
MSBTE(Mah.State Board of Tech.Edu) STUDY RESOURCES (WWW.MSBTE.ENGG-INFO.WEBSITE) Website dedicated to Diploma Engineering study Resources

)	Trobotic dodicated to Diploma Engineering stady (1000a1000	
	Model Answer Exam	SUM 2025
Subject:	Applied Mathematics Common to All Branches	K-Scheme
	SUB CODE	31230
Impor	tant Instructions to STUDENTS	
1)	The model answer given here are prepared from the answers from the previously uploaded model answers by Board.	
2)	These model answers are not uploaded by the MSBTE official site but MSBTE study resources website prepared it for students. This model answer has question paper also inbuilt in it, no need to download it separate.	
3)	Please remembter that answers are not checked word to word but based on keywords which must be present in your answer	
4)	The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate	
5)	While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn bycandidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn	
<i>6)</i>	For programming language papers, credit may be given to any other program based on equivalentconcept	
7)	Students are advised to prepare all the syllabus from recommended book and use these model answers for the purpose of tests.	
Q	ANSWER	Marking Scheme
1 a)	Q: $\int \sqrt{1 + \cos 2x} dx$. $\rightarrow \text{ Let}$; $I = \sqrt{1 + \cos 2x} dx$. $using \underline{formula}$:- $1 + \cos 0 = 2\cos^2(0)$ $1 + \cos 2x = 2\cos^2 x$ $1 + \cos 2x = 2\cos^2 x$ $1 + \cos 2x = 2\cos^2 x$	

1	b)	Question:	
		Evaluate the integral:	
		$\int \left(\frac{1}{\sqrt{1-x^2}}-\cos x\right)dx$	
		Solution:	
		Let	
		$I = \int \left(rac{1}{\sqrt{1-x^2}} - \cos x ight) dx$	
		$I=\int rac{1}{\sqrt{1-x^2}}dx-\int \cos xdx$	
		$I=\sin^{-1}x-\sin x+C$	
1	c)	$Q. \int_{2}^{4} \frac{dz}{2z+3}$	
		\rightarrow Let; $I = 5^4 dx$ $2x+3$	
		$\therefore I = \left(\log(2x+3)(\frac{1}{2}) \right)_{2}^{4}$	
		$: I = \frac{1}{2} [log(2 \times 4 + 3) - log(2 \times 2 + 3)]$	
		$: I = \frac{1}{2} \left[log(11) - log(7) \right]$	
		:[I=½ log(½)]	

ı -		·1
1 e)	Question:	
	Find approximate root of $x^3-x-1=0$ using Bisection Method (one iteration only).	
	Solution:	
	Evaluate function values:	
	4(4)	
	f(0)=-1, f(1)=-1, f(2)=5	
	D+ li i- [1 9]	
	Root lies in $[1,2]$.	
	Midpoint:	
	10	
	$c=rac{1+2}{2}=1.5$	
	2	
	Evaluate:	
	f(1.5) = 0.875	
	Final Answer:	
	Approximate root after one iteration: $oxed{1.5}$	
	Question:	
1 f)	Show that the root of $x^3-4x-9=0$ lies in the interval $(2,3)$.	
	Show that the root of $x=4x-y=0$ lies in the interval $(2,3)$.	
	Solution:	
	Evaluate the function at the endpoints:	
	·	
	$f(2)=2^3-4 imes 2-9=8-8-9=-9$	
	$f(3)=3^3-4\times 3-9=27-12-9=6$	
	$f(3) \equiv 3^3 - 4 \times 3 - 9 \equiv 27 - 12 - 9 \equiv 6$	
	Since $f(2) < 0$ and $f(3) > 0$, the sign of the function changes between 2 and 3.	
	Since J (2) > of the sign of the function changes between 2 and 3.	
	Conclusion:	
	Therefore, the root lies in the interval $(2,3)$.	

		ı
2 b)	$\int \frac{1}{x^2+3x+2} dx$	
	Factor denominator: $x^2+3x+2=(x+1)(x+2)$	
	Partial fractions:	
	$\frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$	
	Multiply both sides by $(x+1)(x+2)$:	
	1=A(x+2)+B(x+1)	
	Put $x=-2$, then	
	$1=B(-1) \implies B=-1$	
	Put $x=-1$, then	
	$1=A(1) \implies A=1$	
	Rewrite integral:	
	$\int \frac{1}{x+1} dx - \int \frac{1}{x+2} dx$	
	Integrate:	
	$\log x+1 -\log x+2 +C=\log\left rac{x+1}{x+2} ight +C$	

$$\int \frac{1}{x^2 + 3x + 2} \, dx = \log \left| \frac{x + 1}{x + 2} \right| + C$$

2c) Q: Solve
$$\int \frac{d\varkappa}{5-4\cos\varkappa}$$

Let, $I = \int \frac{d\varkappa}{5-4\cos\varkappa}$

with standard substitution

Rut, $\tan(\frac{\varkappa}{2}) = t$, $d\varkappa = \frac{2dt}{(1+t^2)} \% \cos\varkappa = \frac{(1-t^2)}{(1+t^2)}$

$$I = \int \frac{2dt}{(1+t^2)}$$

$$I = \int \frac{2dt}{1+t^2}$$

$$I = \int \frac{2dt}{1+t^2}$$

$$I = \int \frac{dt}{5-4(\frac{1-t^2}{1+t^2})}$$

$$I = \int \frac{dt}{5(1+t^2)-4(\frac{1-t^2}{1+t^2})}$$

$$I = 2 \int \frac{dt}{5+5t^2-4+4t^2}$$

$$I = 2 \int \frac{dt}{3} tan^{-1}(\frac{t}{1/3}) + C$$

$$I = \frac{2}{3} tan^{-1}(3+t) + C$$

$$I = \frac{2}{3} tan^{-1}(3+t) + C$$

$$I = \frac{2}{3} tan^{-1}(3+t) + C$$

$$\int \frac{e^x}{(e^x-1)(e^x+1)}\,dx$$
 Let $u=e^x$, then $du=e^xdx$, so $dx=\frac{du}{u}$
$$\int \frac{u}{(u-1)(u+1)}\cdot\frac{1}{u}\,du=\int \frac{1}{(u-1)(u+1)}\,du$$

Use partial fractions:

$$\frac{1}{(u-1)(u+1)} = \frac{A}{u-1} + \frac{B}{u+1}$$
$$1 = A(u+1) + B(u-1)$$
$$1 = (A+B)u + (A-B)$$

Equating coefficients:

$$A+B=0, \quad A-B=1$$

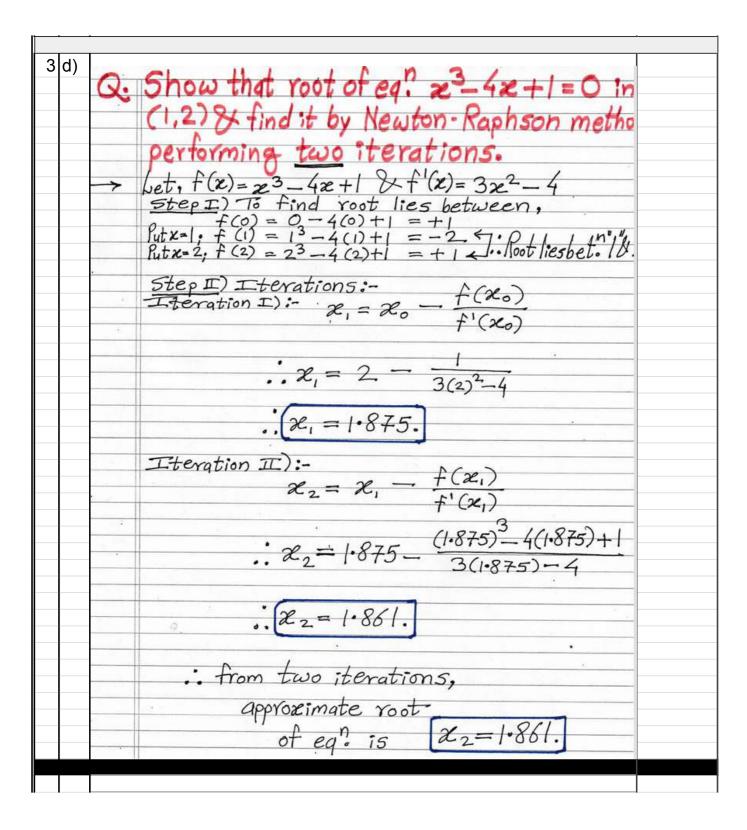
Solving:
$$A=\frac{1}{2}, B=-\frac{1}{2}$$

$$\int \left(rac{1}{2(u-1)}-rac{1}{2(u+1)}
ight)du=rac{1}{2}\log|u-1|-rac{1}{2}\log|u+1|+C$$
 $=rac{1}{2}\log\left|rac{u-1}{u+1}
ight|+C$

Substitute $u = e^x$:

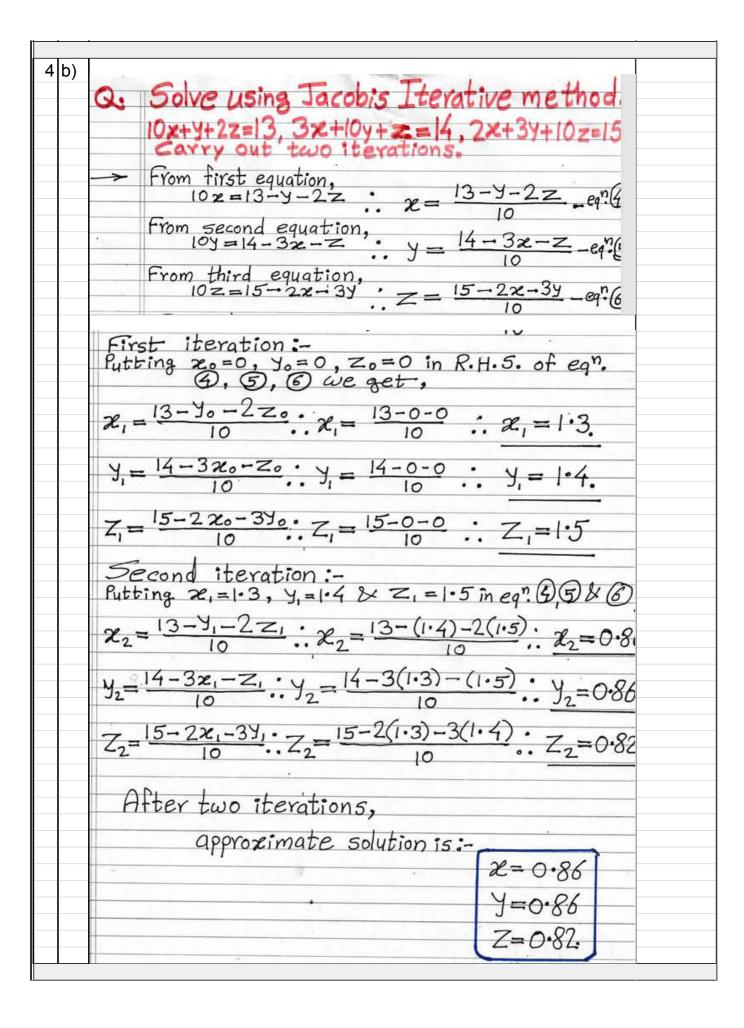
$$\int \frac{e^x}{(e^x-1)(e^x+1)}\,dx = \frac{1}{2}\log\left|\frac{e^x-1}{e^x+1}\right| + C$$

3 a) Q. Solve
$$\int tan^{-1}x dx$$
.


 $\rightarrow let us use "I" as second function:$
 $I = \int tan^{-1}x \cdot I dx$. Integrate by Parts;

 $\therefore I = tan^{-1}x \int Idx - \int \left[\frac{d}{dx}(tan^{-1}x) \int Idx\right] dx$.

 $\therefore I = x \cdot tan^{-1}x - \int \left[\frac{1}{1+x^{2}}(x)\right] dx$
 $\therefore I = x \cdot tan^{-1}x - \frac{1}{2} \int \frac{2x}{1+x^{2}} dx$
 $\therefore I = x \cdot tan^{-1}x - \frac{1}{2} \log(1+x^{2}) + C$.


 $\therefore I = x \cdot tan^{-1}x - \frac{1}{2} \log(1+x^{2}) + C$.

1		
		·
3 b)	$I=\int_0^{rac{\pi}{2}}rac{\cos x}{\cos x+\sin x}dx \cdots \cdots (1)$	
	Using the identity $\int_0^a f(x)dx = \int_0^a f(a-x)dx$, we write:	
	$I = \int_0^{rac{\pi}{2}} rac{\cos\left(rac{\pi}{2} - x ight)}{\cos\left(rac{\pi}{2} - x ight) + \sin\left(rac{\pi}{2} - x ight)} dx$	
	$J_0 \cos\left(rac{\pi}{2}-x ight) + \sin\left(rac{\pi}{2}-x ight)$ and	
	Now apply identities:	
	• $\cos\left(\frac{\pi}{2} - x\right) = \sin x$ • $\sin\left(\frac{\pi}{2} - x\right) = \cos x$	
	So equation (2) becomes:	
	$I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\cos x + \sin x} dx \qquad \cdots \qquad (2)$	
	Add equation (1) and equation (2):	
	$2I = \int_0^{\frac{\pi}{2}} \left(\frac{\cos x}{\cos x + \sin x} + \frac{\sin x}{\cos x + \sin x} \right) dx$	
	$2I = \int_0^{\frac{\pi}{2}} \frac{\cos x + \sin x}{\cos x + \sin x} dx = \int_0^{\frac{\pi}{2}} 1 dx$	
	$2I=[x]_0^{rac{\pi}{2}}=rac{\pi}{2}$	
	$I=rac{\pi}{4}$	
	$1-\frac{1}{4}$	
	$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} dx = \frac{\pi}{4}$	
	$\int_0^{\infty} \frac{1}{\cos x + \sin x} dx = \frac{1}{4}$	
3 c)	Q. Form D.E. of $y = Ae^{2x} + 8e^{-2x}$.	

Calva m3	6m + 2 =	Ousing Bisasti	ion Method (3	itarations)		
Solve x	-0x + 5 =	U using bisecti	ion ivietnoa (3	iterations)		
Step 1: Fin	d initial inter	[a,b]				
Define		[,-]				
Deline			E			
		f(x)	$=x^3-6x+3$			
Check signs:						
		f(m)		12 K 10000		
\boldsymbol{x}		f(x)		Sign		
0		3		+		
1		1 - 6 + 3 =	-2	_		
			28			
		0, root lies in $[0,1]$				
		0, root lies in $[0,1]$ terations of bise b	ection	Sign of $f(x)$	New Interval	
Step 2: Per	rform three it	terations of bise	ection	Sign of $f(x)$	New Interval $[0.5,1]$	
Step 2: Per	rform three it	terations of bise	ection $x = \frac{a+b}{2}$			
Step 2: Per Iteration	rform three it	terations of bise b	ection $x = \frac{a+b}{2}$ 0.5	#==	[0.5, 1]	
Step 2: Per Iteration 1	rform three it a 0 0.5	terations of bise b 1	ection $x=rac{a+b}{2}$ 0.5	#==	[0.5, 1]	
Step 2: Per Iteration 1	rform three it a 0 0.5	terations of bise b 1	ection $x=rac{a+b}{2}$ 0.5	#==	[0.5, 1]	
Step 2: Per Iteration 1	rform three it a 0 0.5	terations of bise b 1	ection $x=rac{a+b}{2}$ 0.5	#==	[0.5, 1]	
Step 2: Per Iteration 1 2	rform three it a 0 0.5	terations of bise b 1	ection $x=rac{a+b}{2}$ 0.5	#==	[0.5, 1]	
Step 2: Per Iteration 1 2 3	rform three it a 0 0.5 0.5	terations of bise b 1	ection $x=rac{a+b}{2}$ 0.5	#==	[0.5, 1]	
Step 2: Per Iteration 1 2	rform three it a 0 0.5 0.5	terations of bise b 1 1 0.75	ection $x=rac{a+b}{2}$ 0.5 0.75 0.625	#==	[0.5, 1]	
Step 2: Per Iteration 1 2 3	rform three it a 0 0.5 0.5	terations of bise b 1 1 0.75	ection $x=rac{a+b}{2}$ 0.5	#==	[0.5, 1]	
Step 2: Per Iteration 1 2 3 Conclusion The root of the	rform three it a 0 0.5 0.5	terations of bise b 1 1 0.75	ection $x=rac{a+b}{2}$ 0.5 0.75 0.625	#==	[0.5, 1]	
Step 2: Per Iteration 1 2 3 Conclusion The root of the	rform three it a 0 0.5 0.5	terations of bise b 1 1 0.75	ection $x=rac{a+b}{2}$ 0.5 0.75 0.625	#==	[0.5, 1]	

II

1)
$$20x - y + 2z = 17$$

2)
$$3x + 20y - z = -18$$

3)
$$2x - 3y + 20z = 25$$

Initial Guess (Iteration 0):

$$x_0 = 0, \quad y_0 = 0, \quad z_0 = 0$$

Iteration 1:

$$x_1 = \frac{1}{20}(17 + y_0 - 2z_0) = \frac{1}{20}(17 + 0 - 0) = 0.850$$

$$y_1 = \frac{1}{20}(-18 - 3x_1 + z_0) = \frac{1}{20}(-18 - 3(0.850) + 0) = \frac{-20.550}{20} = -1.028$$

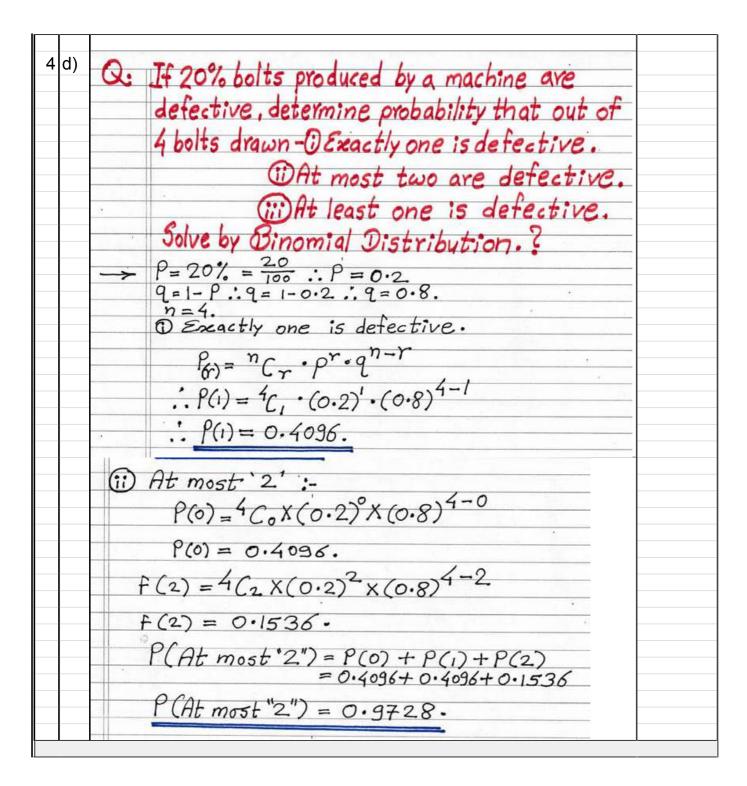
$$z_1 = \frac{1}{20}(25 - 2x_1 + 3y_1) = \frac{1}{20}(25 - 2(0.850) + 3(-1.028)) = \frac{1.216}{20} = 0.061$$

Iteration 2:

$$x_2 = \frac{1}{20}(17 + y_1 - 2z_1) = \frac{1}{20}(17 - 1.028 - 2(0.061)) = \frac{15.850}{20} = 0.793$$

$$y_2 = \frac{1}{20}(-18 - 3x_2 + z_1) = \frac{1}{20}(-18 - 3(0.793) + 0.061) = \frac{-20.318}{20} = -1.016$$

$$z_2 = \frac{1}{20}(25 - 2x_2 + 3y_2) = \frac{1}{20}(25 - 2(0.793) + 3(-1.016)) = \frac{1.366}{20} = 0.068$$


Iteration 3:

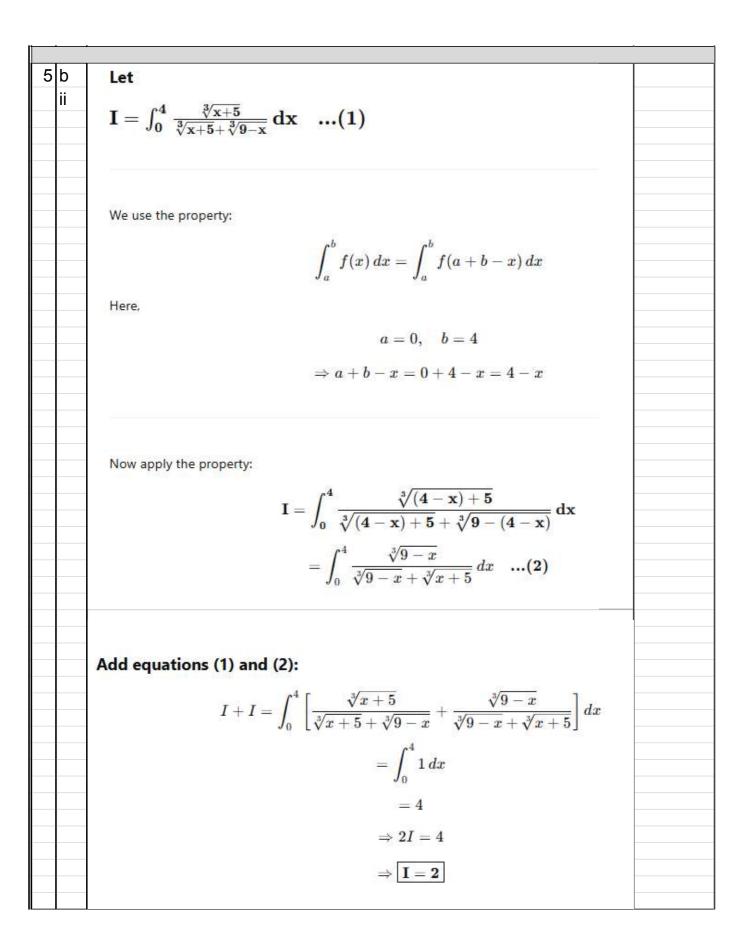
$$x_3 = \frac{1}{20}(17 + y_2 - 2z_2) = \frac{1}{20}(17 - 1.016 - 2(0.068)) = \frac{15.848}{20} = 0.792$$

$$y_3 = \frac{1}{20}(-18 - 3x_3 + z_2) = \frac{1}{20}(-18 - 3(0.792) + 0.068) = \frac{-20.308}{20} = -1.015$$

$$z_3 = \frac{1}{20}(25 - 2x_3 + 3y_3) = \frac{1}{20}(25 - 2(0.792) + 3(-1.015)) = \frac{1.367}{20} = 0.068$$

$$x_3 = 0.792$$

 $y_3 = -1.015$
 $z_3 = 0.068$

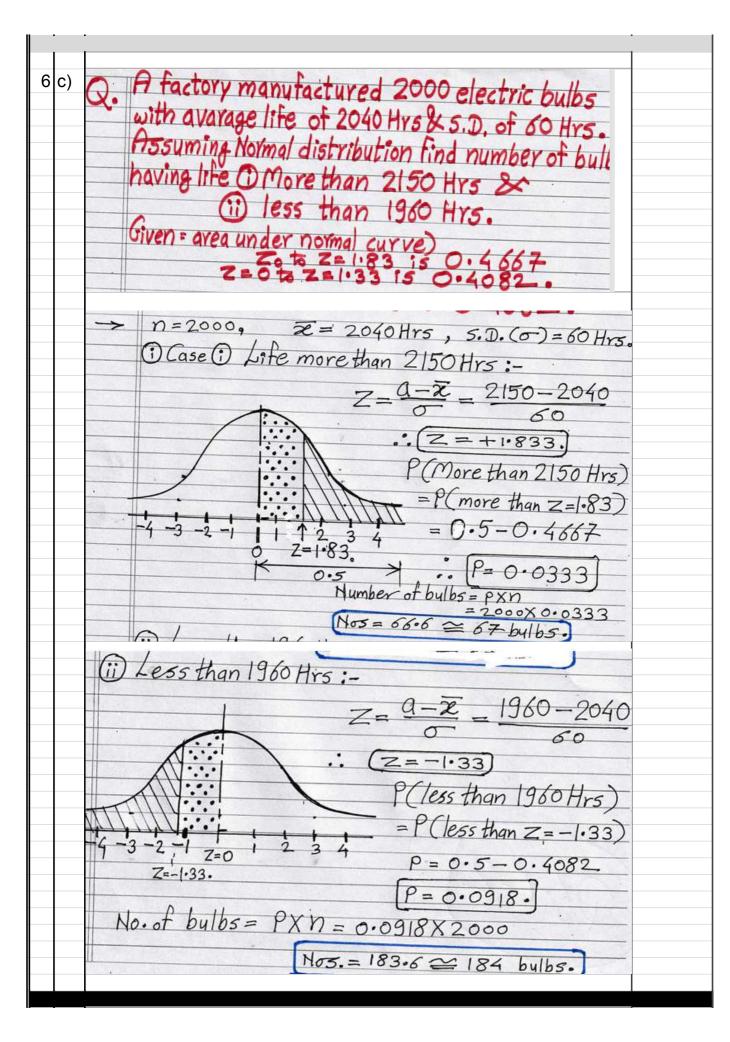


4	e)	A random variable has a poisson distribution such that p(2)=p(3) Find P(5)	
		Given $P(2)=P(3)$,	1
		$rac{e^{-m}m^2}{2!} = rac{e^{-m}m^3}{3!}$	
		Cancel e^{-m} ,	
		$rac{m^2}{2}=rac{m^3}{6}$	
		Multiply both sides by 6,	
		$3m^2=m^3$	
		Divide both sides by m^2 ,	
		3=m	1
		Then,	
		$P(5) = rac{e^{-3}3^5}{5!} = rac{e^{-3} imes 243}{120} = rac{243}{120} e^{-3} = 2.025 imes e^{-3}$	1
		Numerically,	
		P(5) pprox 2.025 imes 0.04979 = 0.1008	1

5 a) Q: 50/ve \ 3 - 2 sin2z (i) numer $\frac{dx}{\cos^2 x}$ $\frac{3-2\sin^2 x}{\cos^2 x}$ -> Divide numerator & denominator by "cos22". : I= Sec2d2 3 sec2x-2tan2x $I = \int \frac{\sec^2 x \, dx}{3[1 + \tan^2 x] - 2\tan^2 x}$ $: I = \int \frac{\sec^2 x \, dx}{3 + \tan^2 x}$ Put: tanz=1 diff. w.r.t.z secrede = de $\therefore I = \int \frac{dt}{(\sqrt{3})^2 + t^2}$: I = 1/3 tan-1 (+)+C I= 1/3 tan (=)+C.

-			
	1		,
5	a)	Darkham	
	ii)	Problem:	
	′	$\mathbf{I} = \int rac{\mathbf{x} + 1}{(\mathbf{x} - 1)^2} \mathbf{d}\mathbf{x}$	
		$\Gamma = \int \frac{(\mathbf{x} - 1)^2}{(\mathbf{x} - 1)^2} \mathbf{d}\mathbf{x}$	
		Let $\mathbf{t}=\mathbf{x}-1$, so $\mathbf{x}=\mathbf{t}+1$, and $\mathbf{dx}=\mathbf{dt}$.	
		Then,	
		$f(\mathbf{t}+1)+1$, $f(\mathbf{t}+2)$	
		$\mathbf{I} = \int rac{(\mathbf{t}+1)+1}{\mathbf{t}^2}\mathbf{dt} = \int rac{\mathbf{t}+2}{\mathbf{t}^2}\mathbf{dt}$	
		Now split the integrand:	
		$f(\mathbf{t}, 2), f(1, \mathbf{s})$	
		$\mathbf{I} = \int \left(rac{\mathbf{t}}{\mathbf{t^2}} + rac{2}{\mathbf{t^2}} ight) \mathbf{dt} = \int \left(rac{1}{\mathbf{t}} + 2\mathbf{t}^{-2} ight) \mathbf{dt}$	
		v (/ v (- /	
		Now integrate term by term:	
		(1	
		$\mathbf{I} = \int rac{1}{\mathbf{t}} \mathbf{dt} + \int 2\mathbf{t}^{-2} \mathbf{dt} = \log \mathbf{t} - rac{2}{\mathbf{t}} + \mathbf{C}$	
		y c y	
		Substitute back $\mathbf{t}=\mathbf{x}-1$:	
		2	
		$\mathbf{I} = \log \mathbf{x} - 1 - \frac{2}{\mathbf{x} - 1} + \mathbf{C}$	
		{ NOTE : This problem can be solved using Partial Fraction Method also, Answer remains same.	

Let	
$\mathbf{I} = \int_2^5 rac{\sqrt{\mathbf{x}}}{\sqrt{7-\mathbf{x}} + \sqrt{\mathbf{x}}} \mathbf{dx}$ (1)	
Using the property:	
$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{dx} = \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{a} + \mathbf{b} - \mathbf{x}) \mathbf{dx}$	
Here,	
$\mathbf{a} = 2, \mathbf{b} = 5 \Rightarrow \mathbf{a} + \mathbf{b} = 7$	
Substitute $x o 7 - x$ into equation (1):	
$\mathbf{I} = \int_2^5 rac{\sqrt{7-\mathbf{x}}}{\sqrt{7-(7-\mathbf{x})}+\sqrt{7-\mathbf{x}}}\mathbf{dx}$	
$\Rightarrow extbf{I} = \int_2^5 rac{\sqrt{7- extbf{x}}}{\sqrt{ extbf{x}} + \sqrt{7- extbf{x}}} extbf{dx} (2)$	
Now, add equations (1) and (2):	
$\mathbf{I} + \mathbf{I} = \int_{2}^{5} \left(\frac{\sqrt{\mathbf{x}}}{\sqrt{7 - \mathbf{x}} + \sqrt{\mathbf{x}}} + \frac{\sqrt{7 - \mathbf{x}}}{\sqrt{\mathbf{x}} + \sqrt{7 - \mathbf{x}}} \right) \mathbf{d}\mathbf{x}$	
$\mathbf{2I} = \int_{2}^{5} rac{\sqrt{\mathbf{x}} + \sqrt{7 - \mathbf{x}}}{\sqrt{\mathbf{x}} + \sqrt{7 - \mathbf{x}}} \mathbf{dx}$	
$\mathbf{2I} = \int_{2}^{5} 1 \mathbf{dx}$	
${f 2I}=[{f x}]_{f 2}^{f 5}={f 5}-{f 2}={f 3}$	
$\tau = \frac{3}{2}$	
	$\begin{split} \mathbf{I} &= \int_2^5 \frac{\sqrt{\mathbf{x}}}{\sqrt{7-\mathbf{x}}+\sqrt{\mathbf{x}}} d\mathbf{x} &(1) \\ \text{Using the property:} & \int_a^b \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_a^b \mathbf{f}(\mathbf{a}+\mathbf{b}-\mathbf{x}) d\mathbf{x} \\ \text{Here,} & \mathbf{a} = 2, \mathbf{b} = 5 \Rightarrow \mathbf{a}+\mathbf{b} = 7 \\ \\ \text{Substitute } x \to 7 - x \text{ into equation (1):} & & & & & & \\ \mathbf{I} &= \int_2^5 \frac{\sqrt{7-\mathbf{x}}}{\sqrt{7-(7-\mathbf{x})}+\sqrt{7-\mathbf{x}}} d\mathbf{x} \\ & \Rightarrow \mathbf{I} = \int_2^5 \frac{\sqrt{7-\mathbf{x}}}{\sqrt{\mathbf{x}}+\sqrt{7-\mathbf{x}}} d\mathbf{x} &(2) \\ \\ \text{Now, add equations (1) and (2):} & & & & \\ \mathbf{I} + \mathbf{I} &= \int_2^5 \left(\frac{\sqrt{\mathbf{x}}}{\sqrt{7-\mathbf{x}}+\sqrt{\mathbf{x}}} + \frac{\sqrt{7-\mathbf{x}}}{\sqrt{\mathbf{x}}+\sqrt{7-\mathbf{x}}}\right) d\mathbf{x} \\ & & & & \\ \mathbf{2I} &= \int_2^5 \frac{\sqrt{\mathbf{x}}+\sqrt{7-\mathbf{x}}}{\sqrt{\mathbf{x}}+\sqrt{7-\mathbf{x}}} d\mathbf{x} \\ & & & & \\ \mathbf{2I} &= \int_2^5 1 d\mathbf{x} \end{split}$


Let	
$\mathbf{I} = \int_0^{\frac{\pi}{2}} \log(\tan \mathbf{x}) \mathbf{dx} (1)$	
Using the identity:	
$ an\left(rac{\pi}{2}-x ight)=\cot x \Rightarrow \log\left(an\left(rac{\pi}{2}-x ight) ight)=\log(\cot x)$ $=\log\left(rac{1}{\tan x} ight)=-\log(\tan x) (ext{since } \log(1/a)=-\log(a)$	
Now apply the property:	
$\mathbf{I} = \int_0^{rac{\pi}{2}} \log(an(rac{\pi}{2} - \mathbf{x})) \mathbf{dx}$	
$\mathbf{I} = \int_0^{\frac{\pi}{2}} -\log(\tan \mathbf{x}) d\mathbf{x} = -\mathbf{I} $	
Add equations (1) and (2):	
$\mathbf{I} + \mathbf{I} = 0 \Rightarrow \mathbf{2I} = 0$ $\mathbf{I} = 0$	

5	С		
	ii	$f^{\frac{\pi}{2}}$.	
		$I = \int_0^{\frac{\pi}{2}} \sin x \cdot \cos x dx$	
		$\cos x = t$	
		$-\sin x dx = dt \Rightarrow \sin x dx = -dt$	
		$x = 0$ $\frac{\pi}{2}$	
		$\begin{array}{c cccc} x & 0 & \frac{1}{2} \\ \hline t = \cos x & \cos 0 = 1 & \cos \frac{\pi}{2} = 0 \end{array}$	
		$t = \cos x$ $\cos 0 = 1$ $\cos \frac{\pi}{2} = 0$	
		\mathcal{L}_0	
		$I = \int_1^0 t \cdot (-dt)$	
		$=\int_0^1 t dt$	
		$=\int_0^{\infty} t dt$	
		5.231	
		$=\left[\frac{t^2}{2}\right]_0^1$	
		$1^2 0^2$	
		$=rac{1^2}{2}-rac{0^2}{2}$	
		1	
		$=\frac{1}{2}$	
		~	
6	a)	±	
		$(1+x^2)dy-(1+y^2)dx=0$	
	i)		
		Rewriting:	
		$(1+x^2) dy = (1+y^2) dx$	
		dy = dx	
		$\frac{dy}{1+y^2} = \frac{dx}{1+x^2}$	
		Integrating both sides:	
		$\int \frac{dy}{1+y^2} = \int \frac{dx}{1+x^2}$	
		The state of the s	
		$\tan^{-1}(y)=\tan^{-1}(x)+C$	
		$\tan^{-1}(y)-\tan^{-1}(x)=C$	
II I			

.		1
6 a)		
	9 9 9	
lii)	$(x^2 + 6xy - y^2) dx + (3x^2 - 2xy + y^2) dy = 0$	
	$M = x^2 + 6xy - y^2, N = 3x^2 - 2xy + y^2$	
	∂M	
	$\therefore \frac{\partial M}{\partial y} = 0 + 6x - 2y = 6x - 2y$	
	σy	
	∂N	
	$\therefore \frac{\partial N}{\partial x} = 6x - 2y$	
	σx	
	$\partial M = \partial N$	
	$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \Rightarrow \text{Given eq. is "Exact"}$	
	$\partial y = \partial x$	
	free free free free free free free free	
	$\int M dx + \int (ext{terms free from } x ext{ only in } N) dy = C$	
	$=\int (x^2+6xy-y^2)dx+\int y^2dy$	
	J	
	Nageria (salaria Ari)	
	$\int m^2 dm + \int G_{max} dm = \int m^2 dm + \int m^2 dm$	
	$= \int x^2 dx + \int 6xy dx - \int y^2 dx + \int y^2 dy$	
	₂ ,3	
	$=rac{x^3}{3}+3x^2y-xy^2+rac{y^3}{3}=C$	
	3	
	P	
	x^3 , y^3	
	$\left rac{x^3}{3} + 3x^2y - xy^2 + rac{y^3}{3} = C ight $	
	3	
		<u> </u>

b i) Q	Solve D.E. $\frac{dy}{dx} + y \tan x = \cos^2 x$.
	- $\frac{dy}{dx} + Py = Q$.
	I.F.= $e^{\int P dx} = e^{\int P dx}$
	:I.f. = sec 2. Solution of Linear differential equation,
•	$YX(I.F.) = \int QX(I.F.) dx + C$ $\therefore Y(secx) = \int \cos^2 x (secx) dx + C$
	$\therefore Y \sec x = \int \cos^2 x \left(\frac{1}{\cos x}\right) dx + C$ $\therefore Y \sec x = \int \cos x dx + C$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

6	b	verify whether $y=\cos x$ is a solution of the differential equation:	
	ii)	verily whether $g = \cos x$ is a solution of the unferential equation.	
	 	d^2n	
		$\frac{d^2y}{dx^2} + y = 0$	
		dx^2	
		Given:	
		$y = \cos x$	
		Jz.	
		$rac{dy}{dx} = -\sin x$	
		300500	
		$rac{d^2y}{dx^2} = -\cos x$	
		$\frac{1}{dx^2} = -\cos x$	
		Substitute into the equation:	
		d^2u	
		$rac{d^2y}{dx^2}+y=-\cos x+\cos x=0$	
		$y=\cos x ext{ is a solution of } rac{d^2y}{dx^2}+y=0$	
		$dx^2 + y = 0$	

