Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Sub } Q . \\ N . \end{gathered}$	Answer			Marking Scheme
Q-1		Attempt any FIVE of the following:			10 M
	a)	Write the justification to the safety factor which is used in limit state design is referred as a partial factor of safety.			2M
	Ans.	Since the safety of principal design factors (viz. load and material strengths) which are not dependent on each other, two different safety factors, one for load and other for material strength are used. Because each of two factors contributes partially to safety, they are termed as partial safety factors.			2M
	b)	State any loads to be considered while designing steel structures along with their respective is codes.			2M
	Ans	1. Dead load - IS875:1987 Part-I 2. Live load - IS875:1987 Part-II 3. Wind load - IS875:1987 Part-III 4. Snow load - IS875:1987 Part-IV 5. Load due to Seismic force- IS 1893:2002 \& IS875:1987 Part-V			$1 / 2$ M Each (any four)
	c)	State any two difference between simply supported slab and cantilever slab			02
	Ans	$\begin{array}{\|l\|} \hline \text { S N } \\ \hline 1 \end{array}$	Simply Supported Slab	Cantilever slab	$\begin{gathered} \text { 2M } \\ (\mathbf{1 M} \\ \text { Each }) \end{gathered}$
			Main R/f is provided at bottom side of section	Main R / f is provided at top side of section	
		2	Both ends of slab are simply supported.	One ends of slab is fixed and other is free.	
		3	Bending moment is maximum at center of section.	Bending moment is maximum at fixed end.	
		4	Bending moment pattern is sagging across c/s	Bending moment pattern is hogging across c / s	
		5	Example- slab of hall or bedroom	Example- chajjas, overhang balcony.	

d)	Give expression for development length along with the notations used in it.	02
	Development length is calculated using following expression $\mathrm{L}_{\mathrm{d}}=\frac{0.87 \mathrm{Fy} \emptyset}{4 x T_{b d}}$ $\mathrm{F}_{\mathrm{y}}=$ Grade of steel $\tau_{\text {bd }}=$ Design bond stress $\mathrm{L}_{\mathrm{d}}=$ Development length $\Phi=$ Dia. of bar	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$
e)	Enlist any four functions of using transverse Steel in RCC column	02
Ans	i) To prevent buckling of longitudinal reinforcing bars. ii) To hold longitudinal reinforcement in position. iii) To confine the concrete core. iv) To resist diagonal tension.	$\begin{aligned} & 1 / 2 \mathbf{M} \\ & \text { Each } \end{aligned}$
f)	Define the characteristics load and design load.	02
Ans	Characteristic Load -Characteristic Load means that value of load which has 95\% probability of not being exceeded during the life of the structure. Design Load- Partial Safety factor for load is load enhancing factor (greater than one) which when multiplied to characteristic load gives a load known as Design Load Design of Load (Fd) = Partial Safety factor for load x characteristic load	1M $\mathbf{1 M}$
g)	Define the terms, end return and lap length used in welding connections along with their specification as recommended by IS 800:2007.	02
Ans	1. End Return:End returns are made equal twice the size of weld to relieve the weld length from high stress concentration at their ends Specification: End return should not less than twice the size of the weld. 2. Lap Length: the length that is needed for overlapping of two steel plates so they act like a single member. Specification: In the case of lap joints, the minimum lap should not be less than four times the thickness of the thinner part joined or 40 mm , whichever is more.	$\begin{aligned} & 1 / 2 \mathbf{M} \\ & 1 / 2 \mathbf{M} \\ & 1 / 2 \mathbf{M} \\ & 1 / 2 \mathbf{M} \end{aligned}$

Q. 2		Attempt any THREE of the following:	12 M
	a)	State for benefits when steel is used as a construction material. Also list any four steel structure along with their function.	4
	Ans	1) The steel member can resist high load with comparatively light weight and small size of member 2) Extensively useful for large span industrial steel bridges, Tower and communication networks, steel overhead tanks 3) Steel has many good mech. Properties like ductility and malleability 4) It is good for earthquake resistant structure due to more ductile nature. 5) It gives high scrap value 6) It is easy to fabricate by bolting or welding to any desired shape. 7) The steel member are gas and water tight 8) The steel member have long service life 9) It bears tension, compression, shear, bending and torsional forces 10) The steel structures may be inspected quickly and conveniently 11) Steel as construction material can be recycled easily (reuse) List of steel structure 1. Communication towers. 2. Steel water tanks 3. Steel bridges. 4. Gantry girders and cranes. 5. Steel columns 6. Steel Chimney 7. Building frames	1/2 M Each (Any four) $1 / 2 \mathrm{M}$ Each (Any four)
	b)	Derive the neutral axis coefficient and moment of resistance constant for a singly reinforced balance section having effective depth ' d ' and width ' b '. Use M20 concrete mix and Fe 415 Steel	4M
	Ans	Given :- Dimension- band d, Fy = $\mathbf{4 1 5} \mathrm{Mpa}, \mathrm{Fck}=20 \mathrm{Mpa}$ 1. Neutral axis coefficient $\begin{aligned} \text { Xu max } & =\frac{700 \mathrm{~d}}{1100+0.87 \mathrm{Fy}} \\ & =\frac{700 \mathrm{~d}}{1100+0.87 \times 415} \\ & =0.479 \mathrm{~d} \end{aligned}$ 2. Moment of Resistance	2M

	$\begin{aligned} \text { Mu max } & =0.36 \text { Fck } \times \frac{X u \max }{d} \times\left(1-\frac{0.42 X u \max }{d}\right) \times \mathrm{b} \mathrm{~d}^{2} \\ & =0.36 \times 20 \times \frac{0.497 d}{d} \times\left(1-\frac{0.42 \times 0.479 d}{d}\right) \times \mathrm{b} \mathrm{~d}^{2} \\ & =2.75 \mathrm{~b} \mathrm{~d}^{2} \end{aligned}$	2 M
c)	Diameter of steel is $\mathbf{2 0} \mathbf{~ m m}$, Steel grade fe415 and bond stress 1.2 Mpa for plain bars in tension, calculate the development length for bars in compression.	4M
Ans.	Given: $\begin{aligned} & \Phi=20 \mathrm{~mm} \\ & \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Bond stress, $\tau \mathrm{bd}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$ Development length for bar in compression $\begin{aligned} & \mathrm{T}_{\mathrm{bd}} \text { for TOR(HYSD) steel }=1.2 \times 1.6 \times 1.25=2.4 \mathrm{Mpa} \\ & \qquad \begin{aligned} \mathrm{Ld} & =\frac{0.87 F y \emptyset}{4 \times T_{b d}} \\ & =\frac{0.87 \times 415 \times 20}{4 \times 2.4} \quad=752.18 \mathrm{~mm} \end{aligned} \end{aligned}$	$1 M$ $1 M$ $1 M$
d)	A Rectangular RC beam of effective section 230 mm wide and 400 mm Deep is reinforced with 3 bars of 16 mm diameter. Determine the shear resistance of concrete section, if beam carries ultimate shear of 80 kN . Use M20 concrete of Fe415 Steel. Take, permissible shear stress in concrete equal to $0.53 \mathrm{~N} / \mathrm{mm}^{2}$.	4M
Ans.	Given,:-b $=230 \mathrm{~mm}, \mathrm{~d}=400 \mathrm{~mm}$, $\begin{aligned} & \mathrm{F}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \tau_{\mathrm{c}}=0.53 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{~A}_{\mathrm{st}}=3 \times \pi / 4 \times 16^{2}=603.18 \mathrm{~mm}^{2} \\ & \mathrm{~V}_{\mathrm{u}}=80 \mathrm{kN} \end{aligned}$ $\begin{aligned} \text { Shear resistance of concrete } & =\tau_{c} \times \mathrm{b} \times \mathrm{d} \\ & =0.53 \times 230 \times 400 \\ & =48.76 \times 10^{3} \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$

$$
\begin{aligned}
\hline \hline \boldsymbol{V _ { \boldsymbol { d } \boldsymbol { b } }}= & \mathbf{0 . 4 6 2} \boldsymbol{f}_{\boldsymbol{u b}} \boldsymbol{n}_{\boldsymbol{n}} \boldsymbol{A}_{\boldsymbol{n} \boldsymbol{b}} \\
& \boldsymbol{n}_{\boldsymbol{n}}=1 \text {--------- for Single Shear } \\
V_{d s b}= & 0.462 \times 400 \times 1 \times 245.04=45.28 \times 10^{3} \mathrm{~N}=\mathbf{4 5 . 2 7 2} \mathbf{K N}
\end{aligned}
$$

ii) Strength of bolt in bearing $\left(V_{d p b}\right)$

$$
\begin{gathered}
V_{d p b}=\frac{V_{n p b}}{\gamma_{m b}} \\
V_{n p b}=2.5 k_{b} * d * t * f_{u}
\end{gathered}
$$

$$
\text { Where, } \mathrm{K}_{\mathrm{b}}=\text { Smaller of }\left(\frac{e}{3 d_{o}}, \frac{p}{3 d_{o}}-0.25, \frac{f_{u b}}{f_{u}}, 1.0\right)
$$

$$
\mathrm{K}_{\mathrm{b}}=\text { Smaller of }\left(\frac{30}{3 \times 22}, \frac{50}{3 \times 22}-0.25, \frac{400}{410}, 1.0\right)=0.454
$$

$$
V_{n p b}=2.5 \times 0.454 \times 20 \times 10 \times 410
$$

$$
V_{n p b}=93.07 \times 10^{3} \mathrm{~N}
$$

$$
V_{n p b}=93.07 \mathrm{kN}
$$

$$
V_{d p b}=\frac{V_{n p b}}{\gamma_{m b}}=\frac{93.07}{1.25}
$$

$$
V_{d p b}=74.456 k N
$$

$$
\mathrm{OR} V_{d p b}=2 \times k_{b} d t_{p} f_{u}
$$

$$
=2 \times 0.454 \times 20 \times 10 \times 410=74.456 \times 10^{3} \mathrm{~N}=74.456 \mathrm{KN}
$$

Step 2 Strength of plate in tearing per pitch length (Tdn)

$$
T_{d n}=\frac{0.9 f_{u}\left(p-d_{o}\right) t}{\gamma_{m l}}
$$

$$
\text { OR } \quad=0.72 f_{u} \times(P-n d h) t p
$$

$$
=0.72 \times 410 \times(50-1 \times 22) \times 10=82.656 \mathrm{KN}
$$

Step3) Strength of joint = Smaller of Step 1) and Step 2)

$$
=45.272 \mathrm{KN}
$$

Step 4) Strength of Solid Plate

Design Strength of solid plate per pitch length $=\frac{0.9 * f_{u^{*} p * t}}{\gamma_{m l}}$ or


	```\(\mathrm{Xu}=\) depth of neutral axis from compression face Ast \(=\) Area of tension steel Pt = \% of steel \(\mathrm{Zu}=\) lever \(\mathrm{arm}=(\mathrm{d}-0.42 \mathrm{Xu})\)```	
c)	Calculate the lap of one plate having size $120 \mathrm{~mm} \times 10 \mathrm{~mm}$ over the another plate of size $180 \mathrm{~mm} \times 12 \mathrm{~mm}$ which transmits a pull equal to full strength of smaller plate. Assume, fillet weld of 6 mm size and welding is operated on three sides on the field. Use, yield stress as 250 MPa whereas ultimate stress equal to 410 MPa in steel.	06M
Ans.	Given Data   Size of plate 1) $120 \times 10 \mathrm{~mm}$   Size of plate 2) $180 \times 12 \mathrm{~mm}$ $\begin{aligned} & \mathrm{t}_{1}=10 \mathrm{~mm} \\ & \mathrm{t}_{2}=12 \mathrm{~mm} \\ & \mathrm{t}=10 \mathrm{~mm} \end{aligned}$   Size of weld $\mathrm{s}=6 \mathrm{~mm}$, Welding is provided on 3 side (Field weld) $f_{y}=250 \mathrm{MPa} \text { and } f_{u}=410 \mathrm{~N} / \mathrm{mm}^{2}$   1) Calculate Pu $\begin{aligned} p_{u} & =\frac{f_{y} \times A_{g}}{\gamma_{m o}} \\ & =0.91 \text { Fy A--- for design of joint for full strength of plate } \\ & =0.91 \text { Fy } \times \mathrm{b} \times \mathrm{tp}=0.91 \times 250 \times 120 \times 10=273 \times 10^{3} \mathrm{~N} \end{aligned}$   2) Size of Weld (S)   Use Size of Weld $(S)=6 \mathrm{~mm}$ -given   3)Design strength of weld per mm length (Pw) $\begin{aligned} & \text { Pw }=0.7 \times \mathrm{S} \times F w d-------------\mathrm{N} / \mathrm{mm} \\ & \text { For field weld }, F w d=0.385 \mathrm{Fu} \\ & \mathrm{Pw}=0.7 \times 6 \times 0.385 \times 410=662.97 \mathrm{~N} / \mathrm{mm} \end{aligned}$   3) Effective Length of weld required $\begin{aligned} & \text { Length of Weld }(I)= \\ & \begin{aligned} \text { Factored Axial Force or Full strength of plate } \end{aligned} \\ & \qquad \begin{aligned} & P w \\ &=273 \times 10^{3} / 662.97 \\ &=411.78 \mathrm{~mm}=415 \mathrm{~mm} \text { (say) } \end{aligned} \end{aligned}$   4) Distribution of Weld Length	1 M   1M   $1 / 2$ M   1M   1M


		Total length of weld $(I)=I_{1}+I_{2}+I_{3}$ $\begin{aligned} & I_{3}=b=120 \mathrm{~mm} \quad \text { (width of plate ) } \\ & 415=I_{1}+I_{2}+120 \\ & I_{1}+I_{2}=415-120 \\ & I_{1}=I_{2}=\frac{415-120}{2}=147.5 \mathrm{~mm} \\ &=150 \mathrm{~mm} \text { (say) } \end{aligned}$   Minimum Lap $=150$ mm	1M $1 / 2 \mathbf{M}$
Q-4		Attempt any TWO of the following:	12
	a)	A rectangular beam 250 mm wide and 550 mm deep with effective cover of 50 mm is used as simply supported beam of span 5 m . Calculate the central point load neglecting the self-weight of beam can carry, if it is reinforced by 4 -bars of $\mathbf{2 0} \mathbf{~ m m}$ diameter. Use, M20 grade of concrete mix and Fe 415 steel grade.	06M
	Ans.	STEP 1) Given Data $\begin{aligned} & \mathrm{b}=250 \mathrm{~mm} \\ & \mathrm{D}=550 \mathrm{~mm}, d_{c}=50 \mathrm{~mm} \\ & \mathrm{~d}=550-50 \\ & \mathrm{~d}=500 \mathrm{~mm} \end{aligned}$   4 \# 20 mm dia. Bars are used. $\begin{gathered} A=n \frac{\pi}{4} \times d^{2} \\ A=4 \frac{\pi}{4} \times 20^{2} \\ A=1256.64 \mathrm{~mm}^{2} \end{gathered}$   M20 $f_{c k}=20 \mathrm{MPa}$ $\mathrm{Fe} 415 \quad f_{y}=415 M P a$   STEP 2) Calculate Limiting Neutral axis depth ( $x_{u \max }$ )   For Fe415; $x_{u \max }=0.479 \mathrm{~d}$	1M

$$
\begin{aligned}
x_{u \max } & =0.479 \times 500 \\
\boldsymbol{x}_{\text {umax }} & =\mathbf{2 3 9 . 5} \mathbf{~ m m}
\end{aligned}
$$

STEP 3) Calculate actual Neutral axis depth ( $x_{u}$ )

$$
\begin{gathered}
x_{u}=\frac{0.87 * f_{y} * A_{s t}}{0.36 * f_{c k} * b} \\
x_{u}=\frac{0.87 \times 415 \times 1256.64}{0.36 \times 20 \times 250} \\
\boldsymbol{x}_{\boldsymbol{u}}=\mathbf{2 5 2 . 0 6} \mathbf{~ m m}
\end{gathered}
$$

STEP 4) Compare $x_{u}$ with $x_{u m a x}$

$$
x_{u}>x_{u \max }
$$

$252.06 \mathrm{~mm}>239.5 \mathrm{~mm}$
.... Section is over reinforced
As over reinforced section is not allowed

STEP 5) Calculate limiting moment of resistance

$$
\begin{gathered}
\boldsymbol{M}_{\boldsymbol{u}}=\boldsymbol{M}_{\boldsymbol{u l i m}} \\
M_{u}=0.138 * f_{c k} * b * d^{2} \\
M_{u}=0.138 \times 20 \times 250 \times 500^{2} \\
M_{u}=172.5 \times 10^{3} \mathrm{Nmm} \\
\boldsymbol{M}_{\boldsymbol{u}}=172.5 \mathbf{~ k N m}
\end{gathered}
$$

STEP 6) Calculate Point load


## SKETCH

$$
M_{\max }=\frac{P u l}{4}
$$

$$
\frac{P u l}{4}=172.5
$$

$$
P u=\frac{172.5 \times 4}{5}
$$

$$
P u=138 \mathrm{kNm}
$$





## SKETCH

STEP 2) Calculate shear force ( $V_{u}$ )

$$
\begin{aligned}
V_{u} & =\frac{w_{d} \times l_{\text {eff }}}{2} \\
V_{u} & =\frac{36 \times 3.6}{2} \\
V_{u} & =\frac{36 \times 3.6}{2} \\
V_{u} & =64.8 \mathrm{kN}
\end{aligned}
$$

STEP 3) Calculate nominal shear stress ( $\tau_{v}$ )

$$
\begin{aligned}
& \tau_{v}=\frac{V_{u}}{b * d} \\
& \tau_{v}=\frac{64.8 \times 10^{3}}{230 \times 350} \\
& \tau_{v}=0.805 \mathrm{~N} / \mathrm{mm}^{2}<\tau_{c \max }=2.8 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

STEP 4) Calculate shear strength of concrete ( $\zeta_{c}$ )

$$
\begin{gathered}
P_{t}=\frac{A_{s t}}{b * d} \times 100 \\
P_{t}=\frac{452.39}{230 \times 350} \times 100 \\
\boldsymbol{P}_{\boldsymbol{t}}=\mathbf{0 . 5 6 2} \%
\end{gathered}
$$

	$\boldsymbol{P}_{\boldsymbol{t}}=\mathbf{0 . 5 6 2} \%$	
$\% \boldsymbol{p}_{\boldsymbol{t}}$	$\boldsymbol{p}_{\boldsymbol{t} 1}=\mathbf{0 . 5 0}$	$\boldsymbol{p}_{\boldsymbol{t} 2}=\mathbf{0 . 7 5}$
$\tau_{\boldsymbol{c}}$ in $\mathrm{N} / \mathrm{mm}^{2}$	$\tau_{\boldsymbol{c} 1}=\mathbf{0 . 4 8}$	$\boldsymbol{\tau}_{\boldsymbol{c} 2}=0.56$

By interpolation

$$
\begin{gathered}
\tau_{c}=\tau_{c 1}+\left(p_{t}-p_{t 1}\right) \frac{\left(\tau_{c 2}-\tau_{c 1}\right)}{p_{t 2}-p_{t 1}} \\
\tau_{c}=0.48+(0.562-0.50) \frac{(0.56-0.48)}{0.75-0.50} \\
\tau_{c}=0.499 \mathrm{~N} / \mathrm{mm}^{2}
\end{gathered}
$$

STEP 5) Compare $\tau_{v} \& \tau_{c}$

$$
\tau_{v}>\tau_{c}
$$

$0.805 \mathrm{~N} / \mathrm{mm}^{2}>0.499 \mathrm{~N} / \mathrm{mm}^{2} \ldots$. .Provide additional shear reinforcement STEP 6) Calculate additional shear force required ( $V_{u S}$ )

$$
V_{u s}=V_{u}-\tau_{c} b d
$$

$$
\begin{gathered}
V_{u s}=\left(64.8 \times 10^{3}\right)-(0.499 \times 230 \times 350) \\
V_{u s}=24.63 \times \mathbf{1 0}^{\mathbf{3}} \boldsymbol{N}
\end{gathered}
$$

As no bars are bent hence the additional shear force will be resisted vertical stirrups only.

$$
V_{u s v}=V_{u s}=24.63 \times 10^{3} \mathrm{~N}
$$

STEP 7) Calculate between the stirrups $\left(S_{v}\right)$

$$
\begin{gathered}
S_{v}=\frac{0.87 * f_{y} * A_{s v} * d}{V_{u s v}} \\
S_{v}=\frac{0.87 * 250 * 2 \times \frac{\pi}{4} \times 6^{2} \times 350}{24.63 \times 10^{3}} \\
S_{v}=174.77 \mathrm{~mm}
\end{gathered}
$$

STEP 8) Check for minimum shear reinforcement

$$
\begin{gathered}
S_{v}=\frac{0.87 * f_{y} * A_{s v}}{0.4 b} \\
S_{v}=\frac{0.87 * 250 * 2 \times \frac{\pi}{4} \times 6^{2}}{0.4 \times 230} \\
S_{v}=133.68 \mathrm{~mm}
\end{gathered}
$$

STEP 8) Check for maximum spacing

$$
\begin{gathered}
S_{v} \ngtr 0.75 \text { d or } 300 \mathrm{~mm} \\
S_{v} \ngtr 0.75 \times 350 \text { or } 300 \mathrm{~mm} \\
S_{v} \ngtr 262.5 \text { or } 300 \mathrm{~mm}
\end{gathered}
$$

$\therefore$ Provide $6 \mathrm{~mm}-2$ legged vertical stirrups @ 170 mm c/c

$\begin{array}{\|l} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{array}{\|l\|} \hline \text { Sub } \\ \text { Q.N. } \end{array}$	Answers	Marking Scheme
Q-5		Attempt any TWO of the following:	12M
	a)	Design a simply supported RC Slab for a Hall $3.8 \mathrm{~m} \times 12 \mathrm{~m}$ clear dimensions is supported on wall 230 mm wide all around. The Slab is subjected to live load of $3 \mathrm{kN} / \mathrm{m}^{2}$ along with finishing load of $1 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete mix and Fe 415 steel grade. No checks are allowed for the design and use modification factor equal to 1.4 . Draw sketch of cross section showing reinforcement details along shorter span only.	6M
		$L x=3.8 \mathrm{~m}, \mathrm{Ly}=12 \mathrm{~m}, \mathrm{t}=230 \mathrm{~mm}, \mathrm{~m}$, Live Load $=3 \mathrm{kN} / \mathrm{m}^{2}$,   Finishing load $1 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{M}-20, \mathrm{Fe}-415, \mathrm{M} . \mathrm{F} .=1.4$.   Step 1) Span and Aspect ration $l_{x}=\text { Clear span }(\mathrm{Lcx})+\mathrm{t}=3.8+0.23=4.03 \mathrm{~m}$   and $l_{y}=$ Clear Span ( Lcx ) $+\mathrm{t}=12+0.23=12.23 \mathrm{~m}$   Aspect ratio $=\frac{L y}{L x}=\frac{12.23}{4.03}=3.03>2$, That is One Way   Slab   Step 2) Trial Depth $\mathrm{d}_{\text {provided }}=\frac{l \times}{20 \times \mathrm{M} . \mathrm{F}}=\frac{4030}{20 \times 1.4}=143.92 \mathrm{~mm}=145 \mathrm{~mm} \text { (Say) }$   Assume d' $=20 \mathrm{~mm}$ (Note: Students may assume different   cover) $\text { Overall }(D)=d+d^{\prime}=145+20=165 \mathrm{~mm}$   Step 3) Revise Effective Span $\begin{aligned} \text { Effective Span }\left(l_{x}\right) & =\text { Minimum of i) } L c x+d, & & \text { ii) } L c x+t \\ & =\text { Minimum of i) } 3.8+0.145 & & \text { ii) } 4.03 \mathrm{~m} \\ & =3.945 \mathrm{~m} & & \end{aligned}$   Step 4) Load calculation   Consider 1 m wide strip of slab ( $b=1 \mathrm{~m}$ or 1000 mm )   a) Self-wt. (DL) $=25 \mathrm{~b} D=25 \times 1 \times \mathrm{D}=25 \times 0.165=4.125 \mathrm{KN} / \mathrm{m}$   b) Floor Finish FF = $1 \times 1=1 \mathrm{KN} / \mathrm{m}$   c) Live Load (LL) = $3 \times 1=3 \mathrm{KN} / \mathrm{m}$   Total Working Load $(\mathrm{W})=8.125 \mathrm{KN} / \mathrm{m}$   Total Ultimate or Factored Load $(\mathrm{Wu})=1.5 \times 8.125=12.1875 \mathrm{KN} / \mathrm{m}$   Step 5) Design Moment (Mu) $\begin{aligned} \mathrm{Mu} & =\frac{W u l^{2}}{8}----- \text { For Simply Supported Slab } \\ & =\frac{12.1875 \times 3.945^{2}}{8} \end{aligned}=23.709 \mathrm{KN} . \mathrm{m} .$	$1 / 2 \mathrm{M}$   $1 / 2 \mathrm{M}$   $1 / 2 \mathrm{M}$   $1 / 2 M$   $1 / 2 \mathrm{M}$

Step 6) Check for Concrete depth

$$
\begin{aligned}
d_{\text {req }} & =\sqrt{\frac{M u}{0.138 F c k b}} \\
& =\sqrt{\frac{23.709 . \times 10^{6}}{0.138 \times 20 \times 1000}} \\
\text { dreq } & =92.68 \mathrm{~mm}<\text { dProvided Hence O.----- for Fe 4 }
\end{aligned}
$$

## Step 7) Main steel :-

Reinforcement along short span

$$
\begin{aligned}
& \text { Ast }=\frac{0.5 F c k b d}{F y}\left[1-\sqrt{1-\frac{4.6 M u}{F c k b d^{2}}}\right] \\
& \begin{aligned}
\text { Ast } & =\frac{0.5 \times 20 \times 1000 \times 145}{415}\left[1-\sqrt{1-\frac{4.6 \times 23.709 \times 10^{6}}{20 \times 1000 \times 145^{2}}}\right] \\
& =487.04 \mathrm{~mm}^{2}
\end{aligned}
\end{aligned}
$$

$$
\text { Ast } \min =\frac{0.12}{100} \times b \times D=\frac{0.12}{100} \times 1000 \times 165=198 \mathrm{~mm}^{2}
$$

$$
\text { Ast }>\text { Ast }_{\text {min }} \quad \text { Hence O.K }
$$

Using 8 mm diameter bar having Area of one bar (ast $)=\frac{\pi}{4} \times 8^{2}=50.24 \mathrm{~mm}^{2}$
(Note: Students may assume different bar dia.)
Spacing $\left(\mathrm{S}_{\mathrm{x}}\right)=\frac{\text { ast }}{\text { Ast }} \times 1000<3 \mathrm{~d}$ or 300 mm whichever is less $=\frac{50.24}{487.04} \times 1000<(3 \times 145)$ or 300 mm $=103.15 \mathrm{~mm}<300 \mathrm{~mm}$ Hence O.K $=100 \mathrm{~mm}$ (Say)
Provide $\mathbf{8 ~ m m}$ diameter bar at 100 mm C/C along short span, Alternate bars bent up
Step 8) Dsitribution steel :-
(Note: Students may assume different bar dia.)
Using 6 mm bar Diameter having Area of one bar (ast ) $=\frac{\pi}{4} \times 6^{2}=28.26 \mathrm{~mm}^{2}$

$$
\text { Ast } \min =\frac{0.15}{100} \times b \times D=\frac{0.15}{100} \times 1000 \times 165=247.5 \mathrm{~mm}^{2}
$$

Spacing $\left(\mathrm{S}_{\mathrm{y}}\right)=\frac{\text { ast }}{\text { Ast }} \times 1000<5 \mathrm{~d}$ or 450 mm whichever is less
$=\frac{28.26}{247.5} \times 1000<(5 \times 135)$ or 450 mm $=114.18<450 \mathrm{~mm}$ Hence O.K $=110 \mathrm{~mm}$ (Say)
Provide $\mathbf{6 m m}$ diameter bar at $\mathbf{1 1 0} \mathbf{~ m m ~ C / C ~ a l o n g ~ l o n g ~ s p a n ~}$



Step 7) Main steel :-
a) Reinforcement along short span

Spacing $\left(S_{\mathrm{x}}\right)=\frac{\text { ast }}{\text { Ast }} \times 1000<3 \mathrm{~d}$ or 300 mm whichever is less

$$
\begin{aligned}
& =\frac{50.24}{238.72} \times 1000<3 \mathrm{~d} \text { or } 300 \mathrm{~mm} \\
& =210.45 \mathrm{~mm}<300 \mathrm{~mm} \text { Hence O.K } \\
& =210 \mathrm{~mm}(\text { Say })
\end{aligned}
$$

Provide 8 mm dia. @ 210 mm c/c along Shorter span. ult. Bent up
Step 8) Dsitribution steel :-
b) Reinforcement along Long span

$$
\begin{aligned}
& \mathrm{di}=\mathrm{do}-\emptyset x=165-8=157 \mathrm{~mm} \\
& \begin{aligned}
\text { Asty }= & \frac{0.5 F c k b d i}{F y}\left[1-\sqrt{1-\frac{4.6 M u x}{F c k b d i^{2}}}\right]>\text { Astmin-----Hence O.K } \\
\text { Asty }= & \frac{0.5 \times 25 \times 1000 \times 157}{415}\left[1-\sqrt{1-\frac{4.6 \times 9.14 \times 10^{6}}{25 \times 1000 \times 157^{2}}}\right] \\
& =164.172 \mathrm{~mm}^{2}
\end{aligned} \\
& \text { Asty }<\text { Ast }_{\text {min }} \text { Hence provide Asty }=\text { Ast }{ }_{\text {min }}=222 \mathrm{~mm}^{2}
\end{aligned}
$$

Using 8 mm diameter bar having Area of one bar ( ast $)=\frac{\pi}{4} \times 8^{2}=50.24 \mathrm{~mm}^{2}$
(Note: Students may assume different bar dia.)
Spacing $\left(S_{y}\right)=\frac{\text { ast }}{\text { Ast }} \times 1000<3 \mathrm{~d}$ or 300 mm whichever is less

$$
=\frac{50.24}{222} \times 1000<3 \mathrm{~d} \text { or } 300 \mathrm{~mm}
$$

$$
=226.30 \mathrm{~mm}<300 \mathrm{~mm} \text { Hence O. } \mathrm{K}
$$

$$
=225 \mathrm{~mm} \text { (Say) }
$$

Provide 8 mm dia. @ 225 mm c/c along longer span. ult. Bent up


$$
\begin{aligned}
& \text { Astx }=\frac{0.5 \mathrm{Fck} \text { bdo }}{F y}\left[1-\sqrt{1-\frac{4.6 M u x}{F c k b d o^{2}}}\right]>\text { Astmin-----Hence O.K } \\
& \text { Astx }=\frac{0.5 \times 25 \times 1000 \times 165}{415}\left[1-\sqrt{1-\frac{4.6 \times 13.873 \times 10^{6}}{25 \times 1000 \times 165^{2}}}\right] \\
& =238.72 \mathrm{~mm}^{2} \\
& \text { Ast } \min =\frac{0.12}{100} \times b \times D=\frac{0.12}{100} \times 1000 \times 185=222 \mathrm{~mm}^{2} \\
& \text { Astx > Astmin Hence O.k } \\
& \text { Using } 8 \mathrm{~mm} \text { diameter bar having Area of one bar ( ast })=\frac{\pi}{4} \times 8^{2}=50.24 \mathrm{~mm}^{2} \\
& \text { Note: Students may assume different bar dia.) }
\end{aligned}
$$



Step 7) Main steel :-
Reinforcement along short span

$$
\begin{aligned}
\text { Ast } & =\frac{0.5 F c k b d}{F y}\left[1-\sqrt{1-\frac{4.6 \mathrm{Mu}}{F c k b d^{2}}}\right] \\
\text { Ast } & =\frac{0.5 \times 20 \times 1000 \times 210}{415}\left[1-\sqrt{1-\frac{4.6 \times 13.29 \times 10^{6}}{20 \times 1000 \times 210^{2}}}\right] \\
& =178.52 \mathrm{~mm}^{2} \\
\text { Ast } \min & =\frac{0.12}{100} \times \mathrm{b} \times \mathrm{D}=\frac{0.12}{100} \times 1000 \times 230=276 \mathrm{~mm}^{2}
\end{aligned}
$$

Ast< Ast $_{\text {min }}$ Hence provide Asty $=$ Ast $_{\text {min }}=276 \mathrm{~mm}^{2}$
Using 8 mm diameter bar having Area of one bar ( ast $)=\frac{\pi}{4} \times 8^{2}=50.24 \mathrm{~mm}^{2}$
(Note: Students may assume different bar dia.)
Spacing $\left(\mathrm{S}_{\mathrm{x}}\right)=\frac{\text { ast }}{\text { Ast }} \times 1000<3 \mathrm{~d}$ or 300 mm whichever is less

$$
\begin{aligned}
& =\frac{50.24}{276} \times 1000<3 \mathrm{~d} \text { or } 300 \mathrm{~mm} \\
& =182.02 \mathrm{~mm}<300 \mathrm{~mm} \text { Hence O.K } \\
& =180 \mathrm{~mm}(\text { Say })
\end{aligned}
$$

Provide $\mathbf{8 m m}$ diameter bar at 180 mm C/C along short span

## Step 8) Dsitribution steel :-

$$
\text { Ast }_{\min }=\frac{0.12}{100} \times b \times D=\frac{0.12}{100} \times 1000 \times 230=276 \mathrm{~mm}^{2}
$$

Using 8 mm bar Diameter having Area of one bar ( ast ) $=\frac{\pi}{4} \times 8^{2}=50.24 \mathrm{~mm}^{2}$
(Note: Students may assume different bar dia.)
Spacing $\left(\mathrm{S}_{\mathrm{y}}\right)=\frac{\text { ast }}{\text { Ast }} \times 1000<3 \mathrm{~d}$ or 300 mm whichever is less

$$
\begin{aligned}
& =\frac{50.24}{276} \times 1000<35 \text { or } 450 \mathrm{~mm} \\
& =182.02 \mathrm{~mm}<300 \mathrm{~mm} \text { Hence O.K } \\
& =180 \mathrm{~mm} \text { (Say) }
\end{aligned}
$$

Provide $\mathbf{8} \mathbf{~ m m}$ diameter bar at $\mathbf{1 8 0} \mathbf{~ m m ~ C / C ~ a l o n g ~ l o n g ~ s p a n ~}$


$\begin{aligned} & \hline \hline \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \hline \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
Q-6		Attempt any TWO of the following:	12
	(a)	A square column of RCC is carrying working load of 1600 kN . The length of unsupported column is 3 m and is effectively held in position at both ends but restrained against rotation at one end only. Design the axially loaded short column using M25 and Fe 415 as construction.	6 M
		$\begin{aligned} & \mathrm{Ie}=3 \mathrm{~m}, \mathrm{P}=1600 \mathrm{kN}, \mathrm{M}-25, \mathrm{Fe}-415 . \\ & \mathrm{Asc}=1 \% \text { of } \mathrm{Ag}=0.01 \mathrm{Ag} \mathrm{~mm} \\ & \mathrm{Ac}=\mathrm{Ag}-\mathrm{Asc} \\ & \mathrm{Ac}=\mathrm{Ag}-0.01 \mathrm{Ag}=0.99 \mathrm{Ag} \\ & \text { Factored Load }=\mathrm{Pu}=\mathrm{P} \times 1.5=1600 \times 1.5=2400 \mathrm{kN} . \\ & \mathrm{Pu}=(0.4 \times \mathrm{fck} \times \mathrm{Ac})+(0.67 \times \mathrm{fy} \times \mathrm{Asc}) \\ & 2400 \times 10^{3}=[(0.4 \times 25 \times 0.99 \mathrm{Ag})+(0.67 \times 415 \times 0.01 \mathrm{Ag})] \\ & \quad=9.9 \mathrm{Ag}+2.78 \mathrm{Ag}=12.68 \mathrm{Ag} \\ & \mathrm{Ag}=(2400 \times 1000) / 12.68=189266.98 \mathrm{~mm}^{2} \\ & \\ & \quad \text { Size of Column }=\operatorname{sqrt}(189266.98)=435.04 \mathrm{~mm} \text { Say } 440 \mathrm{~mm} \\ & \text { Therefore provide } 440 \mathrm{~mm}^{2} \times 440 \mathrm{~mm} \\ & \mathrm{Ag} \text { provided }=193600 \mathrm{~mm}^{2} \\ & \mathrm{Ac}=0.99 \times 193600=191664.00 \mathrm{~mm}^{2} \\ & \text { Asc }=0.01 \times 193600=1936 \mathrm{~mm}^{2} \end{aligned}$   Provide 16 mm dia. 10 bars. (Note: Students may provide different combination of no.and dia. of bars.)   Lateral Ties:   Diameter of bar: (Greater of below)   i. $\quad 1 / 4$ of main bar dia. $=16 / 4=4 \mathrm{~mm}$   ii. $\quad 6 \mathrm{~mm}$.   Provide 6 mm   dia. bars.Pitch:   (Least of below)   i. $\quad 16$ times dia. Of main bar $=16 \times 16=256 \mathrm{~mm}$.   ii. Least lateral dim. $=440 \mathrm{~mm}$.   iii. $\quad 300 \mathrm{~mm}$.   Provide pitch   250 mm .   Hence provide 6 mm dia. @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.   Check for Minimum eccentricity   emin $=\mathrm{L} / 500+\mathrm{D} / 30$ or 20 mm whichever is grater   emin $=3000 / 500+440 / 30=20.66$ or 20 mm   emin $<0.05$ D   emin $<0.05 \times 440=22$   20.66 < 22 Hence O.K.	1 M



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2013 Certified)
WINTER - 2022 EXAMINATION
Subject Name: Design of Steel \& RCC Structure
Model Answer
Subject Code: 22502


