MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electric Motors and Transformers

22418: CNE

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

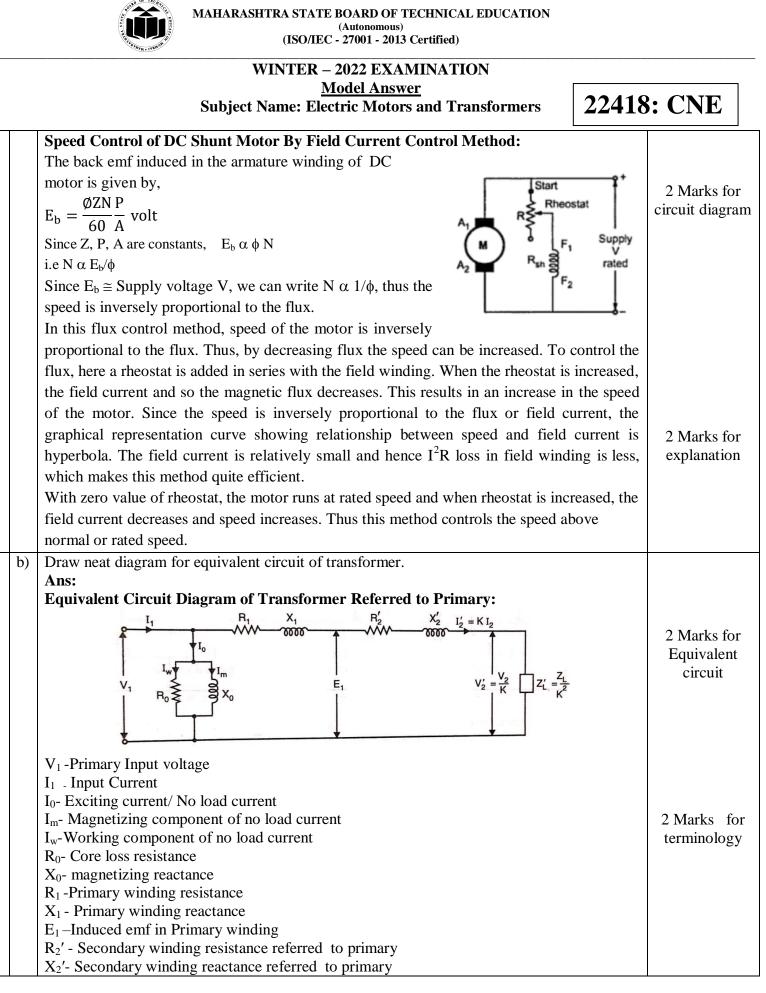
Q. No.	Sub Q. N.	Answer	Marking Scheme
1.		Attempt any <u>FIVE</u> of the following:	10 Marks
	a)	State the function of field winding in an electric motor.	
		Ans:	
		Function of Field Winding in an Electric Motor:	2 Marks
		Whenever field winding is connected to DC supply, it produces magnetic field in the air gap in which armature rotates.	
	b)	State Fleming's left hand rule.	
		Ans:	
		Fleming's Left Hand Rule:	
		Stretch out the first three fingers of left hand such that they are mutually perpendicular to	2 Marks
		each other, align first finger in direction of magnetic field, middle finger in direction of	
		current flowing through the conductor <i>then</i> the thumb will give the direction of force	
	、 、	acting on the current carrying conductor.	
	c)	Classify transformer based on:	
		i) Construction	
		ii) Voltage level	1 Mark for
		Ans: Classification of Transformer Based On:	each criterion
		i) Construction:	= 2 Marks
		Shell type, Core type, Berry type	-2 Warks
		ii) Change in voltage level:	
		Step-Up, Step-Down	
	d)	Write any two characteristics of core type transformer.	
		Ans:	
		Characteristics of Core Type Transformer:	
		i. It has one window	
		ii. It has one magnetic circuit.	1 M. 1 C
		iii. Winding surrounds the core.	1 Mark for

VW . IV

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electric Motors and Transformers


		iv. Average length of core	is more.			each of any
		• •	less so more turns are require	ed.		two
		vi. Better cooling for wind	ing.			Characteristics
		vii. Mechnical strength is le	ess.			= 2 Marks
		viii. Repair and maintenance	e is easy.			
		ix. Application: Low curre				
	e)	Differentiate between bank of	three single phase transforme	er and single unit of three pl	hase	
		transformer on any two parame	eters.			
		Ans:				
		Difference Between Bank of 7	Three Single Phase Transfo	rmer And Single Unit of Tl	hree	F 1
		Phase Transformer:				Each point
		Parameter	Bank of 3 single phase	Single unit Three phase		1 Mark
			transformers	transformer		(any Two
		(i)No. of cores	Three	One		parameters) = 2 Marks
		(ii)Space occupied	More	Less		= 2 what is
		(iii)Weight	More	Less		
		(iv)If one of the phase	Operated as open delta or	Inoperative		
		is inoperative	V-V type transformer with			
	Ð	White down any two applicatio	reduced capacity			
	f)	Write down any two applicatio Ans:	its of single Phase auto transfo	ormer		
		Application of Single Phase A	uto-Transformer			1 Mark for
			tribution cable to correct the v	oltage dron		each of any
			former to give variable voltage	e 1		two
			sformers in 132 kV/ 33 kV sy	-		Application
		_	or single phase locomotives.			= 2 Marks
		5. As dimmer in lighting c	•			
	g)	State any one advantage and an		ial transformer.		
		Ans:				
		Advantages of Potential Tran	nsformer:			
		1. The capacitive potential tran	nsformer is used in measurem	ent of higher voltages.		
		2. The potential transformer en	hables the ordinary voltmeter	to measure very high voltage	es.	1 Marts each of
		3. The potential transformer	offers electrical isolation be	tween voltmeter and very	high	1 Mark each of any one
		voltage power lines.				Advantage and
		4. A single potential transform				one
		5. Potential transformer facilit	ates detection of certain faults	s in power system, hence use	ed in	Disadvantage
		protection circuit.	_			= 2 Marks
		Disadvantages of Potential T			1	
		1. The Potential transformer of	•	ent of AC voltage. It cannot	be	
		used for measurement of D	e			
•			s more expensive than the ord	linary transformer.		1036.3
2.		Attempt any <u>THREE</u> of the f	6			12 Marks
	a)	Draw a neat schematic diagram	n of all types of D.C Machine.			
		Ans: Sahamatia Diagnam of All Ta				
		Schematic Diagram of All Ty	pes Of D.C Machine:			

		MAHARASHTRA STATE BOARD OF TECHNICAL EDUCA (Autonomous) (ISO/IEC - 27001 - 2013 Certified)		
		WINTER – 2022 EXAMINATION <u>Model Answer</u> Subject Name: Electric Motors and Transform	ners 224	18: CNE
	Separately E + • F, - •	Excited DC Machine DC Shunt Machine DC S $A_1 F_1 f_1 $	eries Machine	1 Mark for Each Type = 4 Marks
		DC Compound Machine		
		Long Shunt Compound Short Shunt Compound	e -	
		$F_1 = \begin{bmatrix} S_1 & \bullet & S_1 \\ S_2 & \bullet \\ S_2 & F_1 \end{bmatrix} = \begin{bmatrix} S_2 & S_2 \\ S_2 & F_1 \\ F_2 & A_2 \end{bmatrix} = \begin{bmatrix} S_1 & \bullet & S_2 \\ S_2 & F_1 \\ F_2 & F_2 \end{bmatrix} = \begin{bmatrix} S_1 & \bullet & S_1 \\ S_2 & F_1 \\ F_2 & F_2 \end{bmatrix} = \begin{bmatrix} S_1 & \bullet & S_1 \\ S_2 & F_1 \\ F_2 & F_2 \end{bmatrix} = \begin{bmatrix} S_1 & \bullet & S_1 \\ S_2 & F_1 \\ F_2 & F_2 \end{bmatrix} = \begin{bmatrix} S_1 & \bullet & S_1 \\ S_2 & F_1 \\ F_2 & F_2 \\ F_2 & F_2 \end{bmatrix} = \begin{bmatrix} S_1 & \bullet & S_1 \\ S_2 & F_1 \\ F_2 & F_2 \\ F_$		
	i). Yoke		: -	
Ē	ii). Pole Shoe iii). Armature iv). Brush Ans:	winding		¹ ⁄2 Mark for
ł	ii). Pole Shoeiii). Armatureiv). Brush	winding Function	Material	¹ /2 Mark for Function and
ŀ	ii). Pole Shoe iii). Armature iv). Brush Ans:	winding		Function and ¹ / ₂ Mark for Material for
ŀ	ii). Pole Shoe iii). Armature iv). Brush Ans: Part	winding Function -Provides mechanical support for poles -Acts as protecting cover for machine	Material Cast Iron OR Cast Steel Cast Iron OR	Function and ¹ / ₂ Mark for Material for each of four
P	 ii). Pole Shoe iii). Armature iv). Brush Ans: Part Yoke Pole shoe	Function -Provides mechanical support for poles -Acts as protecting cover for machine -Provides path for magnetic flux To spread the flux in air gap.	Material Cast Iron OR Cast Steel Cast Iron OR Cast Steel	Function and ¹ / ₂ Mark for Material for
ł	ii). Pole Shoe iii). Armature iv). Brush Ans: Part Yoke	winding Function -Provides mechanical support for poles -Acts as protecting cover for machine -Provides path for magnetic flux	Material Cast Iron OR Cast Steel Cast Iron OR	Function and ¹ / ₂ Mark for Material for each of four Parts
	 ii). Pole Shoe iii). Armature iv). Brush Ans: Part Yoke Pole shoe Armature winding Brushes	Function -Provides mechanical support for poles -Acts as protecting cover for machine -Provides path for magnetic flux To spread the flux in air gap. To conduct current and interact with magnetic field to produce torque. To supply and collect current from armature winding.	Material Cast Iron OR Cast Steel Cast Iron OR Cast Steel Copper or aluminium	Function and ¹ / ₂ Mark for Material for each of four Parts
c) S H H	 ii). Pole Shoe iii). Armature iv). Brush Ans: Part Yoke Pole shoe Armature winding Brushes State and explain Ans: Back emf: When the armature	Function -Provides mechanical support for poles -Acts as protecting cover for machine -Provides path for magnetic flux To spread the flux in air gap. To conduct current and interact with magnetic field to produce torque. To supply and collect current from armature winding. significance of back emf in D.C motor. ure of DC machine rotates under the influence of content from the influence from the influence of content from the influence of content from the influence of content from the influence from the influence from the influence from the influencontent from the infl	MaterialCast Iron ORCast SteelCast Iron ORCast SteelCopper oraluminiumCarbon	Function and ¹ / ₂ Mark for Material for each of four Parts = 4 Marks
c) S A I V a e c	 ii). Pole Shoe iii). Armature iv). Brush Ans: Part Yoke Pole shoe Armature winding Brushes State and explain Ans: Back emf: When the armature electromagnetic i 	Function -Provides mechanical support for poles -Acts as protecting cover for machine -Provides path for magnetic flux To spread the flux in air gap. To conduct current and interact with magnetic field to produce torque. To supply and collect current from armature winding. significance of back emf in D.C motor. ure of DC machine rotates under the influence of cors move in the magnetic field and cut it. According to nduction, an emf is induced in them. The induced enoplied voltage as per Lenz's law. Hence known as back complete the state of t	MaterialCast Iron ORCast SteelCast Iron ORCast SteelCopper oraluminiumCarbondriving torque, toFaraday's lawnf acts in opposite	the of tite the

	WINTER – 2022 EXAMINATION	
	<u>Model Answer</u> Subject Name: Electric Motors and Transformers 22418	: CNE
d)	 ii) If load on motor is decreased, the driving torque is momentarily in excess so armature is accelerated and armature speed increases, which increases back emf and causes armature current to decrease. It follows therefore that back emf in DC motor regulates the flow of armature current i.e. it automatically changes the armature current to meet load requirements. With the help of neat diagram, explain the construction of the BLDC. 	
	Ans: Construction of the BLDC:	
	stator N S S S S S S PM material	1 Mark fo Diagram
	OR	
	Any equivalent Diagram	
	Construction of Brushless DC (BLDC) Motor:	
	A BLDC Motor consists of two main parts: a stator and a rotor. Stator: The structure of the stator of a BLDC Motor is similar to that of three-phase	
	induction motor or synchronous motor. It is made up of stacked steel laminations with axially cut slots for winding. The winding in BLDC are slightly different than that of the traditional induction motor. BLDC motors consist of three stator windings that are connected in star or 'Y' fashion (without a neutral point). Rotor: The rotor part of the BLDC Motor is made up of permanent magnets, usually, rare earth alloy magnets like Neodymium (Nd), Samarium Cobalt (SmCo) and alloy of Neodymium, Ferrite and Boron (NdFeB). Based on the application, the number of poles can vary between two and eight with North (N) and South (S) poles placed alternately. The magnets are placed on the outer periphery of the rotor. Position Sensors (Hall Sensors): Since there are no brushes in a BLDC Motor, the commutation is controlled electronically. In order to rotate the motor, the windings of the stator must be energized in a sequence and the position of the rotor (i.e. the North and South poles of the rotor) must be known to precisely energize a particular set of stator windings. A Position Sensor, which is usually a Hall Sensor (that works on the principle of Hall Effect) is generally used to detect the position of the rotor and transform it into an electrical signal. Most BLDC Motors use three Hall Sensors that are embedded into the stator to sense the rotor's position. The output of the Hall Sensor will be either HIGH or LOW depending on whether the North	3 Marks fo Constructio
	or South pole of the rotor passes near it. By combining the results from the three sensors, the exact sequence of energizing can be determined.	
	Attempt any <u>THREE</u> of the following:	12 Marks
a)	With help of neat circuit diagram, describe the procedure to vary the speed of D.C shunt motor above normal speed.	
1	Ans:	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

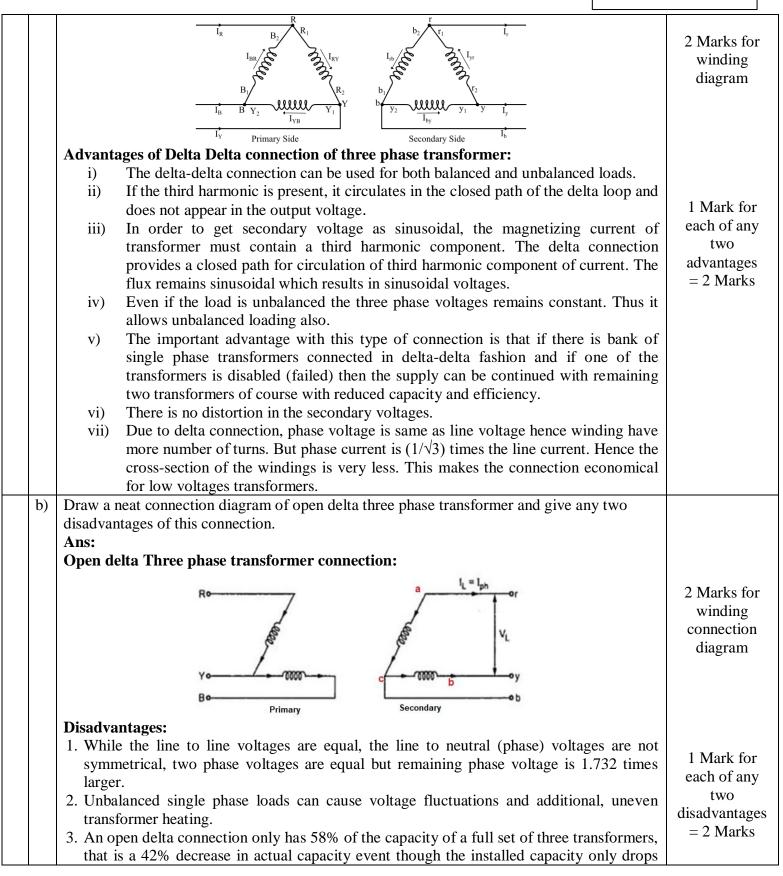
(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electric Motors and Transformers

		I ₂ -Secondary winding current	
		I ₂ '- Primary equivalent of secondary current	
		K- Transformation ratio	
		V ₂ - Secondary terminal voltage	
		V_2' - Primary equivalent of secondary terminal voltage	
		Z_L -Load impedance	
		Z_L '- Primary equivalent of load impedance	
		OR	
		Any Other Equivalent Answer	
	c)	Single phase transformer has 1000 turns on primary and 200 turns on secondary calculate	
		the primary current when secondary current is 280 amperes at p.f. of 0.8 lag.	
		Ans:	
		Data Given: $N_1 = 1000$, $N_2 = 200$, $I_2 = 280A$	2 Marks for k
		Transformation ratio $k = \frac{N_2}{N_1} = \frac{I_1}{I_2}$	
		N ₁ 1 ₂	
		200 L	2 Marks for
		$k = \frac{200}{1000} = \frac{I_1}{280} = 0.2$	stepwise
		1000 280	calculation
		$\cdot I = E f A$	
	4)	$\therefore I_1 = 56 A$ A 30KVA, 2400/120V, 50 Hz, single phase transformer HV winding resistance 0.1 ohm and	
	d)	leakage reactance 0.22 ohm. The LV winding resistance is 0.035 ohm and reactance 0.012	
		ohm. Find equivalent resistance, reactance and impedance referred to HV side.	
		Ans:	
		Equivalent resistance, reactance and impedance referred to HV side:	
		Transformation ratio, $k = \frac{120}{2400} = 0.05$	
		$R_2 0.035$	
		$R'_2 = \frac{R_2}{K^2} = \frac{0.035}{(0.05)^2} = 14\Omega$	1 Mark for R_2
			_
		X_2 0.012	
		$X'_{2} = \frac{X_{2}}{K^{2}} = \frac{0.012}{(0.05)^{2}} = 4.8 \Omega$	1 Mark for X_2
		$\mathbf{K} = (0, 0, 0)$	_
		$R_{1T} = R_1 + R_2' = 0.1 + 14 = 14.1 \Omega$	
		$K_{1T} - K_1 + K_2 = 0.1 + 14 - 14.132$	1 Mark for R_{1T}
			& X _{1T}
		$X_{1T} = X_1 + X_2' = 0.22 + 4.8 = 5.02\Omega$	
		$A_{1T} - A_1 + A_2 = 0.22 + 4.0 = 3.0232$	
			1 Mark for Z_{1T}
		$Z_{1T} = \sqrt{R_{1T}^2 + X_{1T}^2} = \sqrt{14.1^2 + 5.02^2} = 14.97 \ \Omega$	
4.			12 Marks
4.		Attempt any <u>THREE</u> of the following:	
	a)	Draw a neat winding connection of Delta Delta for three phase transformers. Also give any	
		two advantages of the same.	
		Winding connection of Delta Delta Three phase transformer:	


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electric Motors and Transformers

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electric Motors and Transformers

c) C				
A	i) Typical v ii) Power rat iii) Maximun iv) Type of e ns:	oltages ing n efficiency	mer on the following parameters:	-
	Parameters	Distribution Transformer	Power Transformer	
	Typical Voltages	11kV,6.6kV, 3.3kV, 440V, 230V	400kV, 220kV, 110kV,66kV,33kV	Each point 1 Mark
	Power Rating	Lower (< 1MVA)	Higher (> 1MVA)	= 4 Marks
	Maximum efficiency	Obtained near 50% of full load	Obtained near 100% of full load	
	Type of efficiency	All day efficiency needs to be defined	Only power efficiency is sufficient	
	ns: ata Given:		N /	
Tı Fı	a ta Given: ransformer rating S = 10 k [*] rom O.C. test: Iron loss P _i =		V	
Tı Fı Fı	ata Given: ransformer rating S = 10 k	= 200W loss P _{cu} = 300 W	V	2Marks for stepwise
Tı Fı Fı	Pata Given: ransformer rating $S = 10 \text{ k}^3$ rom O.C. test: Iron loss P_i = rom S.C. test: Full-load Cu fficiency at Full load at 0. Efficiency _{FL} =	= 200W loss $P_{cu} = 300$ W .8 pf lagging: Rated output Rated output × cos \emptyset + Cu	t × cosØ . Losses + Iron Losses	
Tı Fı Fı	Pata Given: ransformer rating $S = 10 \text{ k}^3$ rom O.C. test: Iron loss $P_i =$ rom S.C. test: Full-load Cu fficiency at Full load at 0. Efficiency _{FL} = Efficie	= 200W loss P _{cu} = 300 W .8 pf lagging: Rated output × cosØ + Cu ency _{0.8 pf} = $\frac{10 \times 10^{3}}{10 \times 10^{3} \times 0.8}$ = $\frac{8000}{8500}$ = 0.9412 = 94.12%	t × cosØ . Losses + Iron Losses	stepwise solution fo efficiency 2 Marks fo stepwise
Tı Fı Fı E	Pata Given: ransformer rating $S = 10 \text{ k}^3$ rom O.C. test: Iron loss $P_i = 10 \text{ k}^3$ rom S.C. test: Full-load Cu fficiency at Full load at 0. Efficiency _{FL} = Efficiency _{FL} = Efficiency $Efficiency_{FL} = 10 \text{ k}^3$ $Efficiency_{FL} = 1$	= 200W loss P _{cu} = 300 W .8 pf lagging: Rated output × cosØ + Cu ency _{0.8 pf} = $\frac{10 \times 10^{3}}{10 \times 10^{3} \times 0.8}$ = $\frac{8000}{8500}$ = 0.9412 = 94.12% D.8 pf lagging:	t × cosØ . Losses + Iron Losses	stepwise solution fo efficiency 2 Marks fo
Tr Fr Ex R K Fr R	Pata Given: ransformer rating $S = 10 \text{ kV}$ rom O.C. test: Iron loss P_i = rom S.C. test: Full-load Cu fficiency at Full load at 0. Efficiency _{FL} = Efficiency _{FL} = Efficiency $Efficiency_{FL} = 250/500 = 0.5$ ull load primary current I _{1 F} rom S.C.test: ZT1= Vsc/Isc T1= Wsc/(Isc) ² = 300/(20) ²	= 200W loss P _{cu} = 300 W .8 pf lagging: Rated output × cosØ + Cu ency _{0.8 pf} = $\frac{10 \times 10^{3}}{10 \times 10^{3} \times 0.8}$ = $\frac{8000}{8500}$ = 0.9412 = 94.12% 0.8 pf lagging: FL = (10x1000)/500 = 20 A = 25/20 = 1.25 Ω = 0.75 Ω	t × cosØ . Losses + Iron Losses	stepwise solution fo efficiency 2 Marks fo stepwise solution fo
Ti Fi Ei R K Fi R X	Pata Given: ransformer rating S = 10 kV rom O.C. test: Iron loss P _i = rom S.C. test: Full-load Cu fficiency at Full load at 0. Efficiency _{FL} = Efficiency _{FL} = Efficiency $Efficiency_{FL} = 250/500 = 0.5$ ull load primary current I _{1 F} rom S.C.test: ZT1= Vsc/Isc T1= Wsc/(Isc) ² = 300/(20) ² T1= $\sqrt{(1.25^2 - 0.75^2)} = 1$ Regulation = 100 x I1FL (R	$= 200W$ $loss P_{cu} = 300 W$.8 pf lagging: $\frac{\text{Rated output}}{\text{Rated output} \times \cos \emptyset + \text{Cu}}$ $ency_{0.8 \text{ pf}} = \frac{10 \times 10^{3}}{10 \times 10^{3} \times 0.8}$ $= \frac{8000}{8500} = 0.9412$ $= 94.12\%$ D.8 pf lagging: $FL = (10 \times 1000)/500 = 20 \text{ A}$ $= 25/20 = 1.25 \Omega$ $= 0.75 \Omega$ Ω	t × cosØ . Losses + Iron Losses	stepwise solution fo efficiency 2 Marks fo stepwise solution fo

WINTER – 2022 EXAMINATION

Model Answer Subject Name: Electric Motors and Transformers

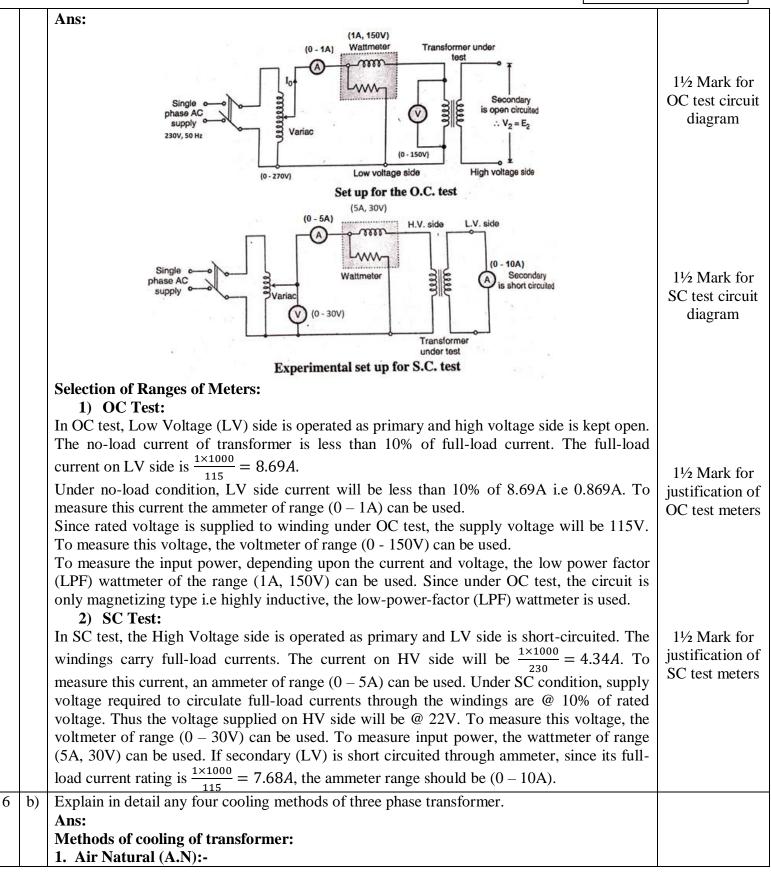
		= 4.8%	
	e)	 Why secondary of a CT should never be kept open? Explain the reason in detail. Ans: The secondary winding of C.T. has a large no. of turns of thin wire. The secondary winding of C.T. should never be open circuited, otherwise there will be no secondary current and no secondary mmf. The secondary mmf opposes primary mmf and as there is no secondary mmf, the opposition is zero. Primary mmf will produce a large flux in core. It would produce high eddy current and hysteresis losses. It would increase the temperature of the core which may result in damage of insulation & core. High voltage will be induced in open circuited secondary and this may be dangerous to the equipment and personnel. 	1 Mark for no sec mmf 1 Mark for large prim mmf 1 Mark for high iron losses 1 Mark for high voltage in open sec
5		Attempt any <u>TWO</u> of the following:	12 Marks
5	a)	Draw a neat labeled diagram of three-point starter and state the function of no volt coil present in it. Ans: Three Point Starter:	4 Marks for labelled diagram (Marks may be reduced appropriately for unlabeled diagram)
		When supply fails, the no-volt coil current becomes zero, its magnetism is lost and it releases the starter handle so that by spring tension it goes to off position and motor is disconnected from the supply. On recovery of supply, one has to restart the motor using the starter. Thus the dc motor is prevented from restarting automatically on recovery of supply without starter and protected.	2 Marks for function of No-volt coil
5	b)	 State the necessity of phasing out test on a three phase transformer and describe its procedure with the help of neat diagram. Ans: Necessity of phasing out test : To identify the respective primary & secondary winding of a particular phase in 3-ph transformer. Phasing out Test: i) This test is carried out on 3-ph transformer to identify primary & secondary winding belonging to the same phase. 	1 Mark for necessity 2 Marks for diagram

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

5

6 6 (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 2022 EXAMINATION **Model Answer** Subject Name: Electric Motors and Transformers


	<u>Niodel Aliswer</u>	
	Subject Name: Electric Motors and Transformers 224	18: CNE
	ii) As shown in figure, all primary &	
	according above one short singuited execution in the bud	3 Marks for
	the phases to be checked $voltage = 311\xi$	procedure
	iii) Low voltage DC supply is given to one	r
	naimony winding. The selvenemeter is	
	connected to terminals of secondary	
	winding which is not short-circuited.	
	iv) The switch 'S' is connected as shown in	
	figure. When switch is closed, deflection of	
	galvanometer is observed.	
	v) Similarly galvanometer is connected to Primary Secondary	
	other secondary winding terminals and winding winding	
	procedure is repeated. The winding across	
	which maximum deflection occurs is the secondary phase winding that corresponds	to
	primary winding to which source is connected.	
	vi) The procedure is repeated for remaining primary windings.	
	vii) Phasing out test can be carried out by using AC voltage source also. Voltmeter	is
	connected at secondary terminals to observe deflections.	
c)	Explain need of parallel operation of transformer.	
	Ans:	
	Need of parallel operation of transformer:	
	i) To maximize electrical power system efficiency:	
	Generally electrical power transformer gives the maximum efficiency at full load. If	
	run numbers of transformers in parallel, we can switch on only those transformers wh	
	will give the total demand by running nearer to its full load rating for that time. Wh	-
	load increases, we can switch on another transformer connected in parallel to fulfill	the = 6 Marks
	total demand. In this way we can run the system with maximum efficiency.	
	ii) To maximize electrical power system availability: If numbers of transformers run in parallel, we can shut-down any one of them	for
	maintenance purpose. Other parallel transformers in system will serve the load with	
	total interruption of power.	out
	iii) To maximize power system reliability:	
	If any one of the transformers run in parallel, is tripped due to fault of other para	llel
	transformers is the system will share the load, hence power supply may not	
	interrupted if the shared loads do not make other transformers over loaded.	
	iv) To maximize electrical power system flexibility:	
	There is always a chance of increasing or decreasing future demand of power system	. If
	it is predicted that power demand will be increased in future, there must be a provisi	
	of connecting transformers in system in parallel to fulfill the extra demand because, i	
	not economical from business point of view to install a bigger rated single transform	
	by forecasting the increased future demand as it is unnecessary investment of mon	ey.
	Again if future demand is decreased, transformers running in parallel can be remov	
	from system to balance the capital investment and its return.	
	Attempt any <u>TWO</u> of the following:	12 Marks
a)	Draw circuit diagram to conduct OC and SC test on a 1 kVA, 230/115V, 50 Hz single ph	ase
	transformer. Justify the meter ranges also.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION <u>Model Answer</u> Subject Name: Electric Motors and Transformers

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electric Motors and Transformers

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electric Motors and Transformers

	Total	ower factor, Efficiency at Fu Efficiency _{FL} = $\therefore \text{Input} = \frac{\text{Output}}{\text{Efficiency_{FL}}} =$ $\text{losses in transformer} = \text{Input} -$ $\text{cu = Iron loss P_i} = \frac{\text{Total loss}}{2}$	$= \frac{\text{Output}}{\text{Input}}$ $\frac{10x1}{0.96} = 10.41kW$ $\text{Output} = 10.41 - 10 = 10.41 + 10.41 - 10 = 10.41 +$		1 Mark fo & P _i
No of Hrs	Load in KW	$\frac{1}{2}$ Copper Losses/hr = Losses at FL × $\left(\frac{Actual KVA}{Rated KVA}\right)^2$	Total cu Losses in kwh		
10	0	$0.205 \ kw \times \left(\frac{0}{10}\right)^2 = 0 \ kw$	$0 \times 10 \text{ hr}$ $= 0$		2 Marks P _{cu} in kV
2	10	0.205	0.41	0.205kW× 24hr	
5	5	0.051	0.256	= 4.92 kWh	
7	2.5	0.0128	0.0896 0.7556 Kwh		1 Mark fo
Total ene		$fficiency_{All day} = \overline{Output Energy}$	$5)+(7 \times 2.5) = 62.5 \text{ kV}$ ut Energy in 24 hrs in 24 Hrs + Losses in 2 $= \frac{62.5}{2} = 0.916$	24 Hrs	in kWh 1 Mark for day efficie