Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. 2	a)	Attempt any THREE of the following 1. Scalar and vector quantities 1.1 Scalar quantity A scalar quantity is one that has magnitude only. Examples: Mass, Length, volume, time, temperature and density. Fig: Scalar quantity 1.2 Vector quantity A vector quantity is one that has magnitude as well as direction. Examples: Force, displacement, velocity, acceleration and momentum etc. Fig: Vector quantity	1M
	b)	Given Data-: Load lifted (W) $=1400 \mathrm{~N}$ Effort value of $(\mathrm{P})=50 \mathrm{~N}$ Distance moved by the effort $(\mathrm{y})=6 \mathrm{~m}$ Distance moved by the $\operatorname{load}(x)=0.2 \mathrm{~m}$ To Find-:1.Mechncial Advantage (M.A) 2. Velocity Ratio (V.R.) 3. Efficiency 4. Ideal Effort Solution : We know that, 1.Mechanical Advantage (M.A) $\begin{aligned} & \text { M.A }=\frac{W}{P} \\ & \text { M.A }=1400 / 50 \\ & \text { M.A }=28 \end{aligned}$ 2.Velocity ratio (V.R)	1M

$$
\begin{aligned}
\text { Mechanical advantage, } \quad \text { M.A } & =\frac{W}{P} \\
\text { M.A } & =\frac{W}{m W+C}(\because P=m W+C) \\
& =\frac{1}{m+\frac{C}{W}}
\end{aligned}
$$

Value of W is extremely high hence, $\frac{\mathrm{C}}{\mathrm{W}}$ will tend to be zero and corresponding M.A will be maximum.

Mechanical advantage, M. $A_{\max }=\frac{1}{\mathrm{~m}}$.
We know that,

$$
\mathrm{M} . \mathrm{A}=\eta \times \mathrm{V} . \mathrm{R}
$$

$$
\eta=\frac{M \cdot A}{V \cdot R}=\frac{1}{m+\frac{c}{W}} \times \frac{1}{V \cdot R}
$$

The velocity ratio in any machine is fixed. Thus, η is directly proportional to M.A
For maximum M.A, the efficiency will also be Maximum
Maximum efficiency,

$$
\begin{align*}
& \eta_{\max }=\frac{M \cdot A \max }{V \cdot R} \\
& \eta_{\text {max }}=\frac{1}{m \times V \cdot R} . \tag{3}
\end{align*}
$$

2. The frictional force is independent on the area of the surfaces which is in contact.
3. Frictional force depends on the roughness of surface.
4. The ratio of frictional force to the normal reaction remains constant.
5. The static friction is always greater than the dynamic friction.
6. In kinetic or dynamic friction for moderate speeds, the frictional force remains constant. But it decreases slightly with the increase of speed.

$$
\theta=\tan ^{-1}|-0.9242|
$$

$$
\theta=42.74^{0}
$$

\qquad .(Ans.)

As $\mathbf{\Sigma F x}$ is negative and $\boldsymbol{\Sigma F y}$ is positive so Resultant (R) will be in second Quadrant making an angle of 42.74^{0} with x-axis.

State four properties of couple (any four- One mark each)

- The resultant of the forces of couple is zero
- The resultant of couple is equal to the product of one of the force and arm of couple.
- Moment of a couple about any point is constant.
- A couple can be balanced by only by another couple of equal and opposite movement.
- Two or more couple are said to be equal when they have same sense and moment.
- Any number of coplanar couples can be represented by a single couple, the moment of which is equal to the algebraic sum of the moment of all the couples.
c) In a differential axle and wheel, the diameter of wheel is 40 cm and diameters of axle are 10 cm and 8 cm . If an effort of 50 N can lift a load of 1500 N , find the efficiency of the machine.

Solution.

Given Data-:

Diameter of Effort Wheel (D) $=40 \mathrm{~cm}$
Diameter of bigger axle $\left(\mathrm{d}_{1}\right)=10 \mathrm{~cm}$
Diameter of smaller axle $\left(\mathrm{d}_{2}\right)=8 \mathrm{~cm}$
Effort $(\mathrm{P})=50 \mathrm{~N}$
$\operatorname{Load}(\mathrm{W})=1500 \mathrm{~N}$

Calculate Velocity Ratio (V.R)
$\mathrm{VR}=\frac{2 \mathrm{D}}{\mathrm{d} 1-\mathrm{d} 2}=\frac{2 \times 40}{10-8}=40$

Calculate Mechanical Advantage (M.A.)

$M A=\frac{W}{P}=\frac{1500}{50}=30$

We know that,
$\eta=\frac{M A}{V R} \times 100$

$$
\begin{aligned}
& \eta=\frac{30}{40} \times 100 \\
& \eta=75 \% \text { (Ans.) }
\end{aligned}
$$

Certain machine follows the law $\mathrm{P}=(0.02 \mathrm{~W}+14) \mathrm{N}$. When the load is lifted by 2 cm , the effort has to move 150 cm . State with reason ,whether the machine is reversible or not.

Solution.

Distance moved by the effort, $\quad y=150 \mathrm{~cm}$
Distance moved by the load, $\quad \mathrm{x}=2 \mathrm{~cm}$
The law machine is $\mathrm{P}=(0.02 \mathrm{~W}+14) \mathrm{N}$
So, $m=0.02$
Mechanical advantage,
$\begin{aligned} \max \text { M.A } & =\frac{1}{\mathrm{~m}} \\ & =\frac{1}{0.02}\end{aligned}$

$$
=50
$$

Calculate Velocity ratio (V.R)
V.R $=\frac{y}{x}=\frac{150}{2}=75$

Calculate Efficiency $\boldsymbol{\eta} \%$
$\eta=\frac{\max \cdot M \cdot A}{\text { V.R }} \times 100$
$\eta \%=\frac{50}{75} \times 100$
$\eta=66.67 \%$
Here obtained efficiency is greater than 50%, so given machine is reversible.

A square ABCD of 2 m side is subjected to forces as shown in Fig. No. 2.Find the magnitude, direction and position of resultant with respect to A.

Fig.No.-02

Let us first find $\mathbf{\Sigma F x}$

$\Sigma \mathrm{Fx}=10-15-30 \cos 45$
$\Sigma \mathrm{Fx}=-26.21 \mathrm{~N}$
find EFy
$\mathbf{\Sigma F y}=20+20-30 \operatorname{Sin} 45$
$\Sigma \mathrm{Fy}=18.78 \mathrm{~N}$

$$
\begin{aligned}
\mathrm{R} & =\sqrt{(\Sigma \mathrm{Fx})^{2}+(\Sigma \mathrm{Fy})^{2}} \\
\mathrm{R} & =\sqrt{(-26.21)^{2}+(18.78)^{2}}
\end{aligned}
$$

R=32.24 N...... Magnitude of Resultant
Direction of Resultant $(\theta)=\tan ^{-1}\left|\frac{\Sigma \mathrm{Fy}}{\Sigma \mathrm{Fx}}\right|$

$$
\begin{aligned}
& \theta=\tan ^{-1}\left|\frac{18.78}{-26.21}\right| \\
& \theta=\tan ^{-1}|-0.7165| \\
& \theta=35.62^{0} \ldots \ldots \ldots . . \text { Direction of Resultant. }
\end{aligned}
$$

$\mathbf{\Sigma F x}$ is negative and $\boldsymbol{\Sigma F y}$ is positive so Resultant is lies in Second quadrant.
Taking moment about point A

$$
\begin{aligned}
\mathbf{\Sigma} \mathbf{M}_{\mathbf{A}} & =-(20 \times 2)+(15 \times 2)+(30 \operatorname{Sin} 45 \times 2) \\
& =\mathbf{3 2 . 4 2} \mathbf{~ k N}-\mathbf{m}
\end{aligned}
$$

Using Varignons theorem of moment,

$\mathbf{\Sigma} \mathbf{M}_{\mathbf{A}}=\mathrm{R} \times \mathrm{x}$
$32.42=32.34 \times x$
$x=1.002 \quad \ldots \ldots \ldots$. Position of the resultant from point A.
b) A cantilever is loaded as shown in Fig. No. 3. Find the support reaction.

Fig.No.-03

$\boldsymbol{\Sigma F y}=0$ \qquad Conditions of equilibrium
$\mathrm{R}_{\mathrm{A}}-80=0$
$R_{A}=80 \mathrm{kN}$
.......Support reaction

Given Data:

Weight of Body $(W)=12 \mathrm{kN}=12000 \mathrm{~N}$
Coefficient of friction $(\mu)=0.70$
Applied force $(\mathrm{P})=$?
Given Condition: Body Kept over Horizontal plane and force is inclined at an angle to Horizontal $(\theta)=40^{\circ}$

Fig. No.-5
For Limiting Equilibrium:

$$
\begin{align*}
& \sum F x=0 \quad+\mathrm{ve} \quad-\mathrm{ve} \\
& \therefore+\mathrm{P} \cos 40^{\circ}-\mathrm{F}=0 \\
& \therefore \mathrm{P}(0.766)-\mu \mathrm{R}=0 \\
& \therefore \mathrm{P}(0.766)=0.70 \mathrm{R} \\
& \therefore \quad \mathrm{R}=\frac{0.766 \mathrm{P}}{0.70} \\
& \therefore \quad \mathrm{R}=1.094 \mathrm{P} \quad \ldots . ~ \tag{i}
\end{align*}
$$

For Limiting Equilibrium:

$$
\begin{gather*}
\sum F y=0 \uparrow+\mathrm{ve} \downarrow-\mathrm{ve} \\
\therefore \mathrm{P} \sin 40^{\circ}+\mathrm{R}-12000=0 \\
\therefore 0.6427 \mathrm{P}+\mathrm{R}-12000=0 \\
\therefore \mathrm{R}=12000-0.6427 \mathrm{P} \tag{ii}
\end{gather*}
$$

From Equation (i) and (ii), we get

$$
\begin{array}{ll}
& 1.0943 \mathrm{P}=12000-0.6427 \mathrm{P} \\
\therefore & 1.0943 \mathrm{P}+0.6427 \mathrm{P}=12000 \\
\therefore & 1.737 \mathrm{P}=12000
\end{array}
$$

$$
\therefore \quad \mathrm{P}=\frac{12000}{1.737}
$$

$\therefore \mathbf{P}=\mathbf{6 9 0 8 . 4 6} \mathbf{N}$ or 69.08 kN \qquad .Applied force

From equation (i)

$$
\begin{aligned}
R & =1.094 \mathrm{P} \\
& =1.094 \times 6908.46
\end{aligned}
$$

$$
R=7557.85 \mathrm{~N}
$$

Also,

$$
\mathrm{F}=\mu \mathrm{R}
$$

$$
=0.70 \times 7557.85
$$

$\mathbf{F}=\mathbf{5 2 9 0} .49 \mathrm{~N}$ \qquad .Limiting force of friction
We have,

$$
\tan \varnothing=\mu
$$ Angle of friction

$$
\emptyset=\tan ^{-1}|0.70|
$$

$$
\emptyset=34.99^{0}
$$

e)

A body of weight 50 kN is hung by means of string to ceiling .Determine the pull required and tension in the string when string has an inclination 70° with the ceiling and pull is applied at 30° with horizontal. Refer Fig. No.6.

Fig.No.-06
$\alpha=160^{\circ}, \beta=120^{\circ}$ and $\gamma=80^{\circ}$

By using Lamis theorem,
$\frac{p}{\sin \alpha}=\frac{T}{\sin \beta}=\frac{W}{\sin \gamma}$
$\frac{P}{\sin 160}=\frac{T}{\sin 120}=\frac{50}{\sin 80}$
Consider,
$\frac{P}{\sin 160}=\frac{50}{\sin 80}$
$P=\frac{50 \operatorname{Sin} 160}{\sin 80}$
$P=17.36 \mathrm{kN}$

Consider,
$\frac{T}{\sin 120}=\frac{50}{\sin 80}$
$\mathrm{T}=\frac{50 \operatorname{Sin} 120}{\sin 80}$
$\mathrm{T}=43.96 \mathrm{kN}$
Q. 5 a)

Attempt any TWO of the following
Marks:12

For the beam as shown in fig No. 7., calculate reaction at roller and hinge support by analytical method.

Fig.No.-07
To find: Reaction at support R_{A} and \mathbf{R}_{B}.

c)	For Limiting Equilibrium: $\begin{aligned} & \Sigma F y=0 \quad \text { P +ve } \quad \downarrow \text {-ve } \\ & \therefore-600 \cos 40^{\circ}+\mathrm{R}=0 \\ & \therefore-459.62+\mathrm{R}=0 \\ & \therefore \mathbf{R}=\mathbf{4 5 9 . 6 2} \mathbf{N} \text {................................Normal Reaction } \end{aligned}$ But we know that, $\begin{aligned} & \therefore \mathrm{F}=\mu \mathrm{R} \\ & \therefore \mathrm{~F}=0.58 \times 459.62 \\ & \therefore \mathrm{~F}=\mathbf{2 6 6 . 5 7} \mathbf{N} . F r i c t i o n a l ~ f o r c e ~ \end{aligned}$ For Limiting Equilibrium: $\begin{aligned} & \sum F x=0 \longrightarrow+\mathrm{ve} \longleftarrow-\mathrm{ve} \\ & \therefore-600 \sin 40+\mathrm{F}+\mathrm{P}=0 \\ & \therefore-385.67+266.57+\mathrm{P}=0 \\ & \therefore-119.10+\mathrm{P}=0 \\ & \therefore \mathbf{P}=\mathbf{1 1 9 . 1 0} \mathbf{N} \text {.......................................Applied force } \end{aligned}$	1 M

Q.

Area of web $\left(A_{1}\right)=240 \times 15=3600 \mathrm{~mm}^{2}$
Area of flange $\left(\mathrm{A}_{2}\right)=200 \times 20=4000 \mathrm{~mm}^{2}$
Note: Vertical Part is called as Web or Rib and Horizontal Part is called as Flange.
To calculate centroidal position \bar{x} from y-axis:
Given T section is symmetrical to y - y Axis

$$
\begin{aligned}
& \overline{\mathrm{x}}=\frac{\text { Maximum length of Tsection }}{2} \\
& \overline{\mathrm{x}}=\frac{200}{2} \\
& \overline{\mathrm{x}}=\mathbf{1 0 0} \mathbf{~ m m ~ (A n s .) ~}
\end{aligned}
$$

To calculate centroidal position of \bar{y} from $x-$ axis:

$$
\begin{aligned}
& \mathrm{y}_{1}=\frac{240}{2} \\
& \mathrm{y}_{1}=120 \mathrm{~mm} \\
& \mathrm{y}_{2}=240+\frac{20}{2} \\
& \mathrm{y}_{2}=250 \mathrm{~mm} \\
& \overline{\mathrm{y}}=\frac{\mathrm{A} 1 \mathrm{y} 1+\mathrm{A} 2 \mathrm{y} 2}{\mathrm{~A} 1+\mathrm{A} 2}
\end{aligned}
$$

$$
\bar{y}=\frac{(3600 \times 120)+(4000 \times 250)}{(3600+4000)}
$$

$$
\overline{\mathbf{y}}=188.421 \mathrm{~mm} \text { (Ans.) }
$$

Centroid ($\overline{\mathbf{x}}, \overline{\mathbf{y}})=(\mathbf{1 0 0 m m}, 188.421 \mathrm{~mm})$ (Ans.)
b)

ABCD is a square plate of uniform thickness having each side of 300 mm . With A as a center and 300 mm as radius, a quarter circular portions ABD is removed as shown in Fig. No. 10. Locate the centroid of the remaining plate.

Fig.No.-‘10
Area calculation:
Area of Square $\left(\mathrm{A}_{1}\right)=(\text { Side })^{2}=(300)^{2}=90000 \mathrm{~mm}^{2}$
Area of Quarter circle $\left(\mathrm{A}_{2}\right)=\frac{1}{4} \times \pi \mathrm{r}^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times \pi \times 300^{2} \\
& =70685.83 \mathrm{~mm}^{2}
\end{aligned}
$$

To calculate centroidal position $\overline{\mathrm{x}}$ from y axis:

$$
\begin{aligned}
& \mathrm{x}_{1}=\frac{300}{2} \\
& \mathrm{x}_{1}=150 \mathrm{~mm} \\
& \mathrm{x}_{2}=\frac{4 r}{3 \pi}=\frac{4 \times 300}{3 \pi} \\
& \mathrm{x}_{2}=127.32 \mathrm{~mm} \\
& \overline{\mathrm{x}}=\frac{\mathrm{A} 1 \mathrm{x} 1-\mathrm{A} 2 \mathrm{x} 2}{\mathrm{~A} 1-\mathrm{A} 2}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathrm{x}}=\frac{(90000 \times 150)-(70685.83 \times 127.32)}{(90000-70685.83)} \\
& \overline{\mathrm{x}}=\mathbf{2 3 3} \mathrm{mm}
\end{aligned}
$$

To calculate centroidal position of \bar{y} from x - axis:

$$
\begin{aligned}
& \mathrm{y}_{1}=\frac{300}{2} \\
& \mathrm{y}_{1}=150 \mathrm{~mm} \\
& \mathrm{y}_{2}=\mathrm{r}-\frac{4 r}{3 \pi}=300-\frac{4 \times 300}{3 \pi} \\
& \mathrm{y}_{2}=172.67 \mathrm{~mm} \\
& \overline{\mathrm{y}}=\frac{\mathrm{A} 1 \mathrm{y} 1-\mathrm{A} 2 \mathrm{y} 2}{\mathrm{~A} 1-\mathrm{A} 2} \\
& \overline{\mathrm{y}}=\frac{(90000 \times 150)-(70685.83 \times 172.67)}{(90000-70685.83)}
\end{aligned}
$$

$$
\bar{y}=67.032 \mathrm{~mm}
$$

Centroid $(\overline{\mathbf{x}}, \overline{\mathbf{y}})=(\mathbf{2 3 3 m m}, \mathbf{6 7 . 0 3 2 m m})$ (Ans.)
c)

A solid sphere of 18 cm in diameter 20 cm is placed on th6e top of a cylinder which is also 18 cm in diameter and 40 cm high such the their axis coincides. Find the center of gravity of combination. Refer Fig No-11

Solution:

Radius of solid cylinder $(\mathrm{R})=\frac{\text { Diameter of Solid cylinder }}{2}=\frac{18}{2}=9 \mathrm{~cm}$
Radius of solid sphere $(\mathrm{r})=\frac{\text { Diameter of Solid sphere }}{2}=\frac{18}{2}=9 \mathrm{~cm}$
Height of solid cylinder $(H)=40 \mathrm{~cm}$

Fig.No-11

Volume calculation:
Volume of Solid cylinder $\left(\mathrm{V}_{1}\right)=\pi \times \mathrm{R}^{2} \times \mathrm{H}$

$$
\begin{aligned}
& =\pi \times(9)^{2} \times 40 \\
& =10178.76 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of solid sphere $\left(V_{2}\right)=\frac{4}{3} \times \pi \times r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \pi \times(9)^{3} \\
& =3053.62 \mathrm{~cm}^{3}
\end{aligned}
$$

Center of gravity position of \bar{x} from y - axis:
Given composite solid is symmetrical to y-y axis:

$$
\begin{aligned}
& \overline{\mathrm{x}}=\frac{\text { Maximum length of composite solid }}{2} \\
& \overline{\mathrm{x}}=\frac{18}{2} \\
& \overline{\mathrm{x}}=9 \mathbf{~ c m}
\end{aligned}
$$

Center of gravity position of \bar{y} from x - axis:

$$
\mathrm{y}_{1}=\frac{h}{2}
$$

$$
\begin{aligned}
& \mathrm{y}_{1}=\frac{40}{2} \\
& \mathrm{y}_{1}=20 \mathrm{~cm} \\
& \mathrm{y}_{2}=40+r \\
& \mathrm{y}_{2}=40+9 \\
& \mathrm{y}_{2}=49 \mathrm{~cm}
\end{aligned}
$$

We know that,

$$
\begin{aligned}
& \bar{y}=\frac{V 1 y 1+V 2 y 2}{V 1+V 2} \\
& \bar{y}=\frac{(10178.76 \times 20)+(3053.62 \times 49)}{(10178.76+3053.62} \\
& \overline{\mathbf{y}}=26.69 \mathrm{~m}
\end{aligned}
$$

Center of gravity $G(\overline{\mathbf{x}}, \overline{\mathbf{y}})=\mathbf{(\mathbf { 9 } \mathbf { ~ c m } , \mathbf { 2 6 . 6 9 m }})$

