WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical Engineering

22373: EEG

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE Diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. No.	Sub Q. N.	Answer	
1.		Attempt any <u>FIVE</u> of the following:	10 Marks
	a)	State Ohm's Law. Ans: Ohm's law:	
		Ohm's law states that the voltage across a conductor is directly proportional to the current flowing through it provided the physical condition of the conductor remain the same.	2 Marks for correct statement
		OR I I I I I I I I I I I I I I I I I I I	
		As long as physical conditions (such as dimensions, pressure and temperature) are constant, the potential difference or voltage applied across the conductor is directly proportional to current flowing through it.	
	b)	State faraday's Law of electromagnetic Induction. Ans: Faraday's First Law: Whenever the changing magnetic flux links with a coil or conductor, an EMF is induced in it	1 Mark
		OR	
		Whenever a conductor cuts across magnetic flux, an EMF is induced in the conductor. Faraday's Second Law: The magnitude of induced EMF is directly proportional to the rate of change of flux linkages.	1 Mark
	c)	Define Transformation Ratio of a Transformer.	
		Ans: Transformation Ratio (k):	
		It is the ratio of secondary number of turns to primary number of turns.	1 Mark for statement
		OR It is the ratio of secondary emf (voltage) to primary emf (voltage).	
		OR It is the ratio of primary current to secondary current.	1 Mark for equation
	1	Transformation Ratio (k) = N_2/N_1 or = E_2/E_1 or = V_2/V_1 or = I_1/I_2	
	d)	List different types of fuses.	

WINTER – 2022 EXAMINATION

Model Answer

		Subject Name: Electrical Engineering	2237	3: EEG
		Ans: Types of Eucost		
		1 Dowirship Eugon		¹ / ₂ Mark for
		1. Rewitable Fuses 2. HPC Fuse		each of any
		2. The fuse 3. Cartridge type Euses		four types
		4 D-type Cartridge Euse		J1
		4. D-type Calulage Puse		= 2 Marks
		6 Blade and Bolted type Fuses		
		7 Striker type Fuse		
		8 Switch type Fuse		
		9. HV (High Voltage) Fuses		
		10 Cartridge Type HRC Fuse		
		11. Liquid Type HRC Fuse		
		12. Expulsion Type HV Fuse		
	e)	State principle of operation of 3-phase induction motor.		
	- /	Ans:		
		Principle operation of 3-phase induction motor:		
		When three phase supply is given to three phase stator winding, three phase curre	nts flow	2 Marks
		and rotating magnetic field (RMF) is produced in the air-gap. This RMF is cut	by rotor	
		conductors and emfs are induced in them. Since rotor conductors are short circuite	ed, rotor	
		induced emfs circulate currents in rotor conductors. According to basic motor princ	iple, the	
		force is exerted on current carrying rotor conductors placed in rotating magnetic f	ield and	
		rotor rotates in the same direction as that of rotating magnetic field.		
	f)	State any two applications of MCB.		
		Ans:		
		Applications of MCB:		
		1. Used in lightning circuits.		1 Mark for
		2. Used in distribution feeders.		each of any
		3. Used in switching motors.		two
		4. Used in capacitors.		applications
		5. Used in power circuits.		
	g)	Give classification of electric drives.		
		Ans:		
		Classifications of Electric Drives:		
		A) Based on Supply		I Mark for
		1) AC Motor drives		each of two
		11) DC Motor drives		types on any
		B) Based on Number of Motors		one criterion
		1) Individual		
		II) Multi Motor		
		C) Based on Speed		
		i) Constant Speed drive		
		i) Variable Sneed drive		
		D) Based on Control Parameters		
		i) Vector Control Drive		
		i) Constant Power Drive		
		iii) Constant Torque Drive		
2.		Attempt any THREE of the following:		12 Marks
<i>-</i>		Accompt any ATTACH of the following.		12 Mai N3

WINTER – 2022 EXAMINATION Model Answer Subject Name: Electrical Engineering

a)	Explain necessity of starter. Give any two applications of starter.	
	Ans:	
	Necessity of starter:	
	 When an electric motor is directly connected to rated supply voltage, it draws very high starting current as its winding resistance is low. Due to such heavy inrush current at start – There is possibility of damage to the motor windings due to high temperature rise caused by large copper loss (I²R loss). 	2 Marks for necessity
	 Such sudden inrush of current causes large line voltage drop. Thus other appliances connected to the same line may be subjected to voltage spikes 	
	which may affect their working.	
	• So to avoid such affects, it is necessary to limit the current drawn by the motor at start.	
	To limit the heavy starting current, starter is necessary. The starter is a device which is basically used to limit the starting current by supplying reduced voltage to the motor at the time of starting.	
	Applications of startor:	1 Mark for
	Applications of start etc.	each of any
	1. To start the motor safety.	two
	2. To much at the motor winding from every posting	applications
	5. To protect the motor winding from overneating.	= 2 Marks
	4. To protect the motor from overload.	
	5. Protection from under voltage condition.	
	6. To protect and safely start DC motors	
1 \	7. To protect and safely start three phase induction motors.	
D)	Explain construction and working of PMINIC meter.	
	Construction of PMMC instruments:	
	• The magnet system consists of horse-shoe type permanent	
	magnet.	
	• The coil is wound on rectangular aluminum former. The	
	former is pivoted on jewel bearings so that the coil sides	2 Marks for
	lie in the air gap between the poles of the permanent magnet and can rotate (move) in magnetic field, so called permanent magnet moving coil (PMMC) instrument.	construction (Diagram is
	• The control torque in PMMC instrument is provided by	optional)
	two phosphor bronze hairsprings. These springs also allow	
	• Eddy currents induced in aluminium former causes force to oppose movement, thus help	
	to damp the oscillations. The bearing friction also provide the damping torque.	
	• The pointer is mounted on a spindle that moves a graduated scale and it is balanced by the	
	balancing weight which is connected to it.	
	• A mirror is placed below the scale.	
	Working:	
	1) It works on basic motor principle, i.e when a current carrying conductor is placed in magnetic field, force is exerted on conductor and it moves in the direction of that force.	
	2) Here when a current is passed through the coil wound on the aluminum former, as it is	2 Marks for
	placed in a magnetic field of permanent magnet, a force is exerted on the moving coil.	working
	So this force causes deflecting torque. The coil rotate and pointer attached to the	C C
	moving system shows deflection on the scale.	

RUN INST

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION						
			<u>Model Answe</u> Subject Name: Electrical	e <u>r</u> Engineering	2237	3: EEG
 3) The spring control is used to produce controlling torque. When deflecting torque and controlling torque becomes equal, the pointer shows steady deflection of the calibrated scale showing value of current. 4) The pointer shows final steady deflection after undergoing some oscillations about final steady position. To damp these oscillations eddy current damping system is used. When moving system oscillates, the aluminium former cuts the magnetic field and emf is induced in it. This emf circulates circular currents, called eddy currents in aluminium former. The force is exerted on aluminium former due to interaction between eddy currents and magnetic field. The direction of force is always such that it opposes the cause of its production i.e oscillations. Thus oscillations are damped out and the pointer shows final steady deflection in less time. 						
c)	Write f	function of safe	ety tools used in Electrical worksho	p. (Any four)		
	Safetv	tools used in	Electrical workshop:			
	Sr. No.	Safety tools	Func	ction		
	1	Face Shield	Protect eyes and face from grindin	g particles		1 Mark for
2 Safety Goggles Protect eyes and face from grinding particles					each of any four	
3		Insulation gloves	Protection against various mechani	tools and their function		
	4	Insulation mats	 A rubber floor covering which provides insulation in any standing area that puts a person at risk of an electric shock. Used in high voltage environment for isolating people from earth / ground and prevent free flow of current to ground through body. 		standing n earth / body.	= 4 Marks
	5	Insulation ladders	To protect a worker against ele potentially hazardous situation – earth.	ectrocution whilst workin ladders insulate the work	ng in a ter from	
	6	Safety Shoes	 Keep feet safe in case an object f To prevent current to flow to gro 	falls over it. und through body.		
	7Helmet/ Hard hat• Protection against electric shock, especially in those areas where there are overhead energized conductors. • Protection against a potential head injury due to many other factors like accidental falling or hitting.8Insulated pliersUsed to operate on live conductors to prevent current flow through the human body.			ns where		
				rough		
d)	Compa	are auto transfo	ormer with two winding transformer	ſ.		
	Ans: Comparison between Auto-transformer and Two-winding transformer:					
	Sr. No.	Point of Comparison	Two-Winding Transformer	Autotransformer	•	
	1	Construction	It does not have rotary contact.	It has rotary contact.		1 Mark for
	2	Number of windings	Two-windingtransformerconsists two windings per phase	Autotransformer consi only one winding per pha	sts of use.	each of any
	3	Electrical isolation	Windings are electrically insulated from each other.	Windings are not electrinsulated.	ctrically	= 4 Marks
	4	Working Principle	Two-winding transformer works on the principle of	Autotransformer works principle of self-induction	on the n.	

WINTER – 2022 EXAMINATION <u>Model Answer</u> Subject Name: Electrical Engineering

				mutual induction.			
		5	Dhysical size	Two-winding transforme	rs are	Autotransformers are relatively	
		5	Physical size	larger in size.		smaller in size.	
			Conner	Two-winding transf	former	For the same rating, an	
		6	saving	requires more w	inding	autotransformer requires less	
			Suving	conductor material.		conductor material.	
				Two-winding transforme	er has	The losses in an autotransformer	
		7	Losses	more losses.	i iius	are low as compared to two	
						winding transformer.	
				Efficiency of a two w	inding	An autotransformer has more	
		8	Efficiency	transformer is less due to	more	efficiency.	
				copper loss.	r		
			Sacandamy	I wo-winding transf	ormer	For an autotransformer, variable	
		9	Secondary	generally provides fixed	input	output voltage can be obtained	
			voltage	voltage for given fixed	mput	for given fixed input voltage.	
				Two-winding transforme	r has		
		10	Voltage	poor voltage regulation	than	Autotransformer has better	
		10	regulation	auto transformer.	auto transformer		
				For the same VA ratin	g. the		
		11	Cost	cost of two winding transf	former	Autotransformer is less costly	
				is more.		than two winding transformer.	
			Step up and Step down		a tha	the Dimmer, Starter for induction	
		12	12 Applications	step-up and step-down in			
		12	Applications	distribution purposes	ii anu	transformer when ratio is near to	
				distribution purposes.		1.	
3.	3. Attempt any THREE of the following:				12 Marks		
	a)	Compa	are electric and	magnetic circuit (any four	points).		
	<i>,</i>	Ans:			,		
		Sr.	F	Nectric circuit		Magnetic circuit	1 Maula 6a u
		No.	-				I Mark for
		1	Path traced b	by an electric current is	The m	agnetic circuit is a path in which	four points
	Known as electric cu		known as ele	ectric current.	magne	etic flux is set up.	= 4 Marks
	2 EMF is the driving force in the		driving force in the	MMF	is the driving force in the	- T Murks	
electric		electric circi	iit which circulates	magnetic circuit which produces			
		electric current.		ent. Its unit is volt. magn		is magnetic flux o in the magnetic	
		3 There is a current in the electric		h is measured in amperes	There is magnetic flux φ in the magnetic circuit which is measured in the weber		
		4	The rate of f	low of electrons decides	The n	imber of magnetic lines of force	
		the current in conductor		decides the magnetic flux			
		5	Resistance (R) is the opposition by	Reluct	tance (S) is the opposition offered	
			circuit to the	flow of current. Its unit	by ma	gnetic path to the magnetic flux.	
	is ohm.		Its uni	t is ampere turn/weber.			
	6 Resistance is directly proportional to		Reluct	tance is directly proportional to			
	length of conductor and inversely		length of con	length	of magnetic path and inversely		
		proportional to the area of cross- p					
			proportional	to the area of cross-	propor	rtional to the area of cross-section	
			proportional section of co	to the area of cross- onductor.	proposed of mag	rtional to the area of cross-section gnetic path.	

WINTER – 2022 EXAMINATION Model Answer Subject Name: Electrical Engineering

	7	Electric current I = EMF/ Resistance	Magnetic flux = MMF/ Reluctance	
	8	Current density	Flux density	
	9	Kirchhoff's current law and voltage	Kirchhoff's flux law and mmf law is	
		law is applicable to the electric	applicable to the magnetic circuit.	
		circuit.		
	10	For electric circuit we define the	For magnetic circuit we define	
		conductivity.	permeability.	
	11	For electric circuit we define the	For magnetic circuit we define	
		resistivity.	reluctivity.	
	12		i i N turns	
b)	List adv	antages of AC quantity over DC quantity	7.	
	Ans:			
	Advant	ages of AC quantity over DC quantity:		
	$\begin{array}{c} 1 \\ 2 \\ \end{array} AC \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	is less expensive and easy to generate that	in DC.	I Mark for
	$\begin{array}{c} 2 \\ 2 \\ \end{array} \text{AC} \\ \end{array}$	can be transmitted over long distances wi	lange when compared to DC.	each of any
	(3) The (4) AC	power loss during transmission in AC is voltage has the advantage of stepping up	and stepping down as per the requirement	ioui advantages
	usin	o transformer but changing DC voltage le	evels is difficult and complicated	= 4 Marks
	5) Ac is more economical than DC.			
	6) Regulation of AC is easier without much wastage of electrical energy with the help of a			
	choke coil.			
	7) AC systems have higher efficiency than DC systems.			
	8) AC can be easily converted into DC as per the requirement but conversion of DC to AC			
	is complicated.			
c)	Define V	FD. List any two advantages of VFD.		
	Ans: Voriabl	a Fraguency Drive (VED) is a motor	controllor that changes the frequency and	2 Marks for
	wariabi	de of voltage supplied to electric motor i	n order to control the speed of the motor	definition
	magintu	Or any other equip	valent answer	
	Advanta	ages: -		
	1) It sav	es the energy.		
	2) It lim	its the starting currents.		1 Mark for
	3) It red	uces Peak Energy Demand.		each of any
	4) It red	uces power when not required.		two
	5) It ope	rates motor with Fully Adjustable Speed		advantages
	6) It con	trols starting, stopping, and acceleration.		= 2 Marks
	7) It provides Dynamic Torque Control.			
	8) VFD improves efficiency.			
	9) It improves the power factor.			
	10) It reduces harmonics.			
	11) It pr	duces motor heating		
<u>d</u>)	$\frac{12}{\text{What is}}$	earthing? Give the importance of corthin	ng	
u)	Anc •	carting: Give the importance of earthin	1 <u>5</u> .	
	Earthir	19:		
	13w1 (1111	-a-		

4.

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION Model Answer 22373: EEG **Subject Name: Electrical Engineering** 1) Equipment Earthing: Earthing means connecting metallic cover of the electrical equipment to earth to avoid the hazards due to leakage current. If the live conductor 2 Marks for accidently touches the metallic cover of the equipment, the cover gets charged and it earthing might result in electrical shock to person who touches the metallic cover. By earthing the metallic cover, low resistance path is provided for leakage current from metallic cover to earth, so that when any person touches this cover, leakage current won't flow through the body of person, thus preventing the possibility of electric shock. 2) Neutral Earthing: Neutral earthing means connecting the neutral point of three-phase system to earth. 1 Mark for **Importance of Earthing:** each of any It provides protection and safety to the operator. i) two ii) It provides protection and safety to the equipment. advantages iii) It facilitates the balanced supply conditions. = 2 Marks iv) It provides safe path to discharge lightning and short circuit currents. v) It helps to isolate the faulty section. vi) It protects installation from sudden high voltages, switching surges with lightning arrestor and surge suppressor. List any two advantages and disadvantages of Moving Iron Instrument. e) Ans: Advantages of Moving Iron Instrument: -1) It is a universal instrument which can be used for the measurement of AC and DC 1 Mark for quantities. each of any 2) These types of instruments have high value of torque to weight ratio. Due to this, error two because of friction is quite low. advantages 3) It is very cheap due to simple construction. = 2 Marks 4) These instruments are quite robust due to its simple construction. Above all, there is no moving part in the instrument which carries current. 5) Accuracy of any instrument depends on its design and workmanship. These instruments can be designed to provide precision and industrial grade accuracy. (an error of less than 2 % or less for DC & of the order of 0.2 to 0.3 % at 50 Hz for AC). 6) These instruments can withstand large loads and are not damaged even under sever overload conditions. **Disadvantages of Moving Iron Instrument: -**1) The scale is not uniform and cramped at lower end. This is the reason why the accurate 1 Mark for readings are not possible at lower range. each of any 2) The power utilization is high for a low range of voltage. two 3) These instruments suffer from error due to hysteresis, frequency change and stray disadvantages losses. = 2 Marks 4) Change in frequency can cause very serious errors in AC measurements. 5) This instrument is non-directional, so its accuracy is low. 6) Power consumption is high. 7) The calibration of these instruments should be done for both AC and DC. In fact, its calibration must be carried out at the frequency for which it is used in AC circuit. 8) Moving Iron Instruments are suitable for low frequency application. This is because at lower frequency, the eddy current error increases with square of frequency whereas at higher frequency this error is almost constant. Therefore moving iron instruments are not suitable for frequency above 125 Hz. 9) The reading of the instrument is affected by temperature variation. Increase in temperature decreases the spring stiffness and increases the resistance of coil. 12 Marks Attempt any THREE of the following:

Canica.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

	Model AnswerSubject Name: Electrical Engineering22373		
(k	20kVA, 3300/240 V, 50 Hz single phase transformer has 80 turns on secondary winding	r.	
<i>u)</i>	Calculate no of primary winding turns, full load primary and secondary currents.	,•	
	Ans:		
	Data Given:		
	Power rating $S = 20 \text{ kVA}$		
	Primary voltage = V_1 = 3300 volt		
	Secondary Voltage = V_2 = 240 volt		
	No. of turns on secondary = N_2 = 80 Encourage f = 50UZ		
	$\begin{array}{c} \text{Frequency I} = 50 \text{HZ} \\ 1) \text{Primery winding turns (N1)} \end{array}$		
	N1 V1	1 Mark for	
	$\overline{N2} = \overline{V2}$		
	$N_1 = \frac{3300}{240} \times 80 = 1100 \text{ turns}$	111	
	2) Full load primary current (I ₁):		
	Power rating in kVA S = $\frac{V_{1.I_1}}{V_{1.I_2}}$	1 ¹ / ₂ Mark for	
	1000 T 20×1000	I_1	
	$I_1 = \frac{3300}{3300}$		
	$l_1 = 6.06 \text{ A}$		
	3) Full load secondary current (1_2) :	1 ¹ /2 Mark for	
	Power rating in kVA S = $\frac{1}{1000}$	I/2 Mark Ior	
	$I_2 = \frac{20 \times 1000}{240}$	-2	
	$I_2 = 83.33 A$		
b)	Explain working principle of fuse.		
	Ans:		
	Working principle of fuse:		
	• A fuse is an electric device which interrupts the flow of current in an electric circuit.		
	• It is installed in a circuit to stop the flow of excessive current.	3 Marks for	
	• It is connected in series with the device to be protected.	explanation	
	• Electric fuse works on the principle of the heating effect of electric current .	+	
	• A fuse consists of a piece of wire or strip of wire made of a metal or an alloy of a	n 1 Mark for	
	appropriate melting point. If a current larger than the specified value flows through th	e diagram	
	circuit, the temperature of the fuse wire increases. This finally melts the fuse wire an	d = 4 Marks	
	breaks the circuit.		
	• Once fuse wire melts, current is interrupted and further damage to the equipment due t	b	
	heavy current is prevented.		
	Blown		
	Over Current		
	Supply Normal Operation Load Supply Short Load		
	Switch		
	Working of a Fuse		
	On any other aquivalant diagram		

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical Engineering

c)	Describe the working principle of tachometer.					
	Ans:					
	Working Principle of Tachometer:					
	• Tachometer is a device which is used to measure rotational speed of a disk or a shaft of	3 Marks for				
	motors or other machines.	description				
	• It counts the number of rotations the shaft is making per minute.	+				
	• A Tachometer works on the principle of relative motion between the magnetic field and	1 Mark for				
	shaft of the coupled device.	any one				
	• The tachometer works as a generator, i.e. it produces the voltage based on the angular	diagram				
	velocity of the shaft. Hence it is referred as tachogenetaor.	= 4 Marks				
	• The device works on either an alternating or direct current.					
	• In case of DC tachometer, the machine whose rotational speed is to be measured is					
	coupled with the shaft of the DC tachometer. The armature (coil or winding) of the					
	device rotates inside the constant magnetic field of the permanent magnet. This rotation					
	induces an electromotive force. The developed electromotive force is directly					
	proportional to the speed of the shaft. This implies a linear relationship between the					
	electromotive force and speed of the shaft.					
	• In case of AC tachometer, the armature (coil or winding) remains stationary but the					
	magnetic field rotates. The rotation of the magnetic field induces electromotive force in					
	the coil. Either the amplitude or frequency of the electromotive force can be used to					
	measure the rotational speed.					
	• The device counts the number of rotations that the shaft makes per minute.					
	Shaft Coils Magnet Magnet Coils					
	mining & Lynning Milling States					
	Output					
	(a) D.C. tachometer (b) A.C. tachometer					
(b	Define:-					
<i>u)</i>	(i) Cycle, (ii) Frequency, (iii) Period, (iv) Amplitude					
	Ans:					
	(i) Cycle:					
	A complete set of variation of an alternating quantity which is repeated at regular	1 M. 1 C				
	interval of time is called as a cycle.	1 Mark for				
	Or	eacn				
	Each repetition of an alternating quantity recurring at equal intervals is known as a	-4 Mortes				
	cycle.	= 4 marks				
	(ii) Frequency:					
	Number of cycles completed by an alternating quantity in one second is called as					
	frequency. Its unit is cycles/second or hertz.					
	(iii) Period:					
	It is the time required for an alternating quantity to complete one cycle. It is					
	measured in second.					
	(iv) Amplitude:					
	Amplitude is the maximum value of an alternating quantity. It is represented by					

(ISO/IEC - 27001 - 2013 Certified)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION <u>Model Answer</u> Subject Name: Electrical Engineering

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (TEO/TEC - 27001 - 2012 (Cont/End))

(ISO/IEC - 27001 - 2013 Certified)

5

6

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

	Subj		<u>Model Answer</u> ject Name: Electrical Engineering	2237	3: EEG	
		6. Magneto-motive force: Magneto-motive force or N flux.	MMF is the force responsible for producing the	magnetic		
6 c)	c)	 State necessity of enclosures for Used for electric devices drives. Ans: Necessity of enclosures: The enclosures for electric motors To protect the motor from atmospheric conditions. To protect the inner parts of To protect the operating terminals, slip rings, brushes 	motors. Enlist one application of each type of e are necessary - m foreign body particles such as dust, dirt an of the motor from external objects. persons from live parts of the motor such as es, etc.	d severe winding	2 Marks for 2 points of necessity	
		Applications of Enclosures: Types of enclosure		1 Mark for each of any		
		Open protected type	General industrial installations (non-explosive atmosphere) suitable where there is no unusual exposure to dust particles or dampness.		four applications = 4 Marks	
		Screen protected type	General industrial installations (non-explosive atmosphere)			
		Drip proof type	General industrial installations (non-explosive atmosphere),Outdoor installation			
			Splash proof type	General industrial installations (non-explosive atmosphere), Can be used in rains.		
		Totally enclosed type	Used in motors installed in mill and factories we there are dust and moisture in the environment, General industrial installations (non-explosive atmosphere), Outdoor installation, Metal working machinery (non-explosive atmosphere), Chemical plant (Non-explosive atmosphere)	here		
		Totally Enclosed, Fan Cooled Type	used in saw mills, flour mills, cement works etc	· .		
		Pipe ventilated type	General industrial installations (non-explosive atmosphere)			
		Explosive proof type	Mines and other hazardous locations			
		Weather proof type	Outdoor installation			