PROCESS ENGINEERING

Programme Name/s	: Mechatronics/ Production Engineering
Programme Code	: MK/ PG
Semester	: Fifth
Course Title	: PROCESS ENGINEERING
Course Code	: 315366

I. RATIONALE

Process engineering is the intermediate stage between design and manufacturing of a component. This course focus on the planning, design, development, operations and control of manufacturing processes in an industry. A diploma engineer should understand basic concepts and apply advanced tools and techniques employed in the field of process engineering, so as to achieve the best possible planning and control in a manufacturing environment with continuous improvements.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

Prepare process plan sheet for manufacturing of components.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Evaluate a product using various criteria.
- CO2 Prepare bill of material for a given assembly.
- CO3 Prepare process plan for a given engineering component.
- CO4 Construct a part family using group technology.
- CO5 Select relevant CAPP system for a given engineering component.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				Learning Scheme				Assessment Scheme													
Course Code	Course Lifle Abbr		Course Category/s	Actual Contact Hrs./Week SLH NI		NLH	Credits	Paper Duration	Theory		Based on LL & TL Practical		&	Based on SL		Total Marks					
IX.						Duration	FA- TH	SA- TH	Tot	tal	FA-	PR	SA-	PR	SI		Marks				
											Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
315366	PROCESS ENGINEERING	PEN	DSE	4		2	-	6	2	3	30	70	100	40	25	10	25#	10	-		150

PROCESS ENGINEERING

Total IKS Hrs for Sem. : Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 10 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 Describe procedure of design for manufacturing and assembly. TLO 1.2 Analyze various criteria for the given product. TLO 1.3 Explain functions of process engineering department. TLO 1.4 Prepare organizational flow chart for the development of process plans.	Unit - I Introduction to Product engineering and Process engineering 1.1 Functions of product engineering department 1.2 Design for Manufacturing and Assembly (DFMA): Definition, Procedure, Guidelines 1.3 Criteria for product analysis (aesthetics, cost, environment, safety, function, material, ergonomics) 1.4 Functions of process engineering department 1.5 Organizational flow chart for development of process plans	Lecture Using Chalk-Board Presentations Video Demonstrations
2	TLO 2.1 Analyze the given assembly using dimensional tolerance stack up methods. TLO 2.2 Select relevant surface finish roughness grade for the given operation. TLO 2.3 Explain bill of materials. TLO 2.4 Select appropriate inspection method for the given component.	Unit - II Interpretation of part drawing 2.1 Dimensional tolerance: Tolerance Stack up analysis (Worst case scenario analysis, Statistical analysis), ISO 2768-1: General tolerances values 2.2 Surface Finish: Three elements of surface finish, Surface finish symbols, Roughness grade numbers and it's finish marks 2.3 Bill of materials (BOM): Define, Importance of BOM, Types of BOM (Engineering BOM, Manufacturing BOM) 2.4 Inspection methods: Need of inspection methods, Types of inspection (based on timing, based on place, based on contact, based on number of samples inspected, based on application)	Lecture Using Chalk-Board Presentations Video Demonstrations

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

PROC	CESS ENGINEERING	Со	urse Code : 315366
Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
3	TLO 3.1 Describe process planning procedure. TLO 3.2 Identify the factors affecting make or buy decision during process planning for the given component. TLO 3.3 Choose a specific process for manufacturing of the given component. TLO 3.4 Prepare process flow chart for manufacturing of the given component. TLO 3.5 Explain machine and tool selection procedure. TLO 3.6 Specify different manufacturing parameters for the preparation of operation sheet and route sheet.	 3.2 Process planning procedure: Make or Buy Design- factors affecting make or buy decision 3.3 Process selection procedure 3.4 Process analysis: Process flow chart 3.5 Machine and tool selection procedure 	Lecture Using Chalk-Board Presentations Video Demonstrations Site/Industry Visit
4	TLO 4.1 Identify different applications of group technology. TLO 4.2 Differentiate between functional layout and group layout. TLO 4.3 Select various methods for construction of a part family for the set of similar components.	 Unit - IV Group Technology 4.1 Introduction to Group technology, definitions and applications 4.2 Functional layout and group layout 4.3 Part family construction methods: Visual method, Production flow analysis 4.4 Basic requirement for part family coding system 	Lecture Using Chalk-Board Presentations Video Demonstrations
5	TLO 5.1 Draw framework of computer aided process planning. TLO 5.2 Compare types of CAPP systems for given set of criteria. TLO 5.3 Justify role of CAPP in implementation of CIM. TLO 5.4 Describe contribution of artificial intelligence in process planning.	Unit - V Automation in process planning 5.1 Framework of computer aided process planning 5.2 Types of CAPP: Generative type and Variant type 5.3 CAPP software systems available in market, programming language used in CAPP software systems 5.4 Contribution of CAPP to CIM 5.5 Artificial intelligence in process planning	Lecture Using Chalk-Board Presentations Case Study Flipped Classroom

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning	Sr	Laboratory Experiment /	Number	Relevant
Outcome (LLO)	No	Practical Titles / Tutorial Titles	of hrs.	COs
LLO 1.1 Measure dimensions of the given component. (e.g. Cotter key or Knuckle pin or square / hexagonal headed bolt/ nut) LLO 1.2 Create CAD model of the given component. (e.g. Cotter key or Knuckle pin or square / hexagonal headed bolt/ nut)	1	Measurement and CAD modelling of the given component.	2	CO1

01-06-2025 04:29:38 PM

	01-06-2025 04:29:38 PM
Course	Cada . 215266

PROCESS ENGINEERING Course Code : 315366											
Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs							
LLO 2.1 Collect the given job from your institute workshop. LLO 2.2 Perform product analysis on the given job using various criteria.	, 2	* Analysis of the given job using various criteria.	2	CO1							
LLO 3.1 List down different components of lathe machine tool post available in your institute workshop. LLO 3.2 Prepare Bill of material for the lathe machine tool post.	3	* Preparation of Bill of material for the given assembly.	2	CO2							
LLO 4.1 Identify different standards for selection of dimensional tolerance values. LLO 4.2 Collect samples of industrial drawings of the components from nearest workshop. LLO 4.3 Prepare dimensional tolerance chart for the given industrial drawing using standard ISO 2768-1.	4	Preparation of dimensional tolerance chart for the given industrial drawing of component.	2	CO2							
LLO 5.1 Collect samples of industrial drawings of the components from nearest workshop. LLO 5.2 Prepare operation sheet for the given component. LLO 5.3 Prepare route sheet for the given component.	5	* Preparation of operation sheet and route sheet for the given component.	2	CO3							
LLO 6.1 Identify the job to be machined on lathe. LLO 6.2 Select manufacturing process parameters for the given job by using production technology handbook.	6	Selection of manufacturing process parameters by using production technology handbook.	2	CO3							
LLO 7.1 Prepare process flow chart for manufacturing of the given component. (e.g. nut/bolt/knuckle pin/cotter key,etc)	7	Preparation of process flow chart for manufacturing of the given component.	2	CO3							
LLO 8.1 Perform production flow analysis to create part family for the given set of similar components.	8	* Design part family using group technology methods.	2	CO4							
LLO 9.1 Prepare machining parameters table for the given component using CAPP software. (speed, feed, depth of cut, machining time,etc)	9	* Prepare a machining parameters table using CAPP software	2	CO5							
LLO 10.1 Generate a process plan sheet for the given component using CAPP software. Note : Out of above suggestive LLOs -	10	Generation of a process plan sheet using CAPP software.	2	CO5							

- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / **SKILLS DEVELOPMENT (SELF LEARNING) : NOT APPLICABLE**

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

MSBTE Approval Dt. 24/02/2025

01-06-2025 04:29:38 PM Course Code : 315366

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number			
1	Measuring Instruments: - Digital Vernier Caliper (Resolution 0.1 mm, Measuring Range 0- 150 mm), Screw pitch gauge(52 Leaves , Narrow design, 4 to 62 TPI, 0.25 to 6.0 mm thread), Profile projector(Light axis: Vertical, Workstage size: 410 x 310 mm, Measuring range: 100 x 100 mm)	1			
2	2D CAD software	1			
3	Sample industrial assembly and part drawings	2,3,4,5			
4	Process plan CAPP software	9,10			

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R- Level	U- Level	A- Level	Total Marks	
1	Ι	Introduction to Product engineering and Process engineering	CO1	6	4	4	4	12	
2	Π	Interpretation of part drawing	CO2	8	4	4	6	14	
3	III	Process planning	CO3	12	4	6	8	18	
4	IV	Group Technology	CO4	6	2	4	6 6	12	
5	V	Automation in process planning	CO5	8	4	4	6	14	
		Grand Total		40	18	22	30	70	

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

- Two-unit tests of 30 marks and average of two-unit tests.
- For laboratory learning 25 Marks.

PROCESS ENGINEERING

Summative Assessment (Assessment of Learning)

- End semester assessment of 70 marks.
- End semester assessment of 25 marks for laboratory learning.

XI. SUGGESTED COS - POS MATRIX FORM

		Programme Outcomes (POs)								
(COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools		PO-6 Project Management		1	PSO- 2	PSO- 3
CO1	3	-		-		-	1			

Semester - 5, K Scheme

PROCESS ENGINEERING

01-06-2025 04:29:38 PM

Course	Code	:	315366
Course	Cour	•	010000

CO2	3	2	2	2								
CO3	3	3	3	2	2	2	3	1				
CO4	3	2	2	-	2	1						
CO5	3	2	2	2	2	1	3					
-	COS S Z Z Z Z Legends :- High:03, Medium:02,Low:01, No Mapping: - *PSOs are to be formulated at institute level											

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	Khanna O.P.	Industrial Engineering and Management	Dhanpat Rai Publications New Delhi (2018) ISBN-13:9788189928353
2	Samuel Eilon	Production Planning and Control	Collier Macmillan Ltd New Delhi (2015) ISBN- 13: 9780023318009
3	Scallan Peter	Process Planning: The Design/Manufacture Interface	Butterworth-Heinemann (2003) ISBN-13: 9780750651295
4	Stephen N. Chapman	Fundamentals of Production Planning and Control	Pearson Education (2007) ISBN- 13:9788131717394
5	Hwaiyu Geng	Manufacturing Engineering Handbook	McGraw-Hill Education (2016) ISBN- 13:9780071839778

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://archive.nptel.ac.in/courses/110/105/110105155/	Automation In Production Systems and Management SWAYAM NPTEL course
2	https://archive.nptel.ac.in/courses/112/107/112107238/	Operations Management SWAYAM NPTEL course
3	https://www.youtube.com/watch?v=20_K7c65Swg	Computer aided process planning- SWAYAM NPTEL
4	https://egyankosh.ac.in/bitstream/123456789/27107/1/Unit-9.p df	Computer aided process planning- PDF IGNOU
5	https://egyankosh.ac.in/bitstream/123456789/27217/1/Unit-1.pdf	Process planning- PDF IGNOU
6	https://egyankosh.ac.in/bitstream/123456789/27220/1/Unit-4.pdf	CAPP techniques-PDF IGNOU

Note :

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 24/02/2025

Semester - 5, K Scheme