17301

13141

3 Hours / 100 Marks
Seat No. \square
Instructions - (1) All Questions are Compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any TEN of the following:
a) Find the point on the curve $y=3 x-x^{2}$ at which slope is -5 .
b) Find the radius of curvature of the curve

$$
y=\log (\sin x) \text { at } x=\frac{\pi}{2}
$$

c) Integrate w.r.to x of $\sqrt{1+\cos 2 x}$
d) Evaluate $\int \frac{\cos (\log x) d x}{x}$
e) Evaluate $\int \frac{d x}{x(x+1)}$
f) Evaluate $\int \tan ^{-1} x d x$
g) Evaluate $\int_{1}^{2} \frac{d x}{3 x-2}$
h) Find the area contained by the curve $y=1+x^{3}+2 \sin x$ from $x=0$ to $x=\pi$.
i) Find the order and degree of the
D.E. $\frac{d^{2} y}{d x^{2}}=\sqrt{y-\frac{d y}{d x}}$
j) Form a differential equation if $y=\mathrm{A} \sin x+\mathrm{B} \cos x$.
k) From a pack of 52 cards one is drawn at random. Find the probability of getting a king.

1) An unbiased coin is tossed 5 times. Find the probability of getting 3 heads.
2. Attempt any FOUR of the following:
a) Find the equation of the tangent and normal to the curve $13 x^{3}+2 x^{2} y+y^{3}=1$ at $(1,-2)$
b) A beam is bent in the form of the curve $y=2 \sin x-\sin 2 x$. Find the radius of curvature of the beam at this point at $x=\frac{\pi}{2}$.
c) Find the maximum and minimum values of $x^{3}-18 x^{2}+96 x$.
d) Evaluate $\int \frac{1-\tan x}{1+\tan x} d x$
e) Evaluate $\int \sin ^{3} x d x$
f) Evaluate $\int \frac{x+1}{x\left(x^{2}-4\right)} d x$
3. Attempt any FOUR of the following:
a) Evaluate $\int_{0}^{4} \frac{d x}{\sqrt{4 x-x^{2}}}$
b) Evaluate $\int_{0}^{5} \frac{\sqrt{9-x} d x}{\sqrt{9-x}+\sqrt{x+4}}$
c) Find the area of region included between the parabola $y=x^{2}+1$ and the line $y=2 x+1$.
d) Solve the D.E. $x\left(1+y^{2}\right) d x+y\left(1+x^{2}\right) d y=0$
e) Solve the D.E. $(4 x+y)^{2} \frac{d y}{d x}=1$
f) Solve the D.E. $x(x+y) d y-y^{2} d x=0$
4. Attempt any FOUR of the following:
a) Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\cot x}} d x$
b) Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
c) Find the area of the circle $x^{2}+y^{2}=16$ by integration.
d) Solve the D.E. $\frac{d y}{d x}+y \tan x=\cos ^{2} x$
e) Solve the D.E. $\left(e^{x}+2 x y^{2}+y^{3}\right) d x+\left(a^{y}+2 x^{2} y+3 x y^{2}\right) d y=0$
f) Verify that $y=\log x$ is solution of $\frac{x d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$.
5. Attempt any FOUR of the following:
a) A room has 3 electric lamps. From a collection of 15 electric bulbs of which only 10 are good, 3 are selected at random and put in the lamps. Find the probability that the room is lighted by at least one of the bulbs.
b) If 20% of the bolts produce by a machine are defective. Find the probability that out of 4 bolts drawn
i) One is defective
ii) At most two are defective.
c) A box contains 10 red, 5 white, 5 black balls. Two balls are drawn at random. Find the probability that they are not of the same colour.
d) Evaluate $\int \frac{d x}{4-5 \cos x}$
e) Evaluate $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$
f) Solve the D.E. $\frac{d y}{d x}+\frac{y}{x}=y^{2}$
6. Attempt any FOUR of the following:
a) If $\mathrm{P}(\mathrm{A})=\frac{1}{5}, \mathrm{P}\left(\mathrm{B}^{\prime}\right)=\frac{3}{5}$ and $\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=\frac{3}{4}$

Find $P(A \cap B)$ and $P\left(\frac{B}{A}\right)$
b) Using Poisson distribution, find the probability that the ace of spades will be drawn from a pack of well shuffled cards atleast one in 104 consecutive trials.
c) In a sample of 1000 cases, the mean of certain test is 14 and standard deviation is 2.5 . Assuming the distribution to be normal find
i) How many students score between 12 and 15 ?
ii) How many students score above 18 ?

Given $\quad \mathrm{A}(0.8)=0.2881$
A (0.4) $=0.1554$
$A(1.6)=0.4452$
d) A manufacturer can sell x items at price of Rs. ($330-x$) each. The cost of producing x items in Rs. is $x^{2}+10 x+12$. How many items must be sold so that his profit is maximum.
e) Find the equation of the tangents to the curve $y=x^{2}-2 x-3$, where it cuts X -axis.
f) Find the area of the region lying between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$.

13141

3 Hours / 100 Marks

