

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q.	Sub	Answers	Marking
No.	Q.		Scheme
	N.		
1	(A)	Attempt any FIVE of the following:	10- Total
			Marks
	(a)	Define control system and give any two practical examples.	2M
	Ans:	Control system - Control system is an arrangement of different physical elements connected in such a manner so as to regulate, direct, command itself or some other system. Examples – Traffic lights control system, Washing machine, Lamp, Temperature Control System.	1M for definitio n and 1/2M for any example

(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

(b)	Define						2M
	i)	Transient respon	nse				
	ii)	Steady state resp					
Ans:	i)	Transient respon	nse –				1M for
	the outpu		t state till i	t goes to	a steady	ertain time to reach steady stat state. Therefore, the response onsient response.	
	Or						
	The outp	_	the time ,it	takes to	o achieve i	its final value is called as Trans	sient
	ii)	Steady state resp	onse				
	_	of the time response ues of 't' is known				transient response has zero val Or	ue for
	T4 in 4lan a				C		
	from the	system output. This	also can b	e define	ed as respo	nplete transient response vanis onse of the system as time onse completely dies out.	shes
(c)	from the approach	system output. This	also can b time at wh	e define ich tran	ed as respo	onse of the system as time	shes 2M
(c) Ans:	from the approach	system output. This ies infinity from the	also can b time at wh	e define ich tran	ed as respo sient respo	onse of the system as time onse completely dies out.	
	from the approach	system output. This les infinity from the	also can b time at wh	e define ich tran	ed as respo sient respo	onse of the system as time onse completely dies out.	2M
	from the approach	system output. This les infinity from the	also can b time at wh	e define ich tran	ed as respo sient respo	onse of the system as time onse completely dies out.	2M Correct
	from the approach	system output. This les infinity from the	also can b time at wh	e define ich tran	ed as respo sient respo	onse of the system as time onse completely dies out.	2M Correct classific
	from the approach	system output. This les infinity from the classification of co	also can b time at wh	e define ich tran	ed as respo sient respo	onse of the system as time onse completely dies out.	2M Correct classific
	from the approach State the	system output. This les infinity from the classification of co	also can b time at wh	e define ich tran	ed as respo sient respo	onse of the system as time onse completely dies out. Continuous	2M Correct classific
	from the approach State the	system output. This ites infinity from the classification of concentration	also can b time at wh	e define ich tran	ed as respo sient respo	onse of the system as time onse completely dies out.	2M Correct classific
	State the	system output. This les infinity from the classification of co Classification tinuous Controller Two Position	also can b time at wh	ons.	rol acti	onse of the system as time onse completely dies out. Continuous Composite	2M Correct classific

(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

Model Answer

(d)	Draw the symbols of NO and NC contacts used in PLC.	2M
Ans:	Normally Open (NO) (NC)	1M fo each
e)	List Timer and counter instruction of PLC.	2M
Ans:	Depending on the time delay and operation, the timers instruction are (i) ON delay timer (ii) OFF delay timer The Counter instructions are (i) Up Counter (ii) Down counter	1M fo each
f)	Define i) Poles ii) Transfer function.	2M
Ans:	Poles: The values of 's' which makes the transfer function infinity after substitution in the denominator of a transfer function are called poles of the transfer function. Transfer Function: It is defined as the ratio of Laplace Transform of output of the system to Laplace Transform of input, under the assumption that all initial conditions are zero. T(s) = Laplace transform of output / Laplace transform of input = C(s) / R(s)	1M fo each
		2M

(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

Ans:	NAND Gate.	EX-OR Gate	1M each
	Input A Output Input B	Input A Input B Output Input A Input B	

Q.	Sub	Answers	Marking
No.	Q.		Scheme
	N.		
2		Attempt any <u>THREE</u> of the following:	12-Total
			Marks
	a)	For the give transfer function	4M
		T.F. = $\frac{10 (S+3)}{(S+2) (S+1) (S+4)}$ find	
		i) Pole's	
		ii) Zero's	
		iii)Characteristics equations	
		iv)Plot Pole's and Zero's in S-plain	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

5

Model Answer

Ans:	$(S+3)$ T= $\frac{10(S+3)}{(S+2)(S+1)(S+4)}$	Each paramet er 1M
	Poles are the values of s which makes deno minator o,	
	$\begin{array}{ccc} S+2=0 & \Longrightarrow & S=-2 \\ S+1=0 & \Longrightarrow & S=-1 \\ S+4=0 & \Longrightarrow & S=-4 \end{array}$	
	Poles are [-2, -1 and -4.] 1il Zeros are the values of s for which T-F becomes zero.	
	$S+3 = 0 \implies S = -3$ Zero is -3	
	(S+2) (S+1) (S+4) = 0	
	$(c^2 + s + 2s + 2)(s + 4) = 0$	
	$(3^{2} + 33 + 2) (3 + 4) = 0$ $3^{3} + 4 + 3^{2} + 3 + 1 + 2 + 2 + 8 = 0$	
	$[3^{3}+7]^{2}+143+8=0$	
	Plot in s plane	
	J3 J2 J1	
	-5 -4 -3 -2 -1 1 2 3 4	

(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

b)	State the need of PLC in automation	4M		
Ans:	Need of automation is explained in following points:	Any		
	To achieve complete control of the manufacturing process.	point		
	To achieve consistency in manufacturing.	4M		
	To improve the product quality and accuracy.			
	To work in difficult or hazardous atmospheres like nuclear reactors etc.			
	• PLC systems have less wiring and provide a very powerful tool for fault diagnosis.			
	• Documentation can be easily saved in the memory provided in PLC.			
	• To increase productivity.			
	• To quickly change over from one product to another which provides flexibility.			
	To lower the cost, scrap and rework.			
	• Reduced manpower, PLC systems require high skilled workers for supervision and maintenance. It reduces the requirement of low skilled workers.			
	Reduction in personal injury or accidents by adding safety interlocks.Reduction in the cost of product.			
	 Increased profit. Modules can be easily replaced or upgraded. In built software timers, counters, relays etc. 			
c)	Draw the ladder logic diagram	4M		
	i) Half Adder			
	ii) Half Substractor.			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER - 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

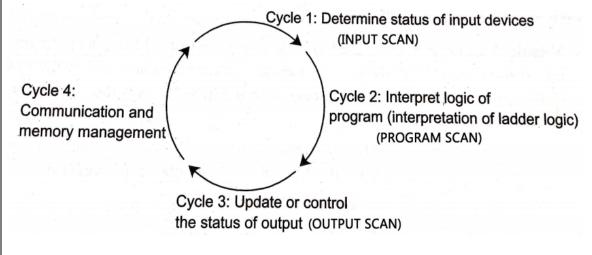
Model Answer

7 Touth Table Half Ans: adden Half Adder Sum Carry B 2MHalf 0 0 **Subtrac** tor 2M Half subtractor Touth Table Borrow 0 0 1 0 1 0 0 Ladder Explain scanning cycle of PLC. **4M** d)

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:


22531

Model Answer

8

Ans: The SCAN cycle consists of the series of sequential operations that includes the steps as shown in figure below.

4 points 4 M

PLC Scanning cycle

- **Input Scan**: During the input scan, the processor scans the status of each input point which is stored in the Input status file by input module.
- **Program scan**: After the inputs are read and stored in the input status file, the processor uses this information to solve the user program. During program scan, the processor scans the user program starting at rung 0, from left to right, and evaluates one instruction at a time until output instruction is reached and till the end instruction. The logic '1' or '0' output states are then placed in the output status file.
- Output scan: During output scan processor writes the ON or OFF status of specific output point to the associated output module. Each output status word consists of ON or OFF electrical signals. There is an ON or OFF signal for each output point.
- Communication and Memory management: Communication includes updating the handheld programming device or PC monitor screen and sending signals to other PLC's in the network. Memory management includes updating timers, counters, internal time base and other internal data files.

(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

Q.	Sub	Answers	Markin
No.	Q.		g
	N.		Scheme
3		Attempt any THREE of the following:	12- Total Marks
	a)	Derive transfer function of following circuit	4M
		Refer Fig.No1	
		Vi(1) (i(1) c — Vo(1) Fig. No. 1.	

(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

Ans:	R L	1M
Alis.	a min mm	1141
	Vices (10 1 C Voct)	
	6-4-37	
	By applying KVL,	
	Apply KVL to Input side,	
	- VICE) - RICE) - Ldice) + 1 SICE) de = 0	
	By Laplace transform.	
	VI(S) - R I(S) - L S I(S) - I(S) = 0	
	ALLES AND A SCHOOL SCHO	
	V((5) = R.I(5) + L SI(5) + 1 IS - 0	
	S C	
	Apply KW h and walls	1M
	Apply KVL to output side,	11/1
	A AL AND A SECOND COMMENT OF THE PROPERTY OF T	
	: Vo(t) - 1 fi(t) dt = 0	
	By Laplace transform,	
	:. Vo(s) - 1 ICs) = 0	
	· Vocs) = 1 Is -2	
	20	
	ma = V=(t)	
	$TF = \frac{V_0(s)}{V(s)}$	
	1 I(S)	13.4
	= Se = = = = = = = = = = = = = = = = = =	1M
	(2) I + (2) E 2 J + (2) T. S	
	= I ICSY	
	[R+LS+L] IESS	
	sc) wayn	
	Vitte Rite Later Later Later	
	se	
	RSC + LS2C + 1	
	Se Se	
	1	
	$Vo(s) = \frac{1}{10000000000000000000000000000000000$	
	VI(S) RSC+LS2C+1	1M
	$\frac{Vo(s)}{Vi(s)} = \frac{1}{1 c^2 c + 8s c + 1}$	
	Vils) Ls2c + RSC + 1	

(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

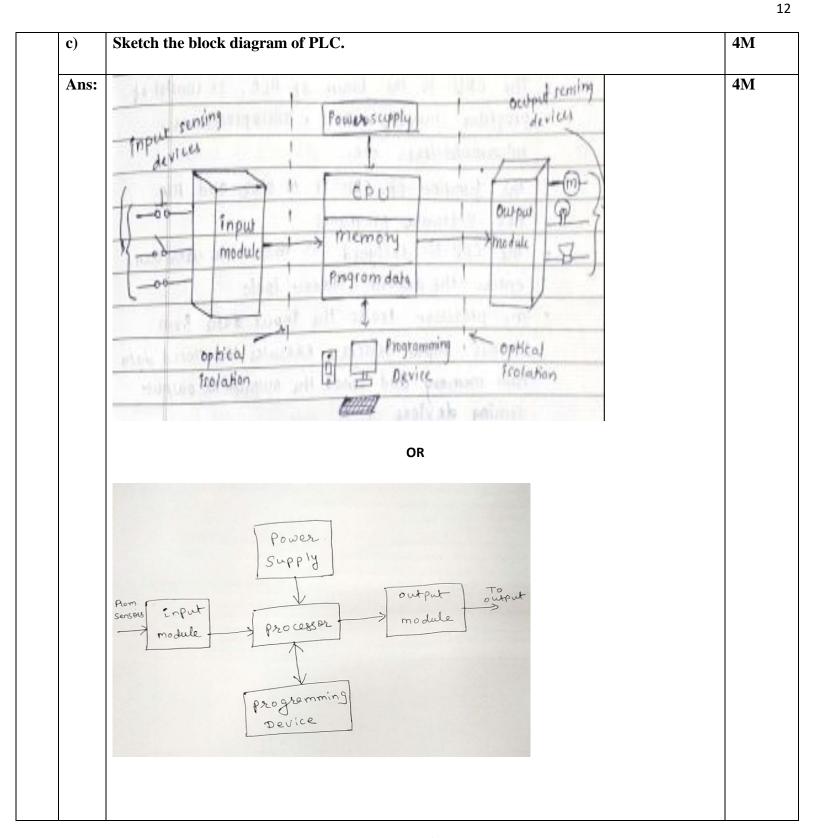
Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

b)	Describe ON – OFF control action with equation and response curve	4M
Ans:	(1) ON OFF controller is also called as two position Controller.	2M -
	(2) It has to control two positions of control element, either ON or OFF hence this mode is	Descrip
	called as ON OFF controller.	ion
	(3) This controller mode has two possible output states namely 0 % & 100%. Mathematically	1M -
	this can be expressed as	
	$P(t) = 0\% \text{ (OFF)}$ for $ep \le 0$	Equation
	100% (ON) for ep > 0	n
	ep = set point – measured variable	1M –
	Where P (t) – Controlled output	
	ep Error based on % of span	Respon
	(4) When the measured variable is below set point, the controller output is ON, and output is	e
	maximum and when the measured variable is above set point, the controller output is OFF,	
	and output is minimum.	
	# Block diagram - supplemental	
	(b(t))	
	Bit?	
	measured	
	point Variable	
	American de la companya del la companya de la compa	
	and the second second	
	A CONTRACTOR OF THE PARTY OF TH	
	ON THE RESERVE TO THE	
	ON OFF	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)


(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

13

Model Answer

Explain the sourcing and sinking concept in DC input module d) 4M1. Sinking and Sourcing are terms used to describe current flow through a field device in 2M-Ans: relation to the power supply and the associated input, output point. **Sinking** 2. Solid state input devices with NPN transistors are called "Sinking input device" while input 2Mdevices with PNP transistor are called "Sourcing input devices". Sourcin 3. The commonly accepted definition by PLC manufactures about sinking & sourcing input & g output circuit is current flows from positive to negative. 4. Basic principle retain to sinking & sourcing circuits.NPN transistors are open collector current sinking devices which interface to a sourcing input module. PNP transistors are open collector, current sources, which interface to a sinking input module. 5. In Fig.1 current flows from positive terminal of 24 volt DC supply to input module then through switch to negative terminal of supply, hence module acts as sinking device for DC supply but sourcing device for switch. 6. In Fig.2 current flows from positive terminal of 24 volt DC supply to switch then input module to negative terminal of supply, as far as input module is concern it act as sinking device for DC switch and sourcing device for 24 volt DC supply. switch Fig 1 – Sourcing DC input Module with a sinking switch

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

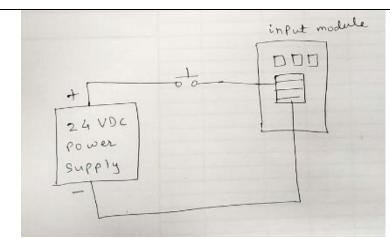


Fig 2 – Sinking DC input module with a Sourcing switch

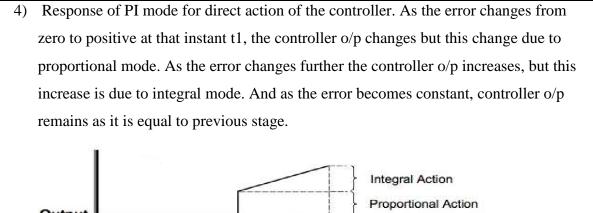
Q.	Sub	Answers	Marking
No.		Allsweis	Scheme
110.	Q.		Scheme
	N.		
4		Attempt any THREE of the following:	12- Total
			Marks
	(a)	Explain proportional Integral (PI) controller wit O/P response curve.	4M
	Ans:	1) This is composite control mode obtained by combining the proportional mode and the	3 M -
		integral mode.	Explana
		2) The mathematical expression for such a composite control is	tion
			uon
		$P(t) = kp e(t) + kp ki \int_0^t e(t)dt + p(0)$	1M -
		Where, $p(0)$ = Initial value of the o/p at t=0	respons
		3) one important advantage of this control is that one to one correspondence of	e
		proportional mode is available while the offset gets eliminated due to integral mode,	
		the integral part of such a composite control provides a reset of the zero error output	
		after a load change occurs.	
		arter a road change occurs.	

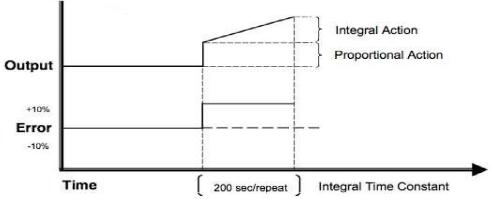
(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531


Model Answer


15

4M (any

points)

four

(b) Distinguish between fixed and modular PLC (any four points). 4M

Ans:

Sr. no.	Fixed PLC	Modular PLC
1.	Elements are fixed on main board of PLC	Elements are mounted on rack
2.	I/O count is 32 or less than 32	I/O count is more than 32
3.	Small in size	Large in size
4.	Low cost	High cost
5.	Easy to install	Installation is complex
6.	Memory capacity is less	Memory capacity is more
7.	It cannot be repaired	It can be repaired

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

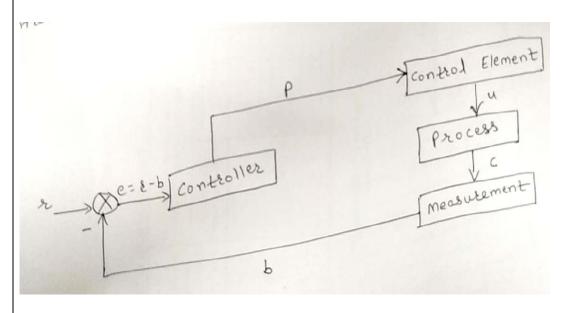
Model Answer

(c)	Sketch the block diagram of process control system and explain the function of each	4M
	block	
Ans:		1M -
	Actuator process of plant	Block
	I R(L) AMPLIFICA	diagram
	- B(F)	3M -
	7	Explana
	Automatic sensor sensor	tion
	conto	
	Explanation: Process control system consists of process or plant ,sensor, error detector,	
	automatic Controller, actuator or control element.	
	1) Process or plant- process means some manufacturing sequence. It has one variable or	

- 1) **Process or plant** process means some manufacturing sequence. It has one variable or multivariable output. Plant or process is an important element of process control system in which variable of process is to be controlled.
- 2) **Sensor/measuring elements** It is the device that converts the output variable into another suitable variable which can acceptable by error detector Sensor is present in f/b path of close loop system.
- 3) **Error detector** Error detector is summing point whose output is an error signal i.e. e(t) = r(t) b(t) to controller for comparison & for the corrective action. Error detector compares between actual signal & reference i/p i.e. set point.
- 4) **Automatic controller** Controller detects the actuating error signal, which is usually at a very low power level, and amplifies it to a sufficiently high level .i.e. means automatic controller comprises an error detector and amplifier.
- 5) **Actuator or control element** Actuator is nothing but pneumatic motor or valve, a hydraulic motor or an electric motor, which produces an input to the plant according to the

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION


Subject Name: Control System and PLC. Subject Code:

22531

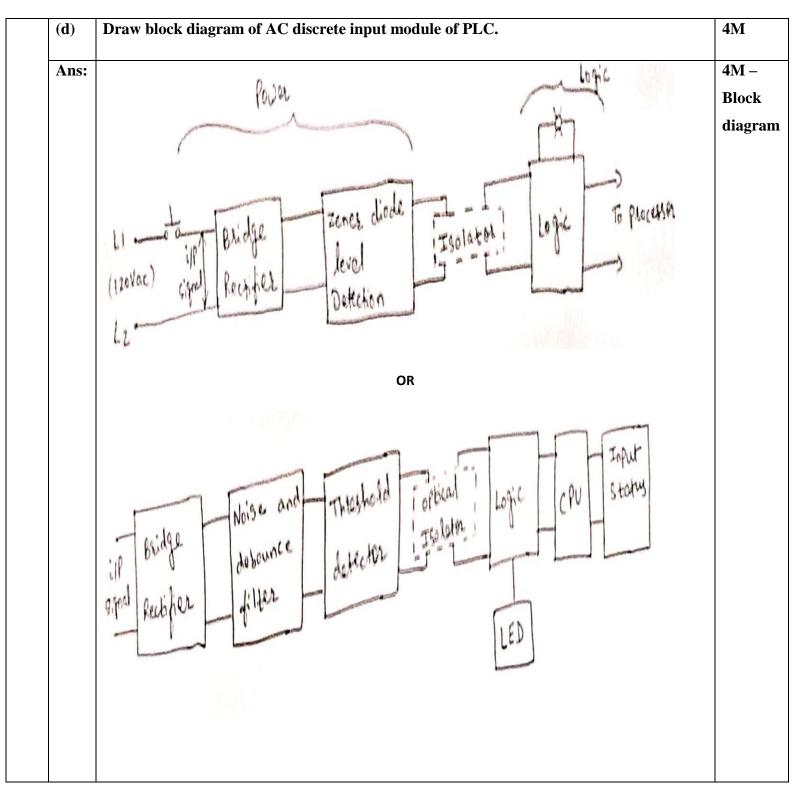
Model Answer

control signal getting from controller

OR

Explanation: The block diagram of process control system consists of the following blocks:-

- 1) Measuring element: It measures or senses the actual value of controlled variable "c" and converts it into proportional feedback variable b.
- 2) Error detector: It receives two inputs: set point "r" and controlled variable "p". The output of the error detector is given by e= r-b. "e" is applied to the controller.
- 3) Controller: It generates the correct signal which is then applied to the final control element. Controller output is denoted by "p".
- 4) Final control element: It accepts the input from the controller which is then transformed into some proportional action performed by the process. Output of control element is denoted by "u".
- 5) Process: Output of control element is given to the process which changes the process variable. Output of this block is denoted by "u".


(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

(e)	Explain memory organization of PLC.	4M
Ans:	 The term memory organization refers to how certain areas of memory in PLC are used. 	
	2) The memory space can be divided into two categories ie. User Program and Data table.	1M -
	3) The user program is where the ladder diagram is entered and stored. The data table	Diagra
	stores the information needed to carry out user program. This includes such	m
	information as the states of input and output devices, time and counter values and so on.	
	4) The data table can be divided into 3 sections, input image table, output image table	3M-
	and timer and counter storage.	Explan
	5) Input image table stores the status of digital inputs . if the input is ON, the	tion
	corresponding bit is set to 1 and if the input is OFF, the corresponding bit is set to 0.	
	6) Output image table stores the status of digital outputs. If the program calls for specific	
	output to be ON, its corresponding bit is set to 1 and if the program calls for specific	
	output to be OFF, its corresponding bit is set to 0.	
	Data table User program No House Keeping toble My remory 15er 1018 -1-	

(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

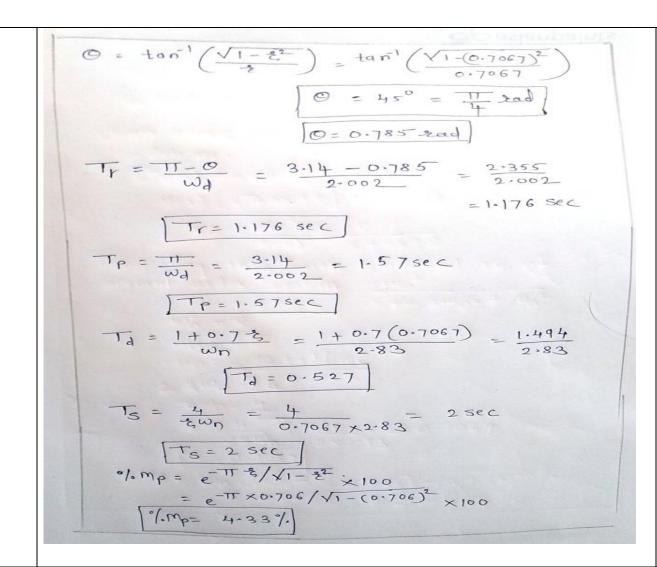
Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

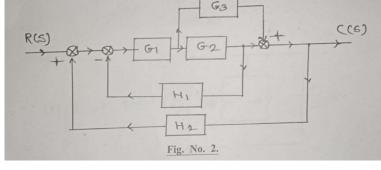
Q.	Sub	Answers	Marking
No.	Q.		Scheme
	N.		
5.		Attempt any <u>TWO</u> of the following:	12- Total
			Marks
	a)	For the given differential equation	6M
		$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 8y(t) = 8x(t)$	
		Where y(t) is O/P and x(t) is I/P	
		Find, all time response Specification.	
		$(\xi, T_r, T_p, T_d, T_s, \%M_p)$	
	Ans:	System differential equation is,	1M for
		$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 8y(t) = 8x(t)$	each
		To find TF Y(s), take laplace transform	
		from above equation and neglect initial conditions.	
		524(s) +454(s) +84(s) = 8×(s)	
		$Y(s)[s^2+4s+8] = 8 \times (s)$	
		$TF = \frac{4(s)}{x(s)} = \frac{8}{s^2 + 4s + 8}$	
		second order system $\frac{\omega_n^2}{s^2+2 \epsilon \omega_n s + \omega_n^2}$	
		$\omega_n^2 = 8$	
		$\omega_0 = \sqrt{8}$	
		wn = 2.83 2ad/sec	
		$2 \xi \omega_n = 4$	
		$-\frac{4}{8}\omega_{0}=\frac{4}{2}$	
		$\frac{3}{2} = \frac{4}{2 \times w_0} = \frac{4}{2 \times 2.83} = 0.7067$	
		$\omega_{d} = \omega_{0} + \frac{1}{2}$	
		$\omega_{d} = \omega_{0} \sqrt{1 - \frac{8^{2}}{2}} = 2.83 \sqrt{1 - (0.7067)^{2}}$ $\omega_{d} = \omega_{0} \sqrt{1 - \frac{8^{2}}{2}} = 2.83 \sqrt{1 - (0.7067)^{2}}$ $\omega_{d} = 2.002 \text{ zad/sec}$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)


WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

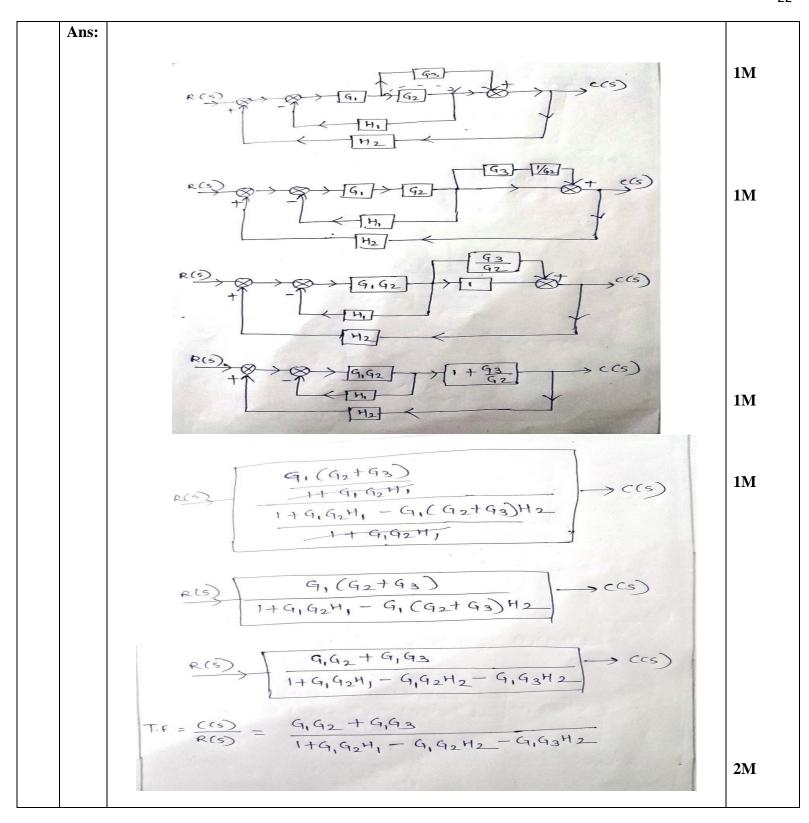
22531


Model Answer

21

b) Find out transfer function by using block diagram reduction technique. Refer Fig No 2 6M

$$\mathbf{TF} = \frac{C(S)}{R(S)} = ?$$


(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

c)	Calculate the range of K for the given unity feedback system to be stable with G(S)	6M
	$G(S) = \frac{K}{S(S+2) (S+4) (S+8)}$	
Ans:	$G(s) = \frac{K}{s(s+2)(s+4)(s+8)}$ The characteristic equation is $1+G(s)H(s) = 0$ $\therefore 1 + \frac{K}{s(s+2)(s+4)(s+8)} = 0$ $\therefore S(s+2)(s+4)(s+8) + K = 0$ $\therefore S^{4} + 14s^{3} + 56s^{2} + 64s + K = 0$	1M
	The Routh's Array is st 1	4M
	from row of s', $3291.42 - 14K > 0$ $3291.42 > 14K$ $K < \frac{3291.42}{14} < 235.102$ Range of values of K for Stability is $0 < K < 235.102$	1M

(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code:

22531

Model Answer

Q.	Sub	Answers	Marking
No.	Q.		Scheme
	N.		
6.		Attempt any <u>TWO</u> of the following:	12- Total
			Marks
	a)	Define transfer function and derive the derivation of transfer function of closed loop	6M
		control system	
	Ans:	TF is defined as the ratio of Laplace transform of Output to that of input under the zero initial	Defn
		condition.	2M
		Transfer function of the closed loop system with feedback	Desired
			Derivati on 4M
		E(s) $F(s)$	V21 1.1.2
		R(S)= Laplace of reference i/p $r(t)$	
		C(S) = Laplace of controlled o/p $c(t)$	
		E(S)= Laplace of error signal $e(t)$.	
		B(S)= Laplace of feedback signal $b(t)$	
		G(S)= Equivalent forward path transfer function	
		H(S)= Equivalent feedback path transfer function.	
		Referring to this Fig.	
		$E(S) = R(S) \mp B(S) \qquad \dots (1)$	
		B(S)=C(S)H(S)(2)	
		$C(S) = E(S)G(S) \qquad \dots (3)$	
		$E(S) = C(S)G(S) \qquad (4)$ Substituting (2) % (4) in equation (1)	
		Substituting (2) & (4) in equation (1)	<u> </u>

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Control System and PLC.

Subject Code:

22531

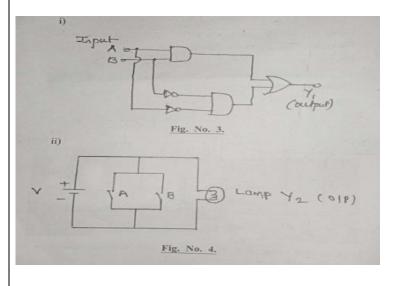
Model Answer

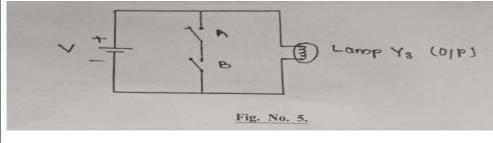
	$C(S)G(S)=R(S)\mp C(S)H(S)$	
	$C(S)=G(S)R(S)\mp C(S)G(S)H(S)$	
	$C(S)\pm C(S)G(S)H(S)=G(S)R(S)$	
	$C(S)[1\pm G(S)H(S)]=G(S)R(S)$	
	$C(S)R(S)=G(S)[1\pm G(S)H(S)]$	
	This is the Transfer Function.	
	For negative feedback, $TF=C(S)R(S)=G(S)[1+G(S)H(S)]$	
	For positive feedback, $TF=C(S)R(S)=G(S)[1-G(S)H(S)]$	
b)	A unity feedback system has	6M
	$G(S) = \frac{10 (S+1)}{S^2 (S+2) (S+10)}$	
	Find	
	i) Type of system	
	ii) Error coefficient k_p , k_v , k_a	
	iii) Steady state error e_{ss} , for input $r(t) = 1 + 4t + \frac{t^2}{2}$	
Ans:	$g(s) = \frac{10(s+1)}{s^2(s+2)(s+10)}$	i)1M
		;;)2N/
	is Type of the system	ii)3M
	Comparing the equation in standard form	iii)2N
	Comparing the equation in standard form $G(s) H(s) = \frac{K(1+T_1s)(1+T_2s)\cdots}{S^{2}(1+T_4s)(1+T_4s)\cdots}$	
	Si (1+Tas) (1+163)	
	where j is the type of system [Type=2]	
	Type=2	
	ii) Evror coefficients:	
	$K_p = \lim_{s \to 0} G(s) \cdot H(s) = \lim_{s \to 0} \frac{10(s+1)}{s^2(s+2)(s+10)} = \infty$	
	$K_{V} = \lim_{s \to 0} s \cdot g(s) + (s) = \lim_{s \to 0} \frac{g(s+1)}{s^{2}(s+2)(s+10)} = \infty$	
	$K_{\alpha} = \lim_{s \to 0} s^2 G(s) + G = \lim_{s \to 0} \frac{g^2(10)(s+1)}{g^2(s+2)(s+10)} = \frac{10}{20} = 0.5$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 2022 EXAMINATION

Subject Name: Control System and PLC.


Subject Code:


22531

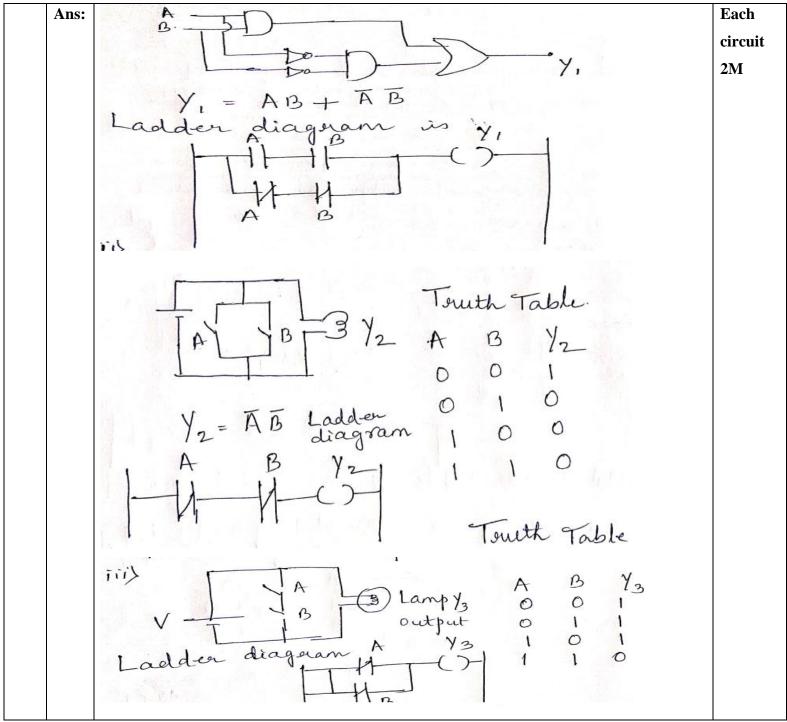
Model Answer

 $K_p = \infty$, $K_v = \infty$, $K_a = 0.5$ Steady State even for input $n(t) = 1 + 4t + \frac{t^2}{2}$ Total Steady State even $e_{ss} = -e_{ss} + e_{ss} = -e_{ss} + e_{ss} = \frac{A_1}{1 + K_p} + \frac{A_2}{K_v} + \frac{A_3}{Ka}$ $= \frac{1}{1 + \infty} + \frac{4}{\infty} + \frac{1}{0.5}$ = 0 + 0 + 2 $e_{ss} = 2$

c) Draw the ladder diagram for the following circuits. Refer Fig.No 3, 4 and 5

6M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)


(ISO/IEC - 27001 - 2013 Certified)

WINTER - 2022 EXAMINATION

Subject Name: Control System and PLC. Subject Code: 22531

Model Answer

Each 2M

