

Subject: Heat Transfer Operation

Subject code: 22510

Page **1** of **24**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Subject: Heat Transfer Operation

Subject code: 22510

Page **2** of **24**

Q	Sub	Answer				
No	Q.N					
1		Answer any five		10		
1	a	Thermal conductivity: It is a measur	Thermal conductivity: It is a measure of the ability of the substance to			
		conduct heat. It is the amount of heat passing through a material of a unit				
		thickness with a unit heat flow area in	unit time when a unit temperature			
		difference is maintained across the oppo	site faces of the material.			
		Unit: W/ (m.K)		1		
1	b	Film heat transfer coefficient: Film	heat transfer coefficient h is defined	1		
		as the quantity of heat transferred in	unit time through unit area at a			
		temperature difference of 1 ⁰ between the	e surface and surrounding.			
		Formula & Unit:				
		$h=Q/A\Delta T$				
		Unit: W/m ² K				
1	с	Reynold's Number :				
		Mathematical formula:				
		Reynold's Number $N_{Re} = Du\rho/\mu$		1		
		Significance:				
		Reynold's number is used to decide the	nature of flow- whether the flow is	1		
		laminar or turbulent				
		OR				
		Reynold's no. Inertia force/ viscous force	ce			
1	d	Single pass and multi pass shell and the	ube heat exchanger: (Any 2	1 mark		
		points)				
		Single pass Multi pass				

ubject: He	eat Trans	sfer Operation	Subject code: 22510	Page 3 of 24			
		Simple in construction	complex in construction				
		Flow may be parallel or counter	Flow is parallel as well as counter				
		current	current				
		Inexpensive	expensive				
		Heat transfer coefficients are low	Heat transfer coefficients are high				
		Frictional losses are low	Frictional losses are high				
		Heat transfer rates are low	Heat transfer rates are high				
		Floor space requirement is large	Floor space requirement is low				
1	e	Classification of heat transfer equipr	nent:	¹∕₂ mark			
		Heat transfer equipments:		each for			
		1. Cooler: To cool process fluid by	y means of water or atmospheric air.	any 4			
		2. Condenser: To condense a vapour or mixture of vapours.					
		 Chiller: To cool a process fluid to a temperature below that can be obtained by using water as a cooling media Heater: Which imparts sensible heat to process fluid. Vaporiser: Which vaporizes part of liquid. Reboiler: Employed to meet latent heat requirement at the bottom of distillation column. 					
		7. Evaporator: To concentrate a so	olution by evaporating water.				
1	f	The capacity of an evaporator is defined as the number of kilogram of					
		water evaporated per nour.					
		The economy of an evaporator is defined as the number of kilogram of					
		water evaporated per kilogram of stean	n fed to the evaporator.				
1	g	The Sider – Tate equation for lamina	r flow is	2			
		h D/k = 1.86[(NRe ⁾ (Npr) (D/L)] ^{1/3} (μ	$(\mu w)^{0.14}$				

Subject: Heat Transfer Operation

Subject code: 22510

Page **4** of **24**

2		Answer any three		
2	a	Modes of heat transfer are:	2 marks	
		1. Conduction	for	
		2. Convection	explanati	
		3. Radiation	on, 2	
		1) Conduction : If a temperature gradient exist in a continuous	marks for	
		substance, heat can flow unaccompanied by any observable motion	examples	
		of mater. Heat flow of this kind is called conduction.		
		Example: Heat flow in the metal wall of tube		
		2) Convection : When a macroscopic particle of fluid crosses a		
		specific surface, it carries with it a definite quantity of enthalpy.		
		Such a flow of enthalpy is called convection.		
		There are two types of convection- natural and forced. If the currents		
		are the result of buoyancy forces generated by differences in density		
		and the differences in density are in turn caused by temperature		
		gradient the action is called natural convection.		
		Example: heating of water by hot surface		
		Forced convection : If the currents are set in motion by the action		
		of a mechanical device such as a pump or agitator, the flow is called		
		forced convection		
		Example: heat flow to a fluid pumped through a heated pipe		
		3) Radiation: Radiation is transfer of energy through space by		
		electromagnetic waves.		
		Example: Loss of heat from unlagged pipe.		
2	b	Wilson Plot:		
		It is based on the separation of the overall thermal resistance into the inside		
		convective thermal resistance and the remaining thermal resistances		

t: Hea	at Tran	sfer Operation Subject code: 22510 Pa	ige 6 of 2
		inside.	
2	с	Multiple effect evaporator method to improve economy of evaporators:	
		Multiple effect evaporation: In this system, evaporators are arranged in	
		series so that the vapour produced in first effect is fed to the steam chest of	
		second effect as heating medium in which boiling takes place at low	
		pressure and temperature and so on.	
		Increasing the number of effects between steam supply and condenser	
		increases the amount of evaporation per kg of steam fed to the first effect	
		and also the operating cost will be less, but capital cost, maintenance and	
		repair charges increases with increase in number of effects.	
		Methods of feeding multiple effect evaporation system:	
		1. Forward feed arrangement: In this, the liquid feed flows in the same	
		direction as the vapour flows. Fresh feed and steam are fed to the	
		first effect. For effectively utilizing temperature potentials, this	
		arrangement is preferable.	
		2. Backward feed arrangement: In this arrangement, the feed solution	
		and vapour flow in opposite direction. Fresh feed is admitted to the	
		first effect and steam to the last effect. If the liquid is very viscous,	
		then we adopt backward feed arrangement.	
		3. Mixed feed arrangement: In this feed arrangement, steam is	
		admitted to the first effect. Feed solution is admitted to an	
		intermediate effect and flows to the first effect from where it is fed	
		to last effect for final concentration. This is adopted for best overall	
		performance.	
2	d	Stefan-Boltzmann Law :	
		It states that the total energy emitted (emissive power) by a black body is	
		proportional to fourth power of its absolute temperature.	

t: Heat Transf	fer Operation Subject code: 22510	Page 8 of 24
	It consists of a enlarged shell containing a relatively small tube bundle. At	
	one end of the bundle, the tubes are expanded into a stationary tube sheet	
	clamped between shell and channel flange.	
	In a channel, pass partition is incorporated so that inlet and outlet for the	
	tube side fluid is provided on the same channel. At opposite end of the	
	bundle, tubes are expanded into a freely riding floating tube sheet. The	
	tubes are free to expand. The shell is provided with liquid inlet and outlet	
	connections at the bottom as shown in figure. A vapour outlet is provided at	
	the top. A weir is incorporated in the shell to maintain a pool of liquid in the	1
	shell so that the tube bundle remains submerged in the liquid.	
	The heating medium, usually steam, flows through the tubes and the	
	condensate is removed through a steam trap The liquid to be vaporised is	
	introduced in the enlarged shell through a liquid inlet. The tube bundle is	
	always submerged in a pool of boiling liquid and for this purpose an over-	
	flow weir is incorporated in the shell, which is set aside of the tube bundle.	
	Heat transfer to boiling liquid takes place from a submerged surface.	
	The shell is of a large diameter mainly for vapour-liquid separation. The	•
	vapours, are generated, disengaged and removed from the top, and	l
	unvaporised liquid spills over the weir, and is withdrawn as the bottom	L
	product, through a liquid outlet provided at the bottom of the shell.	
3 c	Plate type heat exchanger:	

oject: Heat Transfer Operation	Subject code:	22510	Page 11 of 24
temperature of the body.			
Thus when any body is at equilibrium tem	perature with its su	urrounding,	, its
emissivity and absorptivity are equal.			
Consider that the two bodies are kep	ot into a furnace h	eld at con	stant
temperature of T K. Assume that, of the	two bodies one is	a black bo	ody& 1
the other is a non-black body i.e. the body	dy having 'a' valu	e less than	one.
Both the bodies will eventually attain the	e temperature of T	K & the bo	odies
neither become hotter nor cooler than	the furnace. At th	nis conditio	on of
thermal equilibrium, each body absorbs	and emits thermal	radiation a	t the
same rate. The rate of absorption & em	ission for the blac	k body wi	ll be
different from that of he non-black body.			
Let the area of non-black body be A ₁ a	and A ₂ respectively	7. Let 'I' b	e the
rate at which radiation falling on bodies	per unit area and H	E_1 and E_2 b	e the
emissive powers (emissive power is th	e total quantity of	radiant en	nergy
emitted by a body per unit area per unit	t time)of non-black	k & black	body
respectively.			
At thermal equilibrium, absorption and	emission rates are	equal, thus	,
$Ia_1 A_1 = A_1 E_1$		(1.1)	
\therefore Ia ₁ = E ₁		(1.2)	
And $Ia_b A_2 = A_2 E_b$	(1.3) $Ia_b = E_b$	(1.4)
From equation (1.1) and (1.4).we get			
$\frac{E1}{a1} = \frac{Eb}{ab} \qquad \dots$	(1.5)		1
Where a_{1,a_b} = absorptivity of non-black &	black bodies respe	ctively.	
If we introduce a second body (non-black	ck) then for the se	cond non-l	olack
body,we have :			

ject: Heat Transfer Operation			Subject code:	22510	Page 12 of 24
		$I A_3 a_2 = E_2 A_3$	(1.6)		
		\therefore Ia ₂ = E ₂	(1.7)		
		Where $a_1 = E_2$ are the absorptivity and em	issive power of the	e second non-	
		black body.			1
		Combining equations (1.2) , (1.4) and (1.7)	7) we get,		
		$\frac{E1}{a1} = \frac{E2}{a2} = \frac{E3}{a3} = E_{b}$	(1.8)		
4	b	The equation to be used is:			
		$\frac{1}{U} = \frac{1}{h_o} + \frac{1}{h_i} + \frac{1}{k/x}$			1
		Where $U = overall$ heat tra	nsfer coefficient		
		ho = outside heat transfer coefficient			
		$= 1750 \text{ W/(m}^2.\text{K})$			
		hi = inside heat transfer coefficient			
		$= 5800 \text{ W/(m^2.K)}$			
		k = thermal conductivity of metal wall			1
		= 46.52 W/(m.K)			
		x = thickness of metal wall of tube			
		= (O.D I.D.) / 2			
		$=\frac{(30-20)}{2}=5$ mm $= 0.005$ m			1
		$\frac{1}{U} = \frac{1}{1750} + \frac{1}{5800} + \frac{46}{0.0}$	1 5.52 005		
		$U = 1175 W/(m^2.K)$			1
4	c	Rate of heat transfer through sphere:			
		Consider a hollow sphere of inner rad	ius r1 and outer rad	lius r2. Let T1	1
		be the temp. at the inner surface and T	2 be the temp. at the	he outer	
		surface. Heat will flow from outside to	o inside.		
	1				

Subject: Heat Transfer Operation	Subject code: 22510	Page 13 of 24
Consider a spherical element at rad	ius r and thickness dr. the rate of	
heat flow can be written as $Q = -kA$	⊾dT/dr	
$= -k4\Pi r^2 dT/dr$		
$dr/r^2 = -k4\Pi \ dT/Q$		1
Integrate the eqn (ii) between the lime When $r = r_1$, $T = T1$	its	
When $r = r2$, $T = T2$		
$\int_{r_1}^{r_2} \frac{dr}{r^2} = -\frac{k(4\pi)}{Q} \int_{T_1}^{T_2} dT \qquad \dots \dots (iii)$		
r2 [-1/r]		
$r1 = -k (4\pi)/Q (T2 - T1)(iv)$		1
$[1/r1 - 1/r2] = k (4\pi)/Q (T1 - T2) \dots$	(V)	
Rate of heat flow through sphere is :		
Q = k (4 π) (T1 - T2) / [1/r1 - 1/r2] v	vi)	
It can be put into more convenient form	by expressing the rate of heat flo	w
as :		
$Q = \frac{\mathbf{k} 4 \pi (r_1, r_1)}{(r_2)}$	$\frac{2}{(T_1 - T_2)}{-r_1}$	1
Where rm is the geometric mean radius & i	is given by	
$r_m = v(r_1.r_2)$		
$rm^2 = r_1 . r_2$		
$Am = 4\pi r_m^2(ix)$		
Am is called as geometric mean area.		
Equation (viii) becomes		
$Q = \frac{\mathbf{k} \mathbf{A}\mathbf{m}(T_1)}{(r_2 - r_1)}$ $Q = \frac{(T_1 - r_2)}{[(r_2 - r_1)]}$	$\frac{-T^{2}}{r^{1}} = \frac{\Delta T}{R}$ $\frac{T^{2}}{/k \text{ Am}} = \frac{\Delta T}{R}$	

Subject	Subject: Heat Transfer Operation			code: 22510	Page 15 of 24
			$d(\Delta T)/\Delta T = - (1/(mh Cph) + 1/(mc Cpc)) U B dx$ ΔTe		
			$\int_{\Delta T_i} d(\Delta T) / \Delta T = - (1/(mh \ Cph) + 1/(mc \ Cpc)) U B \int_{C}$	$_{0}^{L}$ dx	
			$\ln (\Delta Te/\Delta Ti) = - (1/(mh Cph) + 1/(mc Cpc)) U A$		·(6)
			where $\Delta Te = T_{he} - T_{ce}$		
			$\Delta Ti = T_{hi} - T_{ci}$		1
			Now if q is the total rate of heat transfer in the heat ex	changer, then	
			$q = m_h C p_h (T_{hi} - T_{he})$ (7)		
			= mc Cpc $(T_{ce} - T_{ci})$ (8)		
			Substituting equations (7) and (8) into equation (6),		
			$\ln (\Delta Te/\Delta Ti) = -1/q[(T_{hi}-T_{he}) + (T_{ce}-T_{ci})]U A$		
			$q = U A (\Delta Ti - \Delta Te) / \ln (\Delta Ti / \Delta Te)$	(9)	
			Equation (9) is the performance equation for a parallel	l-flow heat exchang	ger.
			$Q = U A \Delta T lm$		
			Where $\Delta Tlm = (\Delta Ti - \Delta Te) / ln (\Delta Ti / \Delta Te)$		
-	4	e	Material balance equation for single effect evapora	ator:	
			Consider that the evaporator is fed with $m_f kg/h$ of we	eak solution contain	ing
			w ₁ % solute & thick liquor is withdrawn at m' kg/h co	ontaining w ₂ % solid	ls

ect: Heat Tr	ansfer Operation Subject code: 22510 Page 17 of 24
	solutions, in case of solutions having negligible heats of dilution.
	Heat transfer to solution in evaporator by condensing steam (in absece of
	heat losses) is utilised to heat the feed solution from Tf to T and for
	vaporisation of water from solution.
	Qs = Q
	$= m_f Cpf (T - T_f) + (m_f - m') \lambda_v \dots \dots (vii)$
	$m_s .\lambda_s = mf \ Cpf \ (T - T_f) + (m_f - m') \ \lambda_v(viii)$
	where $Cp_f =$ specific heat of feed solution
	λ_v = latent heat of evaporation from thick liquor
	For negligible boiling point rise $\lambda v = \lambda$
	Where λ =latent heat of vaporisation of water at pressure in the
	Vapour space& can be read from steam tables.
	Above equation (viii) becomes :
	$m_s \lambda_s = m_f C p_f (T - T_f) + (m_f - m') \lambda \dots (ix)$
	$m_s \lambda_s = m_f C p_f (T - T_f) + m_v \lambda \dots (x)$
5	Answer any two12
5 a	Derivation for relation between overall and individual heat transfer coefficients:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-22 EXAMINATION Model Answer

Subject: Heat Trans	fer Operation	Subject code: 22510	Page 19 of 24
	2) Resistance offered by metal wall. 3) Resistance offered by film of cold Heat transferred through metal wall $Q=kAw(T_2-T_3) / xw \dots (2)$ The rate of heat transfer through cold fluid $Q=h_0A_0(T_3-T_4) \dots (3)$ $T_1-T_2 = \frac{Q}{hi Ai}$ $T_2-T_3 = \frac{Q}{kAw/xw}$	fluid I film	1
	$T_{3}-T_{4} = \frac{Q}{h0 A0}$ $T_{1}-T_{2}+T_{2}-T_{3}+T_{3}-T_{4} = Q[\frac{1}{hi}\frac{1}{Ai} + \frac{x}{k}]$ But Q = U_{0}A_{0}(T_{1}-T_{4})(5) Equating (4) and (5) $\frac{1}{U0 A0} = \frac{1}{hi}\frac{1}{Ai} + \frac{xw}{k}\frac{1}{Aw} + \frac{1}{h0 A0}$	$\frac{W}{Aw} + \frac{1}{h0} \frac{1}{A0}]\dots (4)$	1
	$\frac{1}{U0} = \frac{D0}{hi} + \frac{xwD0}{k} + \frac{1}{h0}$		1
5 b	633K→ 573K 400K→303K		1
	LMTD for counter current flow,		

bject: Heat	ject: Heat Transfer Operation		Subject code: 22510	Page 20 of 24
		$\Delta T_2 = T_{ho} - T_{ci} = 573 - 303 = 270 \text{ K}$		1
		$\Delta T_1 = T_{hi} - T_{co} = 633 - 400 = 233 \text{ K}$		1
		LMTD = $(270-233) / \ln (270/233) = 2513$	K	1
		$Q = m Cp \Delta T = U A \Delta T$ LM		1
		1.2*2083 (633-573) = A*500*251		1
		A=1.196 m2 for counter current flow		
5	с	Basis : 10,000 Kg/h of weak liquor entering	the evaporator.	1
		Let m be the kg/h of thick liquor leaving the	evaporator.	
		Material balance of caustic soda:		1
		Caustic soda in feed = Caustic soda in thick	liquor	
		$0.04 \times 10000 = 0.25 \times m$		1
		m = 1600 kg/h		
		Overall material balance:		
		kg/h of feed = kg/h evaporated + kg/h of thic	ek liquor	1
		1000 = kg/h water evaporated + 1600		
		water evaporated = $10000 - 1600$		1
		= 8400 kg/h		
		∴ capacity of evaporator = 8400kg/h		1
6		Answer any two		12
6	a	Basis: 1 m length $r_1 = 0.0325m r_2 = 0.0825m$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject: Heat Tran	sfer Operation Subject code: 22510	Page 21 of 24	
	$r_{L1} = (r_2 - r_1) / \ln(r_2/r_1) = 0.0537m$ A ₁ = 2\pi r_1 L = 0.3371 m ²	1	
	$K_1 = 0.14 \text{ W/mK}$		
	$R_1 = B_1 / K_1 A_{L1}$ = 0.05/0.14* 0.3371	1	
	= 1.059 K/W		
	$r_2 = 0.0825 \text{m} r_3 = 0.1225 \text{m}$	1	
	$r_{L} = (r_{3} - r_{2}) / \ln(r_{3}/r_{2}) = 0.101 \text{m}$ $A_{L} = 2\pi r_{L} = 0.6255 \text{ m}^{2}$		
	$A_{L2} = 2M_L L = 0.0355 \text{ m}$ $K_{s} = 0.035 \text{ W/mK}$		
	$\mathbf{R}_2 = \mathbf{R}_2 / \mathbf{K}_2 \mathbf{A}_{12}$	1	
	= 0.04/0.035 * 0.6355		
	= 1.798 K/W		
	$R = R_1 + R_2$	1	
	= 2.857 K/W		
	Temp.drop ΔT = 115 K	1	
	Heat loss $Q = \Delta T / R$	1	
	= 115 / 2.857		
	= 40.3 W		
6 b	Dropwise and Filmwise condensation:		
	The change from liquid to vapour state is known as vapourisation and		
	that from vapour to liquid is known as condensation. In either case, the		
	latent heats involved are identical. In the condensation of a pure vapour,	, 1	
	it is necessary to remove the latent heat of vapourisation. Condensation	l l	
	is a convection process that involves a change of phase from vapour to		
	liquid and it occurs whenever a saturated vapour comes into contact of a		
	cold surface, for example In surface condenser, heat transfer from the		

	subject code. 22510	rage 22 01 24
	vapour to the surface takes place and the vapour gets condensed on the	
	surface.	
	The process of condensation which is the reverse of boiling, occurs	
	by two distinct mechanism and that too at very different rates of heat	
	transfer, The two distinct mechanism are 1) Dropwise condensation 2)	
	Filmwise condensation	
	Dropwise condensation: When a saturated vapour comes into contact	
	with a cold surface, it condenses and if condensate does not wet the	
	surface, the droplets are formed on the surface The droplets grow and	2
	ultimately fall from or fall down under the influence of gravity leaving	
	behind the bare metal surface on which further condensation takes	
	place. The condensation occurring by this mechanism is known as	
	dropwise condensation.	
	Filmwise condensation:	
	When a saturated vapour comes into contact with the cold surface, it	
	condenses and if condensate wets the surface it formes a continuous	3
	film of condensate through which heat mass be transferred. The	
	additional vapour is then required to condense into the liquid film rather	
	than directly on the surface. The condensate ultimately flows down the	
	surface under the influence of gravity.	
	In Filmwise condensation, the film covering the acts as a resistance	
	to heat transfer while in dropwise condensation a large portion of a surface	
	is directly exposed to the vapour. Because of this the rate of heat transfer	
	and heat transfer coefficient in dropwise condensation is larger than	
	filmwise condensation.	
6 c	Double pipe heat exchanger:	
	It is the simplest type of heat exchanger. It is used when the heat transfer	

Subject: Heat Transfer	Operation	Subject code:	22510	Page 24 of 24
sh su ar co er flu	nop as it consists of standard parts and it p urface. In this exchanger, one of the flui and the other fluid flows through the ann oncentric pipes either in co-current or cou mployed for decreasing the temperature o uid when flow rates are low.	provides inexpens ds flows through nular space creat inter-current fash f a hot fluid with	sive heat tran the inside p ed between tion. It is usu the help of o	sfer 2 pipe two ally cold