

WINTER – 2022 EXAMINATION Model Answer

Subject Name: Control System

Subject Code: 22541

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. No.	Sub Q.N	Answer					
Q.1		Attempt any Five of the following	10 M				
	a)	State the transfer function of open loop and closed loop system.	2M				
	Ans	Transfer Function is defined as the ratio of Laplace transform of Output to that of Laplace transform of input under the assumption that all initial conditions are zero. Transfer function of open loop system: C(S) / R(S) = G(s) H(S) Transfer function of closed loop negative / positive feedback system: $\frac{C(s)}{R(s)} = \frac{G(s)}{1 \pm G(s) H(s)}$					
	b)	List standard test inputs. Draw their graphical representation.	2M				

_

Subject Name: Control System

Ans	Standard test inputs and their graphical representation is given as: Test Input Graphical Representation					
	Unit Step Input		and its representa tion			
	Unit Ramp Input	r(t) Slope = A				
	Unit Parabolic Input Unit Impulse Input	r(t) Slope = At				
c)	Define		2M			
i) ii)	Gain Margin Phase Margin					
Ans	system reaches on the verge of instab	ional phase lag which can be introduced in	1 M to each defination			
_						

WINTER – 2022 EXAMINATION Model Answer

_

Subject Name: Control System

Ans	 Offset: The proportional controller produces a permanent residual error in the controlled variable, when a change in load occurs. This is referred to as offset. Methods of eliminating offset: It can be minimized by the large proportional gain Kp, by doing manual resetting and by using integral controller. 	definition 1 M and method of elimination 1 M
e)	Classify Servo System. Draw the generalized block diagram of a servo system.	2M
Ans	Servo system is classified as: 1. Based on nature of components of system Electrical Servo System, Hydraulic Servo system, electro hydraulic Servo system. 2.Based of driving system AC Servo System, DC Servo System 3. Based on control methods Open loop Servo System, Closed loop Servo System. Generalized block diagram of a servo system is given as: input Fror detector servo amplifier servo motor to	Classificati on 1 M and block diagram 1 M
f)	Draw and label the time response of 2 nd order control system for unit step input.	2M
Ans	Peak overshoot Mp Tolerance band $\pm 2\%$ In steady state, output premains within $\pm 2\%$ error band 10 % 10 % Talerance band $\pm 1\%$	neat labeled diagram 2 M

WINTER – 2022 EXAMINATION Model Answer

_

Subject Name: Control System

	g)	State with justification if AC two phase induction motor can be used as AC servo motor.						
	Ans	AC servo motor should have less inertia than 2 phase induction motor since it is used in feedback applications to regulate the speed of the load. This is achieved by reducing the diameter of the rotor and increasing its length compared to 2 phase induction motor. To achieve this, special designs of rotor like drag-cup rotor or squirrel cage rotor are used. The characteristic of 2 phase induction motor is nonlinear with initial positive slope. But the characteristic of AC servo motor is made linear with negative slope to improve the stability since it is used in servo system which is a feedback system. This is achieved by small X/R ratio which is obtained by increasing the resistance of the rotor winding. The increase in rotor resistance may cause heat dissipation and power loss and reduction in the speed. Therefore, by considering these two points, AC two phase induction motor can be used as AC servo motor.	2M (brief explanatio n)					
Q.2		Attempt Any THREE of the following	12M					
	a)	Find the state space representation for the transfer function $\frac{C(S)}{R(S)} = \frac{25}{(S^2 + 9S + 25)}$	4M					

WINTER – 2022 EXAMINATION Model Answer

_

Subject Name: Control System

Ans	After cross-multiplying, $(S^{2} + 9S + 25)C(S) = 25R(S)$ Taking inverse Laplace Transform after opening the bracket, $\frac{d^{2}}{dt^{2}}c(t) + 9\frac{d}{dt}c(t) + 25c(t) = 25r(t)$	
	Input = $r(t) = u(t)$ Output = $y(t) = c(t)$ Therefore, first state variable $x_1 = c(t) = y(t)$ Second state variable $x_2 = \frac{d}{dt}c(t) = \dot{x_1}$ $\dot{d}^2 = (t) = 25 - (t) = 2 \frac{d}{dt}c(t) = 25 - (t)$	2M
	$\dot{x_2} = \frac{d^2}{dt^2}c(t) = 25r(t) - 9\frac{d}{dt}c(t) - 25c(t)$ $\dot{x_2} = 25u(t) - 9x_2 - 25x_1$ SSR: $\dot{X} = AX + BU$ Y = CX + DU	1M
	$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -25 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & 25 \end{bmatrix} u$ $Y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	1M
b)	Find the type of the system and steady. State error for a unity feedback system with $G(S) = \frac{10}{S(1+25)}$ for input r(t) = 5t.	4M

_

Subject Name: Control System

Ans	For unity feedback System \therefore Hes)=1 To determine type of system . it is sequenced to bring (168). Hes) into its time constant form. \therefore (h (s) Hes) = $\frac{10}{5 \text{ cl}+25}$ Competing with standard form the type of system is $\frac{1}{2}$ (i) $\frac{1}{2}(t) = 5t - (input) \therefore A=5$ $kp = \lim_{s \to 0} \frac{10}{5 \text{ cl}+23}$ $kp = \lim_{s \to 0} \frac{10}{5 \text{ cl}+23}$ $kv = \lim_{s \to 0} \frac{10}{5 \text{ cl}+23}$ $ku = \frac{10}{530}$ $ka = \lim_{s \to 0} \frac{5}{5 \text{ cl}+23}$ ka = 0 ka = 0 5 cl + 25 ka = 0	type of system =1 M rest all step = 3M
c)	Compare AC servomotor & DC servomotor (any four points).	4M

WINTER – 2022 EXAMINATION Model Answer

_

Subject Name: Control System

Ans				
	Sr.No	AC Servomotor	DC Servomotor	
	1	Low power output High power o/p	Low power output High power o/p	
	2	Maintenance is less	Maintenance is more	each
	3	No Brushes / commutators absent	Brushes / problem, commutators present.	point 1 mark Any
	4	Stable and smooth operation	Noisy operation	4 points
	5	Less problem of stability	More problem of stability	
	6	No RF noise because of absence of brushes	Brushes produce RF noise.	
	7	Non – linear characteristics	Linear characteristics	
	8	No voltage supply to rotor, Rotor current is supplied inductively by rotating magnetic field of stator.	Voltage is given through power supply to rotor.	
	9	Applications:- low power(computer peripherals, recorders etc.)	Application: high power (machine tools, robotics)	
d)	For a given $\frac{C(S)}{R(S)} = \frac{1}{S}$ Find	$\frac{(S^2 + 16)}{2^2 + 7S + 16}$		4M
i) ii)	Pole			
ii) iii)	Zero Pole – Zero	-		
iv)	Characteri	istic equation.		
Ans	(i) Poles:			

-

Subject Name: Control System

Poles are obtained by equ	uating the denominator of the transfer function to zero	
therefore:		
$S^2 + 7S + 16 = 0$ Which	h is a quadratic equation.	
For the quadratic equa	tion ax2+bx+c=0, a=1, b=7, c=16	
the poles are	=[$-b \pm \sqrt{(b^2 - 4ac)} / 2a$]	
	$= -7 \pm \sqrt{(49 - (4 + 1 + 16))} / 2 + 1$	
	$= -7 \pm \sqrt{(49-(64))} / 2$	
	$= -7 \pm \sqrt{(-15)} / 2$	
	$= -7 \pm j\sqrt{(15)} / 2$	
Therefore:		
$S = -7 + j\sqrt{(15)}/2$	and S = $-7 - j\sqrt{(15)/2}$	
Poles are :		
13.5 - 1.93j 23.5 + 1.93j		
(ii) Zeros:		
$S^2 + 16 = 0$		
$S^2 = -16$		
$S = \pm 4j$		
S = +4j, -4	4j	
(iii)Pole – Zero plot:		

Subject Name: Control System

WINTER – 2022 EXAMINATION Model Answer

Subject Name: Control System Subject Code: 22541 _ Output equation: $V_0(t) = \frac{1}{C} \int i(t) dt$ **2M** Taking Laplace of Input and Output equations: $V_i(S) = R I(S) + \frac{I(S)}{CS}$ $V_{O}(S) = \frac{I(S)}{CS}$ 1M $TF = \frac{V_0(S)}{V_0(S)} = \frac{\frac{l(S)}{CS}}{R l(S) + \frac{l(S)}{CS}} = \frac{1}{RCS + 1}$ 4Mb) For a unity feedback system whose open loop transfer function is $G(S) = \frac{50}{(1 + 0.1S)(1 + 2S)}$ Find position, velocity and acceleration error constant. Type of the system = 0Ans 1M $K_p = \lim_{s \to 0} G(S)H(S) = K_p = \lim_{s \to 0} \frac{50}{(1+0.1S)(1+2S)} = 50$ **1M** $K_V = \lim_{s \to 0} SG(S)H(S) = \lim_{s \to 0} S\frac{50}{(1+0.1S)(1+2S)} = 0$ **1M 1M** $K_A = \lim_{s \to 0} S^2 G(S)H(S) = \lim_{s \to 0} S^2 \frac{50}{(1+0.1S)(1+2S)} = 0$ Using Routh's stability criteria, determine the stability for the system with 4Mc) $3S^4 + 10S^3 + 5S^2 + 5S + 2 = 0.$ characteristic equation Routh's array: 3m Ans S^4 3 5 2

<u>Subject Nar</u>	<u>Subject Name: Control System</u> <u>Subject Code:</u> 2					Subject Code: 22541
		S^3	10	5	0	
		S^2	3.5	2	0	
		S	-5/7	0	0	
		S^0	2	0	0	1M
	Conclusio There are two sign the right side of S-p	changes			Therefore, two pole e.	es are on
d)	Explain different	t compo	nents of A	C servo	system with neat o	diagram. 4M
Ans			X Y X' Y'	AC amplifier Ku	Control Winding AC two-phase Load Bo Stator Synchro trans	mitter
	as er conr • The feed • The refer • The volta • The	Tor detect nected to load is co back. rotor of s rence poss different age which amplifier	etor, AC ser the load. connected to synchro con ition. ial output o h is given to	to amplif the rotor ntrol trans of the sync o the AC s ich is the	ts of components suc er and AC servo mo of synchro transmitte former is kept consta hro error detector is ervo amplifier. error voltage is giver r.	tor which is er as nt at the the error

<u>Subj</u>	Subject Name: Control System Subject Code: 2		
		 Thus, the speed of the motor is adjusted according to the error voltage and feedback signal. Thus, the load is positioned according to the reference signal. 	
Q.4		Attempt any <u>THREE</u> of the following.	12M
	a)	Find the transfer function of the following differential equation. $\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 8y(t) = 8x(t).$	4M
	AN S.	$\frac{d^2 y(t)}{dt^2} + 4 \frac{dy(t)}{dt} + 8y(t) = 8 x(t)$ Taking Laplace,	
		$S^{2}Y(S) + 4SY(S) + 8Y(S) = 8X(S)$ $Y(S)[S^{2} + 4S + 8] = 8X(S)$	2m
		$TF = \frac{Y(S)}{X(S)} = \frac{8}{S^2 + 4S + 8}$	2m
	b)	Draw the response of second order system for critically damped case, for unit step input.	4M
	Ans.	When damping factor $\zeta = 1$, system is called <u>critically damped</u> system Poles $= -\omega_n, -\omega_n$ The o/p response $y(t) = A + Bte^{-\omega_n t}$ It can be seen that the critically damped response is exponential. The response:	2m

-

Subject Name: Control System

	Critically damped	2m
c)	State the concept of marginal stability.	4M
AN S.	Marginal stability:-If the poles (non -repeated) are located purely on imaginary axis of s-plane, system is said to be critically stable. Here the output amplitude neither increase nor decrease but the system oscillates with constant amplitude. Response: $\frac{25}{0} = \frac{1}{0} = \frac{1}{0$	2M 2M
d)	Explain ON-OFF controller with equation. State any two of its application.	4M
AN S.	It has only two fixed positions such as on (1) and off (0). The output signal P remains either 0% or 100% depending upon whether the error is negative or positive. So the equation of On-Off controller is: P = 100% (on) for positive error P = 0% (off) for negative error . Consider a practical example of temperature control system with Set Point "x". When the temperature is more than "x" the on - off controller will be off and when it is less than "x", on - off controller will be on.	2m

WINTER – 2022 EXAMINATION Model Answer

_

Subject Name: Control System

	<u>Example</u> :- Relays, The Applications: temperature other home appliances ar	e contro	ol systems for	r houses (→ er	nd cooling), freezers and	2 m
e)	Using Routh's criteria for the characteristics S ⁴ + 4S ³ + 13S ² +	equat	ion	ange of [K for the	e system to be stable	
Ans.	Routh's array:						2m
		S ⁴	1	13	K		
		S ³	4	36	0		
		S ²	4	K	0		
		S	<u>144–4K</u> 4	0	0		
		S ⁰	K	0	0		
	To satisfy the condition f	or stabi	lity,				2)/
			K >	0,			2M
			<u>144–4</u> <i>K</i>	- > 0			
	Or $144 - 4K > 0$, 2	144 >	4 <i>K</i> , 36 >	Κ			
	Therefore, the range of <i>B</i>	for the	e system to b	e stable i	S,		

WINTER – 2022 EXAMINATION Model Answer

_

Subject Name: Control System

0 < K < 36		
Attempt any TWO of the following.	12M	
Derive the transfer function of the system shown below using block diagram reduction techniques in Fig. No. 1.	6M	
$ \begin{array}{c} R(\underline{s}) & \downarrow \\ & $		
-	Attempt any TWO of the following. Derive the transfer function of the system shown below using block diagram reduction techniques in Fig. No. 1. Image: Comparison of the system shown below using block diagram reduction techniques in Fig. No. 1.	

WINTER – 2022 EXAMINATION Model Answer

Subject Name: Control System

-

Subject Name: Control System

	Step 1: The	given ope	n loop transf	er function is alre	ady in the time con	stant form	2M
	$G(S)H(S) = \frac{10}{S(1+2S)(1+0.2S)}$						
	Step 2: Identify the factors;						
	1. Open loop gain $K = 10$, M in $dB = 20 \log K = 20 \log 10 = 20 dB$						2M
	2. Pole at origin (1/S) which has a magnitude plot with slope of $-20dB/decade$. For $\omega = 0.1$, M in dB for (1/S) = $-20 \log 0.1 = 20 dB$						
	3. Firs	3. First order poles are $\frac{1}{(1+2S)}$ and $\frac{1}{(1+0.2S)}$. The corner frequencies of them are $\omega_{c1} = \frac{1}{2} = 0.5$, $\omega_{c2} = \frac{1}{0.2} = 5$					
	Frequency in Bode plot at which the magnitude plots of low and high frequency ranges meet is called <u>corner frequency</u> .						
	corner frequ	Till the corner frequencies the magnitude plot's slope will be $0 dB/decade$ and from the corner frequencies it changes to $-20 dB/decade$.					
	Step	Step 3: Phase angle ϕ :					
		Ear	For	For Factor 3,	For Factor 4,	Total phase	
	Frequenc v =w	For Factor1	Factor 2	1/(1+2S)	1/(1+0.20)	Total phase	
	Frequenc y =w	Factor1 , K=2	Factor 2, 1/S	$\phi_{3} = -\tan^{-1}2w$	1/(1+0.20)	1	
	-	Factor1		$\frac{1}{(1+2S)} \phi_{3} = -\tan^{-1}2w$	1/(1+0.20)	1	
	-	Factor1 , K=2	1/S	1/(1+2S) $\phi_{3} = -\tan^{-1}2w$ -11.3°	,	1	
	y =w	Factor1 , K=2 ϕ_1	1/S φ_2	$\phi_3 = -\tan^{-1}2w$	1/(1+0.2S) $\phi_{4} = -\tan^{-1} 0.2 w$	angle $\phi = \phi_1 + \phi_2$ $+ \phi_3 + \phi_4$	
	y =w 0.1	Factor1 , K=2 ϕ_1 0^0	$\frac{1/S}{\phi_2}$ -90°	$\phi_{3} = -\tan^{-1}2w$ -11.3 ⁰	1/(1+0.2S) $\phi_{4} = -\tan^{-1} 0.2 w$ -1.1^{0}	angle $\phi = \phi_{1} + \phi_{2}$ $+ \phi_{3} + \phi_{4}$ -102.4^{0}	
	y =w 0.1 1	Factor1 , K=2 ϕ_1 0^0 0^0	1/S ϕ_{2} -90 ⁰ -90 ⁰	$\phi_{3} = -\tan^{-1}2w$ -11.3° -63.4°	1/(1+0.2S) $\phi_{4}=-\tan^{-1}0.2 w$ -1.1^{0} -11.3^{0}	angle $\phi = \phi_{1} + \phi_{2}$ $+ \phi_{3} + \phi_{4}$ -102.4^{0} -164.7^{0}	
	y =w 0.1 10	Factor1 , K=2 ϕ_{1} 0^{0} 0^{0}	$ 1/S \phi_{2} -90^{0} -90^{0} -90^{0} $	$\phi_{3} = -\tan^{-1}2w$ -11.3° -63.4° -87.1°	1/(1+0.2S) $\phi_{4}=-\tan^{-1}0.2 w$ -1.1^{0} -11.3^{0} -63.4^{0}	angle $\phi = \phi_{1} + \phi_{2}$ $+ \phi_{3} + \phi_{4}$ -102.4° -164.7° -240.5°	

WINTER – 2022 EXAMINATION Model Answer

Subject Name: Control System

_

Subject Name: Control System

	Ans	$P_{out} = K_p E_p + K_p K_1 \int_0^t E_p dt + P_0$							
		Where P0 is the controller output when time t=0							
		Parameters	Proportional	Integral					
		Output	Output is proportional to the present error	Output is proportional to the past history of errors.					
		Equation	P = KpEp + Po P= Controller output Ep=Error Percentage Kp=Proportionality constant Po= Controller Output at SP	Pout = $K_i \int_0^t E_p dt + P_0$ Pout =Controller output Ep=Error Percentage Ki =Integral constant P0=Controller Output at t=0					
		Stability	Moderate Stability	Less stability					
		Speed of response	Moderate speed	Slow speed					
Q. 6		Attempt any TWO of the following:			12M				
	a) Draw the functional diagram of DC servo system and explain the use of each element. Describe the error detector used in it with suitable diagram.								

WINTER – 2022 EXAMINATION Model Answer

Subject Name: Control System

WINTER – 2022 EXAMINATION Model Answer

-

Subject Name: Control System

b)	The open loop transfer function of a unity feedback system is given by $G(S) H(S) = \frac{16}{S(S+4)}$ Find the settling time and peak overshoot. Draw its response.	6M
		Settling Time 2M Peak overshoot 2M

WINTER – 2022 EXAMINATION Model Answer

Subject Name: Control System

