

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

22325: EEM

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. No.	Sub Q. N.	Answer			Marking Scheme	
1.		Attempt any <u>FIVE</u> of the following:			10 Marks	
	a)	State significance of measurement.				
		Ans:				
		Significance of Measurement:				
		1. The complete area of automation / automatic control is based on measurement.				
		2. The	new discoveries / innovations require sop	phisticated measurement techniques.		
		3. The	measurement is required to monitor a pro-	ocess / operation.	¹ / ₂ Mark for	
		4. It is	required to measure all physical / electric	al / mechanical quantities.	each of any	
		5. The	measurements are required in a research	and development (R&D) department.	four points	
		6. The	measurement is widely required in variou	is industries for quality production.	= 2 Marks	
		7. Measurement is widely required in various educational institutes for training purpose.				
		8. The measurement is required for trading and dealing purposes.				
		9. The measurement is required to set particular standards and tolerances.				
		10. The measurement conforms validity of hypothesis and adds its understanding.				
		11. Proper operation / economical design & maintenance is possible with measurement only.				
		12. For obtaining good results in engineering measurement is required.				
		13. All electrical quantities also need measurement. for e.g., voltage, current, wattage etc.				
		14. For controlling & feedback purpose the measurement is essential.				
	b)	List diffe	erence between D.C. and A.C. voltmeters			
		Ans:				
		Difference Between D.C. and A.C. Voltmeters:				
		Sr.	D. C. Voltmeters	A. C. Voltmeters		
		No.			I Mark for	
		1	DC voltmeter measures DC voltage.	AC Voltmeter measures AC voltage.	each of any	
		2	The DC voltmeter measures the peak	AC voltmeter measures the RMS value	two	
			value of DC voltage.	of the AC voltage.	differences	
		3	DC voltmeters are highly sensitive	The AC voltmeters are somewhat low	= 2 Marks	
				sensitive relatively.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION Model Answer

Subject Name: Electrical and Electronic Measurements.

	4	DC voltmeter does do not use rectifier	Rectifier is required in ΔC voltmeter as	
		before multistage amplifier	per the application	
	5	DC voltmotors are highly officient	AC voltmators are loss afficient and	
	5	most accurate	accurate than DC voltmeter	
	6	DC voltmeters are much costly	AC voltmeters are comparatively loss	
	0	De voltmeters are much costry.	AC volumeters are comparatively less	
	Stata the	OR Equivalent A	nswer/Points	
C)	State the	advantages of P.M.M.C. Instrument.		
	Ans:	and of DMMC true a instruments		
	Advanta	ages of PMINIC type instrument:		
	1. Scale is uniform.			
	2. Power consumption is very low.			
	3. Can be used as ammeter or voltmeter of different ranges with the help of shunt and			¹ /2 Mark for
	multiplier.			each of any
	4. More sensitive as compared with MI / dynamometer type instruments.			Iour
	5. The torque to weight ratio is high which gives a high accuracy.			advantages
	6. Most accurate instrument for measurement of DC quantities.			= 2 Marks
	 /. Effective eddy current damping. 8. Errors due to stary magnetic fields are small due to strong energing magnetic field. 			
4)	8. EII0	ors due to stary magnetic fields are small, o	due to strong operating magnetic rield.	
u)	A man	y two benefits of electronic energy meter.		
	Alls:	of Flactuaria En aver Matan		
	Benefits of Electronic Energy Meter:			
	1. The electronic energy meter displays the reading in the numeric values ultimately			
	reduces the errors and the users can easily read / understand the readings.			
	2. The electronic energy meter eliminating manual meter reading and ultimately removes			
	$\frac{1}{2}$ The	associated errors.	a the electrical energy but also maniform the	1 Mark for
	5. The	the system	is the electrical energy but also monitors the	1 Mark IOI
	4 The	ale stranic or anony motor moleco mossible t		two benefits
	4. The	electronic energy meter makes possible to	o dete vestul for belancing electric loade	-2 Marks
	J. The	reducing power outgoes (blockouts)	e data useful for balancing electric loads	= 2 What KS
	6 The	alactronic anargy mater analysis the consu	more to adjust their babits to lower electric	
	0. The	electronic energy meter enables the const	inters to adjust their habits to lower electric	
	7 The	Alactronic anarov maters are widely avail	able in compact or small sizes. So, they are	
	7. The	easy to carry	able in compact of small sizes. 50, they are	
	8 The	electronic energy meters offer more detai	led feedback on energy utilization	
	 The electronic energy meters have high accuracy than the analog energy meters. 			
	9. The electronic energy meters have high accuracy than the analog energy meters.			
	10. The digital output is obtained by the electronic energy meters WNICN acts as an input			
	for the memory devices like floppy, recorder, printer etc. is useful for further analysis,			
	11 The	y and itstatell work.	al losses and errors	
	17 The	electronic energy meter offers more flavil	hility	
	12. The 13 The	electronic energy meters are of highly set	unity.	
	13. The	electronic energy meters are or inglily set	isitive indicis.	
	14. THE	electronic energy meter operates with his	h resolution	
	15. THE	electronic energy meter does not require	in resolution.	
	10. 1 he	electronic energy meter does not require	any external adjustments for its operation.	

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

	Sr. No.	Deflecting Type Instruments	ing Type Instruments Null Type Instruments	
	1	The deflection of these instruments provides a basis for determining the quantity under measurement.	In null type instruments, zero or null indication leads to determination of the magnitude of measurend.	1 Mark for
	2	These are less accurate.	These are more accurate.	each of any
	3	These are less sensitive.	These are more sensitive.	four points
	4	Easy measurement procedure i. e. Very convenient to use.	Complex measurement procedure as extra effort are required to find null point.	= 4 Marks
	5	Normally used for daily measurement work.	Normally used for calibration work.	
	6	In deflection type instrument, the detector need to be measure the quantity but it has nothing to do with the balance / unbalance condition.	In null type instrument, the detector need not be measure the quantity but it has only to detect the presence and direction of unbalance and not the magnitude of unbalance.	
	7	Suitable for measurements under dynamic conditions.	Less suitable for measurements under dynamic conditions.	
	8	Examples are PMMC ammeters, Electrodynamometer and moving iron instruments etc.	Example is Galvanometer.	
		OR Equivalent	Answer/Points	
b)	State errors occurring in measurement of electrical power. Ans: Errors Occurring in Measurement of Electrical Power: 1. Error due to method of connection. 2. Error due to pressure coil inductance. 3. Error due to pressure coil capacitance. 4. Error due to mutual inductance effect. 5. Error due to eddy currents. 6. Stray magnetic field error. 7. Error caused by vibration of the moving system. 8. Temperature error. 9. Error due to friction. 10. Gross errors. 11. Systematic errors. a) Instrumental errors. b) Environmental errors. c) Observational errors.			
c) Explain Ans: Constru Constru	with neat diagram construction and work action and Working of Induction Type action:	king of induction type energy meter. E Energy Meter:	

PHYN. 1V

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

			WINTER – 2022 I	EXAMINATION		
			<u>Model A</u> Subject Name: Electrical and	<u>Answer</u> I Electronic Measurements.	22325:	: EEM
		coil resistance Power Consu	$r = 0.1 \Omega.$ med by Pressure Coil: P σ = w = $\frac{b}{c}$	72		¹∕2 Mark
			P (Pressure coil) = $\frac{2}{2}$	R 220 ²		1⁄2 Mark
		Power Consu	$P_{(Pressure coil)} = 5$ med by Current coil:	3800 5.5 watts.		¹ ∕2 Mark
			$P_{(Current coil)} = 1$ $P_{(Current coil)} = 0$	$(5)^2 \times 0.1$		¹∕2 Mark ¹∕2 Mark
			$P_{(Current coil)} = 2$	2.5 watts		¹∕₂ Mark
		Total Power	consumed by direct loading = 5.5 + 2	2.5 = 8 watts.		1 Mark
3.		Attempt any	<u>THREE</u> of the following:			12 Marks
	a)	State the difference between analog and digital instrument. Ans: Difference Between Analog and Digital Instruments: Particular Analog Instruments				
		Definition	The instrument which gives output that varies continuously as quantity to be measured is known as analog instrument	The instrument which gives of varies in discrete steps and or finite number of values is known digital instrument.	output that ily has own as	1 Mark for each of any
		Accuracy	The accuracy of analog instrument is comparatively less. e.g. Class 0.5, class 1	The accuracy of digital instru comparatively more. e.g. Clas	ment is ss 0.1	four points = 4 Marks
		Resolution	The resolution of analog instruments is less.	The resolution of digital instr more	uments is	
		Power required	Power is not required for operation of analog instruments.	Power is required for operation digital instruments.	on of	
		Affected by temperature	The analog instruments are less affected by temperature.	The digital instruments are m affected by temperature.	uch more	
		Cost	Presently most analog instruments are economical.	Presently some digital instrur economical, while most are c	nents are ostly.	
		Position of instrument	The analog instruments should be used in specific position.	The digital instruments are po hence can be used in any post	ortable, ition.	
		Precision Possibility of human error	These are somewhat less precise. Exists.	These are more precise. Does not exist.		
		Presence of moving	Moving part involved.	No moving part.		

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

(ISO/IEC - 27001 - 2013 Certified)

1 Mark

(ISO/IEC - 27001 - 2013 Certified)

WINTER - 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

22325: EEM

It consists of a fixed coil. The supply whose frequency is to be measured is connected across it. This coil is also known as magnetizing coil. It is mounted on a laminated iron core. The core has a typical varying cross section. It varies along the length and is maximum at the end of core. The moving coil of it is pivoted over the iron core. The pointer is fixed to the spindle of moving coil and the terminals of moving coil are connected to a suitable capacitor C. Here there is no controlling torque is required.

Working:

When the instrument is connected in the circuit, current flowing through magnetizing coil produces flux in the iron core which will set up an emf in the moving coil. This emf lags the

flux ϕ by almost 90[°]. This will cause current "I" to flow through capacitor C. If current is inductive it will lag induced emf and a torque will act on the coil and also if current is capacitive then the torque will act on the coil. But if the inductive reactance is equal to capacitive reactance then no torques will act on the moving coil hence current "I" is in phase with induced emf so this instrument is based on the principle of electrical resonance.

The capacitive reactance is constant for given frequency but the inductive reactance depends upon the position of pivoted coil on the core. The nearer the coil approaches the magnetizing coil, the greater is its inductance. The moving coil is pulled towards magnetizing coil until both reactance are exactly equal. i.e. when torque is zero. The value of capacitor C is so selected that the moving coil takes up convenient position when frequency is of normal value. If the supply frequency is more, the capacitive reactance $(1/2\pi)$ decreases. In order that the inductive reactance is again try equal to capacitive reactance the inductance of coil must decrease so the moving coil thus moves away from magnetizing coil till resonance condition showing higher frequency on the scale and vice versa.

Weston Type Frequency Meter: Construction:

As shown in bellow diagram there are two coils $A_1 - A_2 \& B_1 - B_2$ divided into two sections & perpendicular to each other. In the circuit of coil A $(A_1 - A_2)$ there is series combination of resistance R_A and reactance L_A in parallel with it. While in the circuit of coil B $(B_1 - B_2)$ there is series reactance is series combination of resistance R_B and reactance L_B in parallel with it. A series reactance

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

22325: EEM

L is used to suppress higher harmonics in the incoming currents of the instrument. At the center there is spindle on which magnetic niddle (soft-iron) is pivoted. The spindle also carries an indicator and damping vane.

Working:

When the instrument is connected across the supply, the current flows through both coils A and B. The values of R_A , R_B , L_A , L_B are so chosen that for normal frequency the voltage drop across LA and RB send the equal current in coil A and B, So the fluxes act on needle is in such a way that it take center position showing normal frequency 50Hz. Now if the frequency is greater than 50Hz, reactance L_A and L_B increases, but R_A , R_B unaffected, this gives more voltage drop across L_A , hence more current in coil A, less current in coil B. Ultimately pointer shows higher frequency. Now if the frequency is lesser than 50Hz, reactance L_A and L_B decreases , but R_A , R_B unaffected, this gives less voltage drop across L_A , hence less current in coil A, more current in coil B. Ultimately pointer shows lesser frequency.

Digital / Electronic Type Frequency Meter:

Amplifier:

The signal whose frequency is to be measured is first amplified and supplied to the schmitt trigger.

Schmitt Trigger:

The schmitt trigger convert the signal into square wave having fast rise and fall time. The square wave is then differentiated and clipped. Each pulse is proportional to each cycle of unknown signal.

Start – Stop Gate:

When the gate is open input pulses are allowed to pass through it. The counter is now start counting the pulses. When gate is closed input pulses are not allowed to pass through it. The counter is now stop counting the pulses.

Counter and Display:

The number of pulses during the period gate is open are counted by counter. If the interval between start and stop condition is known the frequency of unknown signal is measured.

Now, f = N / t

Where, f = unknown frequency

N = No. count displayed on counter and

t = time interval between start and stop condition of the gate.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION <u>Model Answer</u> Subject Name: Electrical and Electronic Measurements.

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION Model Answer

Subject Name: Electrical and Electronic Measurements.

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

<u>Model Answer</u>

Subject Name: Electrical and Electronic Measurements.

22325: EEM

two iron vanes whose axes are 180° apart. The cylinders are excited by two pressure coils P1 and P2 which are connected to two phases of the incoming alternator. One pressure coil has a resistance r and other has an inductance L connected in series to establish almost 90° phase

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

<u>Model Answer</u>

Subject Name: Electrical and Electronic Measurements.

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer Subject Name: Electrical and Electronic Measurements.

Repulsion Type MI Instrument

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Subject Name: Electrical and Electronic Measurements.

The attenuator facilitates selection of proper range of attenuation and the output level is controlled. The output voltage is observed on output meter.

OR Equivalent Answer

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

WINTER – 2022 EXAMINATION <u>Model Answer</u>

Subject Name: Electrical and Electronic Measurements.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Electrical and Electronic Measurements.

Comparison Between Single Phase and Three Phase Energy Meter:	
• The flow of electricity in a single-phase connection is through a single conductor	
whereas, in a three-phase connection, there are three separate conductors for electric transmission.	
• In a single-phase meter system, the upper limit of the voltage can be 230 Volts whereas,	
in a three-phase system, the upper limit can be 415 Volts as well.	
• Two separate wires are mostly required in a single-phase meter for smooth electricity	¹ / ₂ Mark for
flow. But in a three-phase meter, the circuit can be completed with three-phase wires and one neutral wire.	each of any four points
• A three-phase meter transfers minimum electrical energy as compared to the single-phase power meters.	= 2 Marks
• There are two wires in a single-phase electric meter which makes it a simple network.	
But in a three-phase meter, there are four different wires that make the network complicated.	
• Since there is only one phase in a single-phase meter, any unforeseen event in the	
network interrupts the entire power supply. On the other hand, in a three-phase meter, if one phase doesn't work, other phases compensate for it, thereby eliminating the chances of power interruption.	
• A single-phase power meter is less efficient than a three-phase connection since the latter needs fewer conductors unlike the former one for the same circuit.	