

Model Answer

Subject Name: Design of Steel & RCC Structure

Subject Code: 22502

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. No.	Sub Q. N.		Answer		
Q-1		Attemp	Attempt any FIVE of the following:		
	a)	Write the justification to the safety factor which is used in limit state design is referred as a partial factor of safety.			2M
	Ans.	Since the safety of principal design factors (viz. load and material strengths) which are not			
		depende	dependent on each other, two different safety factors, one for load and other for material		
		strength are used. Because each of two factors contributes partially to safety, they are termed			
		as partia	l safety factors.		
	b)	State a respecti	State any loads to be considered while designing steel structures along with their respective is codes		
	Ans	1. 2. 3. 4. 5.	1. Dead load – IS875:1987 Part-I 2. Live load - IS875:1987 Part-II 3. Wind load - IS875:1987 Part-III 4. Snow load - IS875:1987 Part-IV 5. Load due to Seismic force, IS 1893:2002 & IS875:1987 Part-V		
	c)	State ar	State any two difference between simply supported slab and cantilever slab		
	Ans	S N	Simply Supported Slab	Cantilever slab	
		1	Main R/f is provided at bottom side of	Main R/f is provided at top side of	
			section	section	2M
		2	Both ends of slab are simply supported.	One ends of slab is fixed and other is free.	(1 M Each)
		3	Bending moment is maximum at center of	Bending moment is maximum at	
			section.	fixed end.	
		4	Bending moment pattern is sagging across	Bending moment pattern is	
			c/s	hogging across c/s	
		5	Example- slab of hall or bedroom	Example- chajjas, overhang	
				balcony.	

Subject Name: Design of Steel & RCC Structure

<u>Model Answer</u>

d)	Give expression for development length along with the notations used in it.	02
	Development length is calculated using following expression	
	$h = \frac{0.87 Fy \phi}{1000}$	11.0
	$L_d - 4x T_{bd}$	IN
	$F_y = Grade of steel$	1 M
	τ_{bd} = Design bond stress	
	$L_d = Development length$	
	Φ = Dia. of bar	
e)	Enlist any four functions of using transverse Steel in RCC column	02
	i) To prevent buckling of longitudinal reinforcing bars.	
	ii) To hold longitudinal reinforcement in position.	1/2 M
Ans	iii) To confine the concrete core	Each
	III) To comme the concrete core.	
	iv) To resist diagonal tension.	
f)	Define the characteristics load and design load.	02
Ans	Characteristic Load -Characteristic Load means that value of load which has 95% probability of not being exceeded during the life of the structure.	1M
	Design Load- Partial Safety factor for load is load enhancing factor (greater than	1M
	one) which when multiplied to characteristic load gives a load known as Design Load	
	Design of Load (Fd) = Partial Safety factor for load x characteristic load	
g)	Define the terms, end return and lap length used in welding connections along with their specification as recommended by IS 800:2007.	02
Ans	1. End Return: End returns are made equal twice the size of weld to relieve the	
	weld length from high stress concentration at their ends	$1/_2$ M
	Specification : End return should not less than twice the size of the weld.	½ M
	2. Lap Length: the length that is needed for overlapping of two steel plates so they act like a single member.	14 M
	like a single member. Specification: In the case of lan joints, the minimum lan should not be loss than four	72 181
	times the thickness of the thinner part joined or 40 mm, whichever is more	
	response of the management of	¹∕₂ M
	d) e) Ans f) Ans g) Ans	d) Give expression for development length along with the notations used in it. Development length is calculated using following expression La = 0.87 Fy Ø La = Development length Fy = Grade of steel τ _{bdl} = Design bond stress La = Development length Φ = Dia. of bar Enlist any four functions of using transverse Steel in RCC column i) To prevent buckling of longitudinal reinforcing bars. ii) To hold longitudinal reinforcement in position. Ans Characteristic load and design load. f) Define the characteristics load and design load. Ans Characteristic Load -Characteristic Load means that value of load which has 95% probability of not being exceeded during the life of the structure. Design Load - Partial Safety factor for load is load enhancing factor (greater than one) which when multiplied to characteristic load gives a load known as Design Load Design of Load (Fd) = Partial Safety factor for load x characteristic load g) Define the terms, end return and lap length used in welding connections along with their specification as recommended by IS 800:2007. Ans 1. End Return:End returns are made equal twice the size of weld to relieve the weld length from high stress concentration at their ends Specification: End return should not less than twice the size of the weld. 2. Lap Length: the length that is neceded for overlapping of two steel plates so they act like a

Subject Name: Design of Steel & RCC Structure

<u>Model Answer</u>

Q.2		Attempt any THREE of the following:	12 M
	a)	State for benefits when steel is used as a construction material. Also list any four steel structure along with their function.	4
	Ans	 The steel member can resist high load with comparatively light weight and small size of member Extensively useful for large span industrial steel bridges, Tower and communication networks, steel overhead tanks Steel has many good mech. Properties like ductility and malleability It is good for earthquake resistant structure due to more ductile nature. It gives high scrap value It is easy to fabricate by bolting or welding to any desired shape. The steel member are gas and water tight 	¹ / ₂ M Each (Any four)
		 8) The steel member have long service life 9) It bears tension, compression, shear, bending and torsional forces 10) The steel structures may be inspected quickly and conveniently 11) Steel as construction material can be recycled easily (reuse) List of steel structure 	16 M
		 Communication towers. Steel water tanks Steel bridges. Gantry girders and cranes. Steel columns Steel Chimney Building frames 	Each (Any four)
	b)	Derive the neutral axis coefficient and moment of resistance constant for a singly reinforced balance section having effective depth 'd' and width 'b'. Use M20 concrete mix and Fe 415 Steel	4M
	Ans	Given :- Dimension- b and d, Fy = 415 Mpa , Fck = 20 Mpa 1. Neutral axis coefficient Xu max = $\frac{700 d}{1100+0.87 Fy}$ = $\frac{700 d}{1100+0.87 x 415}$ = 0.479 d 2. Moment of Resistance	2M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 2022 EXAMINATION

Subject Name: Design of Steel & RCC Structure Subject Code: 22502 **Model Answer** Mu max = 0.36 Fck x $\frac{Xu max}{d}$ x $(1 - \frac{0.42 Xu max}{d})$ x b d² 2 M = 0.36 x 20 x $\frac{0.497 d}{d}$ x $\left(1 - \frac{0.42 x 0.479 d}{d}\right)$ x b d² $= 2.75 \text{ b } \text{d}^2$ Diameter of steel is 20 mm, Steel grade fe415 and bond stress 1.2 Mpa for plain **4M** c) bars in tension, calculate the development length for bars in compression. Given: Ans. $\Phi = 20$ mm $f_{ck} = 20 \ N/mm^2$ $f_v = 415 N/mm^2$ **1 M** Bond stress, $\tau bd = 1.2 \text{ N/mm}^2$ **Development length for bar in compression 1 M** T_{bd} for TOR(HYSD) steel = 1.2 x 1.6 x 1.25 = 2.4 Mpa $Ld = \frac{0.87 Fy \phi}{4x T_{bd}}$ **1M** $= \frac{0.87x\ 415\ x\ 20}{4x\ 2.4} = 752.18\ \mathrm{mm}$ **1 M** d) A Rectangular RC beam of effective section 230 mm wide and 400 mm Deep is **4M** reinforced with 3 bars of 16 mm diameter. Determine the shear resistance of concrete section, if beam carries ultimate shear of 80 kN. Use M20 concrete of Fe415 Steel. Take, permissible shear stress in concrete equal to 0.53 N/mm². Given,:-b = 230 mm, d = 400 mm, Ans. $F_{ck} = 20 \text{ N/mm}^2$. $\tau_c = 0.53 \text{ N/mm}^2$ $A_{st} = 3 \times \pi/4 \times 16^2 = 603.18 \text{ mm}^2$ **1 M** $V_u = 80 \text{ kN}.$ **1 M** Shear resistance of concrete = $\tau_c x b x d$ 1 M = 0.53 x 230 x 400 **1 M** $= 48.76 \times 10^3 \text{ N}$

Subject Name: Design of Steel & RCC Structure

<u>Model Answer</u>

Q. No.	Sub Q.N.	Answer	
Q-3		Attempt any TWO of the following:	12
	a)	Determine the efficiency of Lap joint used to connect two plates of 10 mm thick. Use, Fe 410 grade for plate material and 4.6 grade for bolts. Take, the end distance equal to 30 mm and bolt diameter 20 mm with 50 mm pitch.	06M
	Ans.	Given Data	
		t = 10 mm	
		Fe410 $f_y = 410 N/mm^2$	
		4.6 Grade of bolt $f_{ub} = 400 N/mm^2$	
		e = 30 mm	
		d = 20 mm	
		$d_o = 20 + 2 = 22 mm$	
		p = 50 mm	
		Step 1) Bolt Value or Strength of bolt = Smaller of i) and ii)	
		i) Strength of bolt in shearing (V_{dsb})	
		$V_{dsh} = \frac{V_{nsb}}{V_{nsb}}$	
		γ_{mb}	
		Assume $\gamma_{mb} = 1.25$	
		Also assume shear plane is intercepting at thread portion only and	
		liefe 1s	
		$\therefore n = 1 \& n = 0$	
		$m_n = 1 \approx m_s = 0$	¹∕₂ M
		$A_{nb} = 0.78 x \frac{1}{4} d^2$,
		$A_{nb} = 0.78 \ x \ \frac{\pi}{4} 20^2$	
		$A_{nb} = 245.044 \ mm^2$	
		$V_{nsb} = \frac{f_{ub}}{\sqrt{3}} [n_n * A_{nb} + n_s * A_{sb}]$	
		$V_{nsb} = \frac{400}{\sqrt{3}} [1 \ x \ 245.044 + \ 0]$	
		$V_{nsb} = 56.59 \times 10^3 N = 59.59 \text{ KN}$ $V_{dsb} = \frac{56.59}{1.25}$	
		$V_{dsb} = 45.272 \ kN$ OR	1M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 2022 EXAMINATION

Subject Name: Design of Steel & RCC Structure Model Answer Subject Code	<u>:</u> 22502
$V_{dsb} = 0.462 f_{ub} n_n A_{nb}$	
$n_n = 1$ for Single Shear	
V_{dsb} = 0.462 x 400 x 1 x 245.04 = 45.28 x 10 ³ N = 45.272 KN	
ii) Strength of bolt in bearing (V_{ij})	
II) Strength of boit in bearing (V_{dpb})	
$V_{dph} = \frac{V_{npb}}{V_{dph}}$	
γ_{mb}	
$V_{npb} = 2.5 R_b * a * t * f_u$	
Where, $K_b = \text{Smaller of} \left(\frac{c}{3d_o}, \frac{p}{3d_o} - 0.25, \frac{f_{ub}}{f_u}, 1.0 \right)$	
$K_b = \text{Smaller of} \left(\frac{30}{3x 22}, \frac{50}{3x 22} - 0.25, \frac{400}{410}, 1.0 \right) = 0.454$	
$V_{npb} = 2.5 x \ 0.454 x \ 20 x \ 10 x \ 410$	
$V_{npb} = 93.07 \ x \ 10^3 \ N$	
$V_{nnh} = 93.07 kN$	
V_{npb} 93.07	43.6
$V_{dpb} = \frac{1}{\gamma_{mb}} = \frac{1}{1.25}$	IM
$V_{dpb} = 74.456 kN$	
OR $V_{dnh} = 2 \times k_h d t_n f_u$	
$= 2 \times 0.454 \times 20 \times 10 \times 410 = 74.456 \times 10^3 \text{ N} = 74.456 \text{ KN}$	
Bolt Value for single bolted joint = 1 x Smaller of i) and ii)	
= 45.272 KN	$\frac{1}{2}$ M
Step 2 Strength of plate in tearing per pitch length (Tdn)	
$0.9 f_{\rm u}(p-d_{\rm o})t$	
$T_{dn} = \frac{\gamma_{d} \gamma_{ml}}{\gamma_{ml}}$	
OR = $0.72 f_u x (P - n dh) tp$	
= 0.72 x 410 x (50 - 1 x 22) x 10 = 82.656 KN	
Step3) Strength of joint = Smaller of Step 1) and Step 2)	¹∕₂ M
= 45.272 KN	
Step 4) Strength of Solid Plate	¹∕₂ M
Design Strength of solid plate per pitch length = $\frac{0.9 * f_u * p * t}{1000}$ or 0.72 f _u P tp	
$= 0.72 \times 410 \times 50 \times 10$	
	1 Л/Г
= 147.00 KN	TIAT

0	<u>Subject Nam</u>	ne: Design of Steel & RCC Structure Model Answer Subject Code	<u>:</u> 22502
		Step 5) Efficiency of the joint	
		Efficiency (n) = $\frac{\text{Strength of Joint}}{\text{Strength of solid plate}} \times 100$	
		Efficiency (n) = $\frac{45.272}{147.60} \times 100$	1M
		= 30.67 %	
	b)	Define the under-reinforced, over-reinforced and balanced sections used in RC	06M
		design and also state which section is preferred and why. Draw a labeled sketch	
		of stress block diagram for a singly reinforced RCC section by showing important	
		parameters on it.	
	Ans.	a) Under reinforced section- When the percentage of steel provided in section is less than pt limit then section is known as under reinforced section.	
		 b) Over reinforced section- When the percentage of steel provided in section is more than pt limit. Then section is known as over reinforced section. 	1M
		c) Balanced Section- in balanced section $P_t = P_{t \text{ lim.}}$	1M
		 Au= Aumax When the ratio of steel in concrete in a section in such that maximum strain in steel and maximum strain in concrete reach their maximum value simultaneously, the section is referred to as balanced section or critical section. Which section is preferred and why? 	1M
		The under reinforced sections are preferred over the other two as in under reinforced section, steel will yield first before concrete crushes which results into the deformation of member giving the sign or warning before the failure.	1M
		$ \begin{array}{c} $	2M
		Let b = width of the section	
		D = overall depth of section	
		d = effective depth of section = D - d'	
		d' = effective cover	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

<u>Su</u>	ibject Nan	ne: Design of Steel & RCC Structure	Model Answer	Subject Code: 2	22502
		Xu = depth of neut	ral axis from compression face		
		Ast = Area of tension	on steel		
		Pt = % of steel			
		Zu = lever arm = (d – 0.42 Xu)		
	c)	Calculate the lap of one plate having of size 180 mm x 12 mm which tran plate. Assume, fillet weld of 6mm si the field. Use, yield stress as 250 MI in steel.	size 120 mm x 10 mm over th smits a pull equal to full stren ze and welding is operated on Pa whereas ultimate stress equ	e another plate ngth of smaller three sides on 1al to 410 MPa	06M
	Ans.	Given Data			
		Size of plate 1) 120 x 10 mm $t_1 =$	10 mm		
		Size of plate 2) 180 x 12 mm $t_2 =$	12 mm	1	1 M
		t = 1	0 mm		
		Size of weld $s = 6$ mm, Welding is pro-	vided on 3 side (Field weld)		
		$f_{y} = 250 MPa$ and $f_{y} = 410 N/mm$	2		
		1) Calculate Pu			
		$p_u = \frac{f_y \times A_g}{\gamma_{mo}}$ = 0.91 Fy A for design of joint	for full strength of plate		11
		= 0.91 Fy x b x tp $= 0.91$ x 250 x	120 x10= 273 x10 ³ N		111/1
		2) Size of Weld (S)			
		Use Size of Weld (S) = 3)Design strength of weld per mm ler	6 mmgiven ngth (Pw)	1,	∕2 M
		Pw = 0.7x	S x <i>Fwd</i> N/mm		
		For field	l weld <i>, Fwd</i> =0.385Fu		
		Pw = 0.7 x	< 6 x 0.385 x 410 = 662.97 N/mr	n	1M
		3) Effective Length of weld required			
		Length of Weld (/) = <u>Factored Axial For</u>	ece or Full strength of plate Pw = 273 x10 ³ / 662.97		1M
		4) Distribution of Weld Longth	= 411.78 mm = 415 mm (say)		
			elding on Three Sides		

<u>Subje</u>	ect Nam	ne: Design of Steel & RCC Structure	Model Answer	Subject Code	<u>e:</u> 22502
		Total I	length of weld (I) = $I_1 + I_2 + I_3$		
		$I_3 = k$	o = 120 mm (width of plate)		
		415 = /	I ₁ + I ₂ + 120		
			1 + 1 ₂ - 415-120		1M
			415-120		1111
		/ ₁ =	$= I_2 = \frac{1}{2} = 147.5 \text{m}$	ım	
			= 150 m	m (say)	
		Minim	um Lap = 150 <i>mm</i>		
		Pu = 272.72 m	Illacarce T IZO mm Pu	= 272-72 K14.	¹⁄₂ M
Q-4		Attempt any TWO of the following:			12
	a)	A rectangular beam 250 mm wide and 55 as simply supported beam of span 5 m. self-weight of beam can carry, if it is rein grade of concrete mix and Fe415 steel gr	0 mm deep with effective cover Calculate the central point lo nforced by 4-bars of 20 mm di ade	r of 50 mm is used ad neglecting the ameter. Use, M20	06M
	Ans.	STEP 1) Civen Data			
		b = 250 mm			
		$D = 550 \text{ mm}, d_c = 50 \text{ mm}$			
		d = 550 - 50			
		d = 500 mm			
		4 # 20 mm dia. Bars are used.	-		
		A =	$n \frac{\pi}{4} x d^2$		
		A =	$4 \frac{\pi}{4} x 20^2$		
		A - 17	$256 64 \mathrm{mm}^2$		1M
		$M20 \qquad f_{ck} = 20 MPa$	150. UT IILIIL		
		Fe415 $f_y = 415 MPa$			
		STEP 2) Calculate Limiting Neutral a	axis depth (x_{umax})		
		For Fe415; x_{umax}	c = 0.479 d		

Subject Nan	ne: Design of Steel & RCC Structure Model Answer Subject Cod	<u>de:</u> 22502
	$x_{umax} = 0.479 \ x \ 500$	1M
	$x_{umax} = 239.5 mm$	
	STEP 3) Calculate actual Neutral axis depth (x_u)	
	$x_{11} = \frac{0.87 * f_y * A_{st}}{2}$	
	$u = 0.36 * f_{ck} * b$	
	$x_u = \frac{0.87 \ x \ 415 \ x \ 1256.64}{0.36 \ x \ 20 \ x \ 250}$	
	$r = 252.06 \mathrm{mm}$	1 M
	STEP 4) Compare x_u with x_{umax}	
	$x_u > x_{umax}$	
	252.06 mm > 239.5 mm	1M
	As over reinforced section is not allowed	
	As over reministed section is not anowed	
	STEP 5) Calculate limiting moment of resistance	
	$M_u = M_{ulim}$	
	$M_u = 0.138 * f_{ck} * b * d^2$ $M_u = 0.128 * 20 * 250 * 500^2$	1M
	$M_u = 0.138 \times 20 \times 230 \times 300$ $M_u = 172.5 \times 10^3 Nmm$	
	$M_{u} = 172.5 kNm$	
	STEP 6) Calculate Point load	
	P	
	- 1/2	
	SKETCH	
	$M_{max} = \frac{Pu l}{\Lambda}$	
	Pul 1	
	$-\frac{1}{4} = 172.5$	
	$Pu = \frac{172.5 \times 4}{5}$	1M
	Pu = 138 kNm	

Subject Name: Design of Steel & RCC Structure Subject Code: 22502 **Model Answer** A RCC beam with 230 mm wide is used as a cantilever of span 4m and carrying b) **06** u. d. l. of 5 kN/m throughout the span. Design the singly reinforced beam using M20 concrete and Fe415 steel. Ans. Note: Above question is out of syllabus. STEP 1) Given data: b = 230 mm $l_{eff} = 4 m$... Assuming given span as effective span. w = 5 kN/m $W_d = 1.5 \ x \ 5$ **1M** $W_d = 7.5 \, \text{kN/m}$ $f_{ck} = 20 MPa$ M20 $f_{v} = 415 MPa$ Fe415 **STEP 2) Find factored bending moment:** Wd = 7.5 km/m leff=4m **SKETCH** $M_u = \frac{w_d * l_{eff}^2}{2}$ $M_u = \frac{7.5 \ x \ 4^2}{2}$ **1M** $M_u = 60 \, kNm$ **STEP 3) Calculate depth of section:** For Fe415 $M_{ulim} = 0.138 * f_{ck} * b * d^2$ Equating M_u with M_{ulim} $M_{ulim} = M_u$:. $0.138 * f_{ck} * b * d^2 = M_u$ $0.138 * 20 * 230 * d^2 = 60 \times 10^3$ d = 307.43 mmSay d = 310 mm**1M** Assuming effective cover as 40 mm; Overall depth will be D = d + d'D = 310 + 40**1M** $D = 350 \, mm$ STEP 4) Find area of steel A_{st}:

	$Pt_{lim} = 0.96\%$ For M20 & Fe415	
	$A_{st} = 100$	
	$Pt_{lim} = \frac{1}{b * d} \times 100$	
	$\frac{A_{st}}{1-1} \times 100 = 0.96$	
	b * d 0.96	
	$A_{st} = \frac{dH}{100} x b x d$	
	$4 - \frac{0.96}{r} \times 230 \times 310$	
	$n_{st} = \frac{100}{100} \times 250 \times 510$	
	$A_{st} = 684.48 mm^2$	11.4
	51 EP 5) Calculate No. of bars assuming 20 mm bar diameter 684 48	11/1
	$n = \frac{60.116}{\pi c 20^2}$	
	$\frac{\overline{4} \times 20^{2}}{694.49}$	
	$n = \frac{664.46}{214.16}$	
	n = 2.17	
	Say n = 3 bars	
	\therefore Provide 3 bars of 20 mm diamter on tension side	1M
0)	include the spacing of a mini dameter hind steel of the legged vertical surraps for a	00111
	simply supported beam of span 3.6 m with 250 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ)	
	simply supported beam of span 3.6 m with 230 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c).	
	Simply supported beam of span 3.6 m with 230 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{96}{\zeta_c} \frac{p_t}{p_t} = 0.25 = 0.50 = 0.75 = 1.00}{0.75 = 1.00} $	
Ans.	Simply supported beam of span 3.6 m with 230 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{\sqrt{6} p_t}{\zeta_c \text{ in } N/mm^2} = 0.36 = 0.48 = 0.56 = 0.62 $ STEP 1) Given Data	
Ans.	simply supported beam of span 3.6 m with 230 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{96}{\zeta_c} \frac{p_t}{p_t} = 0.25 = 0.50 = 0.75 = 1.00}{\zeta_c} = 0.62 $ STEP 1) Given Data be = 230 mm	
Ans.	simply supported beam of span 3.6 m with 230 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{9}{\sqrt{p_t}} $ $ \frac{0.25}{0.50} $ $ \frac{0.75}{1.00} $ $ \frac{0.62}{\frac{1}{\sqrt{c}} \text{ in } N/mm^2} $ $ \frac{0.36}{0.48} $ $ \frac{0.56}{0.62} $ $ STEP 1) \text{ Given Data} $ $ b = 230 \text{ mm} $ $ d = 350 \text{ mm} $	
Ans.	Simply supported beam of span 3.6 m with 250 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{\sqrt{6} p_t}{\zeta_c \text{ in } N/mm^2} = 0.36 = 0.48 = 0.56 = 0.62 $ STEP 1) Given Data $b = 230 \text{ mm}$ $d = 350 \text{ mm}$ Assume given span as effective span $l_{eff} = 3.6 \text{ m}$	
Ans.	simply supported beam of span 3.6 m with 250 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{\sqrt{6} p_t}{\zeta_c \text{ in } N/mm^2} 0.25 0.50 0.75 1.00}{\zeta_c \text{ in } N/mm^2} 0.36 0.48 0.56 0.62 $ STEP 1) Given Data $b = 230 \text{ mm}$ $d = 350 \text{ mm}$ Assume given span as effective span $l_{eff} = 3.6 \text{ m}$ $w = 24 kN/m$	
Ans.	simply supported beam of span 3.6 m with 250 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{96 \ p_t}{\zeta_c \ in \ N/mm^2} 0.25 0.50 0.75 1.00}{\zeta_c \ in \ N/mm^2} 0.36 0.48 0.56 0.62 $ STEP 1) Given Data be = 230 mm d = 350 mm Assume given span as effective span $l_{eff} = 3.6 \ mm W_d = 1.5 \ x \ 24$	
Ans.	simply supported beam of span 3.6 m with 250 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{\sqrt[6]{0} p_t}{\sqrt[6]{c} \text{ in } N/mm^2} 0.36 0.48 0.56 0.62} $ STEP 1) Given Data b = 230 mm d = 350 mm Assume given span as effective span $l_{eff} = 3.6 m$ w = 24 kN/m $w_d = 1.5 x 24$ $w_d = 36 kN/m$	
Ans.	simply supported beam of span 3.6 m with 250 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{\sqrt[9]{6} p_t}{\sqrt[6]{25} 0.50} 0.75 1.00}{\sqrt[6]{2} c in N/mm^2} 0.36 0.48 0.56 0.62} $ STEP 1) Given Data $ b = 230 \text{ mm} $ Assume given span as effective span $l_{eff} = 3.6 \text{ m}$ $ w = 24 \text{ kN/m} $ $ w_d = 1.5 x 24 $ $ w_d = 36 \text{ kN/m} $ Fe415 $ f_y = 415 MPa $	
Ans.	simply supported beam of span 3.6 m with 250 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{9_{0} p_t \qquad 0.25 \qquad 0.50 \qquad 0.75 \qquad 1.00}{\zeta_c \ in \ N/mm^2 \qquad 0.36 \qquad 0.48 \qquad 0.56 \qquad 0.62} $ STEP 1) Given Data b = 230 mm d = 350 mm Assume given span as effective span $l_{eff} = 3.6 \ m$ $w_d = 1.5 \ x \ 24$ $w_d = 36 \ kN/m$ Fe415 $f_y = 415 \ MPa$ 6 mm dia. Mild steel ($f_y = 250 \ MPa$) and two legged stirrups	
Ans.	simply supported beam of span 3.6 m with 250 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{9'_{0} p_{t}}{\zeta_{c} \text{ in } N/mm^{2}} \frac{0.25}{0.36} \frac{0.75}{0.48} \frac{1.00}{0.56} \frac{0.75}{0.62} $ STEP 1) Given Data $ b = 230 \text{ mm} \\ d = 350 \text{ mm} \\ \text{Assume given span as effective span } l_{eff} = 3.6 m \\ w = 24 kN/m \\ w_{d} = 1.5 x 24 \\ w_{d} = 36 kN/m $ Fe415 $f_{y} = 415 MPa $ 6 mm dia. Mild steel ($f_{y} = 250 MPa$) and two legged stirrups 4#12 mm dia. Bars on tension side $ \frac{\pi}{2} c = \pi \frac{\pi}{2} c = \pi \frac{\pi}{2} c $	
Ans.	simply supported beam of span 3.6 m with 250 mm x 350 effective in cross-section. The beam is reinforced with 4-bars of 12 mm diameter on tension side and are continued into supports of grade Fe415. The beam is carrying total u. d. l. of 24 kN/m over entire span. Assume M20 concrete mix. Draw a cross-section showing reinforcement details. Use, table if necessary for shear strength of concrete mix (τ_c). $ \frac{\sqrt[9]{} p_t \qquad 0.25 \qquad 0.50 \qquad 0.75 \qquad 1.00}{\zeta_c \ in N/mm^2 \qquad 0.36 \qquad 0.48 \qquad 0.56 \qquad 0.62} $ STEP 1) Given Data b = 230 mm d = 350 mm Assume given span as effective span $l_{eff} = 3.6 m$ $w = 24 \ kN/m$ $w_d = 1.5 \ x \ 24$ $w_d = 36 \ kN/m$ Fe415 $f_y = 415 \ MPa$ 6 mm dia. Mild steel ($f_y = 250 \ MPa$) and two legged stirrups 4#12 mm dia. Bars on tension side $A_{st} = n \ x \ \frac{\pi}{4} d^2 = 4 \ x \ \frac{\pi}{4} 12^2$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 2022 EXAMINATION

Subject	Name: Design of Steel & RCC Structure	Model Answer	Subject Code: 22502	
	$V_{us} = (64.8 \ x \ 10)$	$(0.499 \ x \ 230 \ x \ 350)$		
	$V_{us} =$	24.63 x 10 ³ N		
	As no bars are bent hence the addition	nal shear force will be resist	ted vertical stirrups	
	only.			
	$V_{usv} = V_{usv}$	$s = 24.63 \ x \ 10^3 \ N$		
	STEP 7) Calculate between the stirr	ups (S_v)		
	$s = \frac{0.8}{2}$	$37 * f_y * A_{sv} * d$		
	$S_v = -$	V _{usv}		
	0.87 * 2	$250 * 2 x \frac{\pi}{4} x 6^2 x 350$	1M	
	$S_v =$	$\frac{4}{24.63 \times 10^3}$	1111	
	$S_v =$	174.77 mm		
	STEP 8) Check for minimum shear	reinforcement		
	S —	$0.87 * f_y * A_{sv}$		
	$S_v \equiv -$	0.4b		
	0.87	$x = 250 \times 2x \frac{\pi}{4}x 6^2$		
	$S_v =$	0.4 x 230		
	$S_v =$	133.68 mm		
	STEP 8) Check for maximum spacir	ng		
	$S_v \ge 0.2$	75 d or 300 mm	1M	
	$S_v \ge 0.75$	x 350 or 300 mm		
	$S_v \ge 26$	52.5 or 300 mm		
	\therefore Provide 6 mm – 2 legged ver	tical stirrups @ 170 mr	n c/c	

Subject Name: Design of Steel & RCC Structure

<u>Model Answer</u>

	Scheme
0.5 Attempt ony TWO of the following:	12M
 Attempt any 1 wo of the following: a) Design a simply supported RC Slab for a Hall 3.8 m x 12 m clear dimension 	$\frac{12W}{000}$
is supported on wall 230 mm wide all around. The Slab is subjected to liv	e
load of 3 kN/m ² along with finishing load of 1 kN/m ² . Use M20 concrete r	nix
and Fe415 steel grade. No checks are allowed for the design and use	
modification factor equal to 1.4. Draw sketch of cross section showing	
reinforcement details along shorter span only.	
Lx = 3.8 m, Ly = 12 m, t = 230 mm, m, Live Load = 3 kN/m^2 ,	
Finishing load 1 kN/m ² , M-20, Fe-415, M.F. = 1.4.	
Step 1) Span and Aspect ration	
l_x = Clear span (Lcx) + t = 3.8 + 0.23 = 4.03 m	
and l_y = Clear Span (Lcx) + t = 12+0.23 = 12.23 m	1/2 M
Aspect ratio = $\frac{Ly}{Lx}$ = $\frac{12.23}{4.03}$ = 3.03 > 2 , That is One V	Vay
Slab	
Step 2) Trial Depth	
d provided = $\frac{lx}{20 \times ME}$ = = $\frac{4030}{20 \times 14}$ = 143.92 mm = 145 mm (Sa	y)
Assume d' = 20 mm(Note: Students may assume differe	nt
cover)	½ M
Overall (D) = d + d' = 145 + 20 = 165 mm	/2 101
Step 3) Revise Effective Span	
Effective Span (l_x) = Minimum of i) Lcx + d, ii) Lcx + t	
= Minimum of i) 3.8 +0.145 ii) 4.03 m	½ M
= 3.945 m	
Step 4) Load calculation	
Consider 1 m wide strip of slab (b= 1 m or 1000 mm)	
a) Self-wt. (DL) = 25 b D = 25 x1x D = 25 x0.165= 4.125 KN/m	
b) Floor Finish FF = 1 x 1 = 1 KN/m	
c) Live Load (LL) = 3 x 1 = 3KN/m	½ M
Total Working Load (W) = 8.125 KN/m	/
Total Ultimate or Factored Load (Wu) = 1.5 x 8.125 = 12.1875 KN /r	n
Step 5) Design Moment (Mu)	
Mu = $\frac{Wul^2}{8}$ For Simply Supported Slab at Mid span	
$= \frac{12.1875 \times 3.945^2}{2} = 23.709 \text{ KN.m}$	
$= 23.709 \times 10^6 N.mm$	½ M

Subject Name: Design of Steel & RCC Structure Subject Code: 22502 **Model Answer** Step 6) Check for Concrete depth ½ M $d_{req} = \sqrt{\frac{Mu}{0.138 \, Fck \, b}} ----- \text{ for Fe 415}$ $= \sqrt{\frac{23.709 \, x \, 10^6}{0.138 \, x \, 20 \, x \, 1000}}$ $d_{req} = 92.68 \, \text{mm} < d_{Provided} \quad \text{Hence O.K}$ Step 7) Main steel :-Reinforcement along short span Ast = $\frac{0.5 Fck b d}{Fv} \left[1 - \sqrt{1 - \frac{4.6 Mu}{Fck b d^2}} \right]$ ½ M Ast = $\frac{0.5 x 20 x 1000 x 145}{415} \left[1 - \sqrt{1 - \frac{4.6 x 23.709 x 10^6}{20 x 1000 x 145^2}} \right]$ - 487.04 mm² Ast min = $\frac{0.12}{100}$ x b x D = $\frac{0.12}{100}$ x 1000 x 165 = 198 mm² Ast > Ast_{min} Hence O.K Using 8 mm diameter bar having Area of one bar (ast) = $\frac{\pi}{4} \times 8^2 = 50.24 \text{ mm}^2$ ½ M (Note: Students may assume different bar dia.) Spacing (S_x) = $\frac{ast}{Ast} \ge 1000 < 3d \text{ or } 300mm$ whichever is less = $\frac{50.24}{487.04} \ge 1000 < (3 \ge 145)$ or 300 mm ½ M = 103.15 mm < 300 mm Hence O.K = 100 mm (Say)Provide 8 mm diameter bar at 100 mm C/C along short span, Alternate bars bent up Step 8) Dsitribution steel :-(Note: Students may assume different bar dia.) Using 6 mm bar Diameter having Area of one bar (ast) = $\frac{\pi}{4} \times 6^2 = 28.26 \text{ mm}^2$ Ast min = $\frac{0.15}{100}$ x b x D = $\frac{0.15}{100}$ x 1000 x 165 = 247.5 mm² Spacing (S_y) = $\frac{ast}{Ast} \times 1000 < 5d \text{ or } 450\text{ mm}$ whichever is less = $\frac{28.26}{247.5} \times 1000 < (5 \times 135) \text{ or } 450 \text{ mm}$ ½ M = 114.18 < 450 mm Hence O.K ½ M = 110 mm (Say)Provide 6 mm diameter bar at 110 mm C/C along long span 6 mm @ 110 mm c/c ½ M L [SPAN] 8 mm @ 100 mm c/c 230 mm 230 mm

Subject Nan	ne: Design of Steel & RCC Structure Model Answer Subject Cod	<u>e:</u> 22502
(b)	Calculate the reinforcement required for a RC slab panel of 6.3 m x 4.5 m is simply supported on all four sides. It has to carry the live load of 4 kN/m ² including self-weight of slab. Use M25 concrete and Fe415 steel. Sketch the cross section of slab along longer span only showing reinforcement details. Use Modification factor equal to 1.4 and bending moment coefficient are $\alpha x =$ 0.085 and $\alpha y = 0.056$.	6 M
	Given data: - Lx = 4.5 m , Ly = 6.3 m , Fck = 25 Mpa, Fy = 415 Mpa ,	
	LL = $4KN/m^2$, $\alpha x = 0.085 \& \alpha y = 0.056$. Assume FF = $1KN/m^2$, M.F = 1.4	
	Step 1) Span and Aspect ration	
	Lx = 4.5 and Ly = 6.3 Aspect ratio = $\frac{Ly}{Lx} = \frac{6.3}{4.5} = 1.4 \le 2$, Slab is two way	½ M
	Step 2) Trial Depth l_x more than 3.5 m and live load more than 3 KN/m ²	
	$\frac{l_x}{d}$ = 20 x M.F same as per one way slab	
	$d_{\text{provided}} = \frac{1}{20 \times \text{M.F}} = \frac{1}{20 \times 1.4} = 160.71 \text{ mm} = 165 \text{ mm} \text{ (Say)}$ Assume d' = 20 mm (Note: Students may assume different cover) $D = 165 + 20 = 185 \text{ mm}$	½ M
	Step 3) Revise Effective Span	
	Effective Span (l_x) = Minimum of i) Lcx + d = Minimum of i) 4.5 + 0.165 = 4.665 m	½ M
	Step 4)Load calculationConsider 1 m (b= 1 m or 1000 mm) wide strip of slaba)Floor Finish FF =FF x 1 = 1 x 1 = 1 KN/mb)Live Load (LL) =LL x 1 = 4 x1 = 4 KN/m	
	Total Working Load (W) = 5.0 KN/m Total Ultimate Load (Wu) = 1.5 W =1.5 x 5.0 = 7.5 KN/m	½ M
	Step 5) Design Moment (Mu) Mux = ∞ Wu $L^2 = 0.095$ X 7 5 X 4 665 ² = 12.872 KN m	
	Mux = α_x Wu l_x^2 = 0.085 X 7.5 X 4.665 ² = 9.14 KN.m	½ M
	Step 6) Check for Concrete depth $d_{req} = \sqrt{\frac{Mu \max}{0.138 Fck b}} $	
	$d_{req} = \sqrt{\frac{13.873 \times 10^{6}}{0.138 \times 25 \times 1000}}$ $d_{req} = 63.41 < d_{Provided} \text{ Hence O.K}$	½ M

Subject Name: Design of Steel & RCC Structure

Subject Nan	ne: Design of Steel & RCC Structure Model Answer Subject Code	<u>e:</u> 22502
(c)	Design a cantilever slab 2 m x 3 m effective in plan dimensions is fixed along 3 m slab edge. It is loaded by superimposed load of 4 kN/m ² including its own weight of slab. Use modification factor as 1.4 and take M20 concrete mix and Fe415 steel. Sketch the cross section of the slab showing reinforcement details. No Checks are required during design.	6M
	Given data: - Lx = 2m, M.F = 1.4, Fck = 20 Mpa, Fy = 415 Mpa,	
	$LL + FF = 4 \text{ kN/m}^2$	
	Step 1) Span $L_{r} = 2m$ Civon	
	Lx = 2 III Given	
	$d_{\text{provided}} = \frac{Lx}{7 \text{ x M}.\text{F}} = \frac{2000}{7 \text{ x } 1.4} = 204.08 \text{ mm}$	½ M
	= 210 mm (Say)	
	Assume d' = 20 mm (Note: Students may assume different cover)	
	Overall (D) = d + d' = 210 + 20 = 230 mm	½ M
	Step 3) Revise Effective Span	,
	Effective Span $(l_x) = Lc + \frac{d}{2} = 2000 + \frac{210}{2} = 2105 \text{ mm} = 2.105 \text{ mm}$	½ M
	Step 4) Load calculation	
	Consider 1 m wide strip of slab (b= 1 m or 1000 mm)m	
	Slf wt + LL+ FF = 4 x 1 = 4 KN/m	
	Total Working Load (W) = 4.0 KN/m	½ M
	Total Ultimate Load (Wu) = 1.5 x 4 = 6.0 KN /m	
	Step 5) Design Moment (Mu) $Mu = \frac{Wu l^2}{2}$	
	$=\frac{6.0 \times 2.105^2}{1000} = 13.29 \text{ KN}.\text{m}$	½ M
	2 = 13.29 x 10 ⁶ N mm	/2 101
	Step 6) Check for Concrete depth	
	$d_{req} = \sqrt{\frac{Mu}{0.138 Fck b}} $	
	13.29×10^{6}	
	$-\sqrt{0.138 x 20 x 1000}$	1/ 8.4
	d _{req} = 69.39 mm < d _{Provided} Hence O.K	7₂ IVI

Subject Name: Design of Steel & RCC Structure

Subject Name: Design of Steel & RCC Structure

Model Answer

0.	Sub	Answers	Marking	
No.	Q.N.		Scheme	
0.6	-			
Q-6	(a)	Attempt any TWO of the following:		
	(a)	A square column of RCC is carrying working load of 1000 kN. The length of unsupported column is 3 m and is affectively hold in position at both and but	0 IVI	
		restrained against rotation at one and only. Design the axially leaded short		
		column using M25 and Fe 415 as construction.		
		le = 3 m P = 1600 kN M - 25 Fe - 415		
		$A_{SC} = 1\% \text{ of } A_{ST} = 0.01 \text{ Ag mm}^2$		
		Ac = Ag - Asc		
		Ac = Ag - 0.01 Ag = 0.99Ag	1M	
		Factored Load = $Pu = P \times 1.5 = 1600 \times 1.5 = 2400 \text{ kN}.$		
		Pu = (0.4 x fck x Ac) + (0.67 x fv x Asc)		
		$2400 \times 10^3 = [(0.4 \times 25 \times 0.99 \text{Ag}) + (0.67 \times 415 \times 0.01 \text{Ag})]$		
		= 9.9Ag $+ 2.78$ Ag $= 12.68$ Ag		
		$Ag = (2400 \times 1000)/12.68 = 189266.98 \text{ mm}^2$	1M	
		Size of Column = sqrt(189266.98) = 435.04 mm Say 440 mm		
		Therefore provide 440 mm x 440 mm		
		Ag provided = 193600 mm ²		
		Ac = 0.99 x 193600 = 191664.00 mm ²		
		Asc = 0.01 x 193600 = 1936 mm ²	1M	
		Provide 16 mm dia. 10 bars. (Note: Students may provide different combination		
		of no.and dia. of bars.)		
		Lateral Ties:		
		Diameter of bar: (Greater of below)		
		i. $\frac{1}{4}$ of main bar dia. = $\frac{16}{4}$ = 4 mm		
		ii. 6 mm.	1M	
		Provide 6 mm		
		dia. bars.Pitch:		
		(Least of below)		
		i. 16 times dia. Of main bar = $16 \times 16 = 256$ mm.	1M	
		ii. Least lateral dim. = 440 mm.	1111	
		iii. 300 mm.		
		Provide pitch		
		250 mm.		
		Hence provide 6 mm dia. @ 250 mm c/c.		
		Check for Minimum eccentricity		
		emin = L/500 + D/30 or 20 mm whichever is grater		
		emin = 3000/500 + 440/30 = 20.66 or 20 mm	1M	
		emin < 0.05 D		
		emin < 0.05 x 440 =22		
		20.66 < 22 Hence O.K.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Nar	me: Design of Steel & RCC Structure	Model Answer Subject Code:	22502
(b)	Determine the reinforcement for an supported over soil strata having sa column of 400 mm x 400 mm in sect through RC footing. Use M20 concr one way action and punching shear draw the cross section of footing she	isolated square footing with uniform depth is fe bearing capacity as 190 kN/m ² . The square tion which transmits an axial load of 1000 kN rete mix and Fe 415 steel grade. No checks for applied for footing depth calculation. Also owing the reinforcement details.	6M
	Safe bearing capacity	190 N/m ²	
	Working Load =P	1000 kN	1M
	Self-weight of footing = 10% of load on column.	100 kN	
	Total ultimate load on soil	1100 kN	
	Area of footing required = Total	1100/190 = 5.78 m ²	
	ultimate load on soil / Ultimate bearing capacityof soil		1M
	Size = SQRT(Area)	2.45 m	
	Provide size	2.45 m x 2.45 m	
	Actual area provided	6.00 m ²	
	Net ultimate upward pressure (qnu) = Ultimateload on column / Actual area provided	1000 / 6.00 = 166.67 kN/m ²	
	Projection (a)	(2.45 – 0.40) / 2 = 1.025 m	
	$Mu = qnu x a^2 / 2$	87.55 kN.m	
	d required = SQRT(Mu / 0.138 x fck x b)	SQRT(87.55 x 10 ⁶ / 0.138 x 20 x 1000) = 178.10 mm	1M
	Overall depth D = d + cover 60 mm	240 mm	
	Provide	D = 240 mm & d = 180 mm	
	Ast = 0.5 x fck x b x d {1 -	0.5 x 20 x 1000 x 180 {1 -	
	SQRT[1 – (4.6 x Mu) / (fck x	SQRT[1 – (4.6 x 87.55 x	1M
	b x d ²)]} / fy	10 ⁶) / (20 x 1000 x 180 ²)]} /	
		415 = 1668.89 mm ²	
	Spacing for 16 mm dia.	120.47 mm	11/
	Bars = 1000 x A1 / Ast		TIAI
	Provided	16 mm dia. @ 120 mm c/c	
		16 mm @ 120 mm c/c (•)8 mm @ 120 mm c/c (•)8 mm @ 120 mm c/c	1M
		<u>* C/S</u>	

