated Power supply unit is as shown below. 1 $230v AC \longrightarrow 1$	Working of each block : 2 M
		Supply Supply V_m	
		A typical Regulated Power supply unit consists of the following.	
		Transformer – An input transformer <i>for the stepping down of the 230v AC power supply</i> .	
		Rectifier – A Rectifier circuit to convert the AC components present in the signal to DC components. Smoothing/Filter – A filtering circuit to smoothen the variations present in the rectified output.	
		Regulator – A voltage regulator circuit in order to control the voltage to a desired output level.	
		Load – The load which uses the pure dc output from the regulated output.	
	c)	With suitable diagram, explain the working of transistor as a switch.	4 M

Ans	ee t	2 M for
	$V_{CC} \longrightarrow R_{B} \xrightarrow{R_{B}} \underbrace{R_{C}}_{H_{B}} \xrightarrow{V_{CC}} \underbrace{V_{CC}}_{H_{B}} \xrightarrow{V_{CC}} \underbrace{R_{B}}_{H_{B}} \xrightarrow{V_{CC}} \underbrace{I_{B}}_{H_{B}} \xrightarrow{I_{B}} \underbrace{I_{B}} \xrightarrow$	2 M for Explanation
	a) When both junctions are forward bias, it works in saturation region & act as closed switch.	
	b) When both junctions are reverse biased, it works in cutoff region & act as open switch.	
	c) If input is not given to base, transistor remains off. Diode will be off. IC=0, Acts as open switch.	
	d) When input is applied to base above 0.7V, transistor becomes ON, Diode is ON.	
	Current starts flowing, Transistor acts as close switch.	
d)	A JFET has a drain current of 3 mA. If Ibss is 10 mA & VGS (OFF) is – 6V. Find VGS & Vp.	4 M
Ans	Given	Formula for ID
	$I_{DSS} = 10 m A$: 1 M
	$V_{GS}(OFF) = -6V$	
	Find	
	V _{GS} ? Vp ?	VGS calculation:2 M
	$ID = IDSS \left(1 - \frac{VGS}{VGS(OFF)} \right)^{2}$ $VGS = \left(1 - \frac{\sqrt{ID}}{\sqrt{IDSS}} \right) \times V_{GS}(OFF)$	Vp calculation : 1 M
	$VGS = \left(1 - \frac{\sqrt{3mA}}{\sqrt{10mA}}\right) \times (-6)$	
	Ans d) Ans	Ans a) When both junctions are forward bias, it works in saturation region & act as closed switch. b) When both junctions are reverse biased, it works in cutoff region & act as open switch. c) If input is not given to base, transistor remains off. Diode will be off. IC=0, Acts as open switch. d) When input is applied to base above 0.7V, transistor becomes ON, Diode is ON. Current starts flowing, Transistor acts as close switch. d) A.JFET has a drain current of 3 mA. If Ioss is 10 mA & Vos (OFF) is – 6V. Find Vos & Vp. Ans Given Inss = 10mA Vos(OFF) = -6V Find Vos ? Vp ? ID = IDSS $\left(1 - \frac{VGS}{VGS(OFF)}\right)^2$ VGS = $\left(1 - \frac{\sqrt{amA}}{\sqrt{10mA}}\right) \times (c6)$

 	$V_{n} - V_{CS}(OFF)$	
	\therefore Vp = -6V	
e)	With suitable diagram, explain the working of capacitor filter with full wave rectifier. Draw i/p & o/p waveforms.	4 M
Ans		Diagram :
		1 M
		Explanation :
	Eull wave rectifier with capacitor filter	
		Waveform :1M
	During the positive half cycle, the diode (D1) current reaches the filter and charges the capacitor. However, the charging of the capacitor happens only when the applied AC voltage is greater than the capacitor voltage.	
	Initially, the capacitor is uncharged. That means no voltage exists between the plates of the capacitor. So when the voltage is turned on, the charging of the capacitor happens immediately.	
	During this conduction period, the capacitor charges to the maximum value of the input supply voltage. The capacitor stores a maximum charge exactly at the quarter positive half cycle in the waveform. At this point, the supply voltage is equal to the capacitor voltage.	
	When the AC voltage starts decreasing and becomes less than the capacitor voltage, then the capacitor starts slowly discharging.	
	The discharging of the capacitor is very slow as compared to the charging of the capacitor. So the capacitor does not get enough time to completely discharged. Before the complete discharge of the capacitor happens, the charging again takes place. So only half or more than half of the capacitor charge get discharged.	
	When the input AC supply voltage reaches the negative half cycle, the diode D1 is reverse biased (blocks electric current) whereas the diode D2 is forward biased (allows electric current).	
	During the negative half cycle, the diode (D2) current reaches the filter and charges the capacitor. However, the charging of the capacitor happens only when the applied AC voltage is greater than the capacitor voltage.	
	The capacitor is not completely uncharged, so the charging of the capacitor does not happens immediately. When the supply voltage becomes greater than the capacitor voltage, the capacitor again starts charging.	

		In both positive and negative half cycles, the current flows in the same direction across the load resistor RL.	
		Voltage	
		AC input Time	
		DC output Time	
5.		Attempt any <u>TWO</u> of the following:	12 M
	a)	i) From the sinusoidal wave given below, in fig. (i) & fig. (ii) calculate	6 M
		Amplitude, Frequency. \uparrow	
		(Volts) 0 10 msec 10 msec 1 msec 1 msec 1 msec	
		Fig. (i) Fig. (ii)	
		(ii) Give the value of resistance for the following colour codes - Red Blue Green Gold.	
			For i: 3M
	Ans		For ii: 3M
		Fig.I -Solution: Fig.II-Solution:	
		 Amplitude =5 V Frequency=1/T =1/ (10ms) = 100 Hz Assume(any value) Amplitude =10 V Frequency=1/T =1/ (1ms) = 1000 Hz=1KHz 	

	(ii)	
	Red= 2, Blue=6, Green= $*10^5$ and Gold= $+-5\%$	
	$26*10^5 = 2600000\Omega = 2.6M\Omega$	
b)	(i) In NPN transistor, $I_{CEO} = 1000 \ \mu A, \beta = 50, I_B = 10 \ \mu A$ Find Ic & IE (ii) Define operating point of a transistor.	6 M
Ans	i) $I_{CEO} = 1000 \ \mu A = 1000 \times 10^{-6} = 10^{-3} A$	Problem Solution: 4 M
	$\beta = 50$	Definition
	$I_B = 10 \ \mu A = 10 \times 10^{-6} = 10^{-5} A$	Operating
	Ic=?	Point: 2 M
	$Ic = \beta I_B + I_{CEO}$	
	$=50 \times 10^{-5} + (10^{-3})$	
	=0.0015	
	=1.5mA	
	IE= IC+IB	
	$= 0.0015 + 10^{-5}$	
	=0.00151	
	=1.51 mA	
	ii) Definition: The point which is obtained from the values of the I_C (collector current) or V_{CE} (collector-emitter voltage) when no signal is given to the input is known as the operating point or Q-point in a Transistor. It is called operating point because variations of I_C (collector current) and V_{CE} (collector-emitter voltage) takes place around this point when no signal is applied to the input.	
c)	(i) Identify the given circuit in fig. (iii) and explain its working.(ii) Draw the input and output for the same circuit.	6 M

		type of rectifiers are preferred.				
6.		Attempt any <u>TWO</u> of the following:	12 M			
	a)	Draw suitable diagrams showing depletion regions before & after pinch-off for N channel JFET.				
	Ans	Depletion regions before pinch-off for N channel JFET	Diagram depletion regions before N channel JFET:3M Diagram Depletion regions after N channel JFET:3M			

	Input Impedance	Low (50 Ohm)	Moderate (1KOhm)	High (300 KOhm)			
	Output Impedance	High (1 M Ohm)	Moderate (50 K)	Low (300 Ohm)			
	•CE is most widely u day to day application						
	Common emitter is the maximum transcoThe common emitter						
c)	voltage and current g With suitable diagra	6 M					
Ans	as control device for Note: Any other dia	Each					
	Photodiode:	explanation:3M					
	It is a form of light securent). Photodiode p (positive) and n (ne light energy as input Sensor or Light Detect of the photodiode is c and $n - side$ to the po Germanium, Indium of the secure of the photodiode the photodiode the photodiode is c and $n - side$ to the po Germanium, Indium of the photodiode						
	Internally, a photodiode has optical filters, built in lens and a surface area. When surface area of photodiode increases, it results in less response time. Few photo diodes will look like Light Emitting Diode (LED). It has two terminals as shown below. The smaller terminal acts as cathode and longer terminal acts as anode.						
		P-type Depletion P-type	nt photons				

