

(ISO/IEC - 27001 - 2005 Certified)

### SUMMER-18 EXAMINATION

Model Answer

Subject Title: Chemistry of Engineering materials

Subject code :

22233

Page **1** of **20** 

### Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.



| itle: Ch | emistry of Engineering materials Subject code : 22233                      | Pag   |
|----------|----------------------------------------------------------------------------|-------|
| Q No.    | Answer                                                                     | marks |
| 1        | Any five                                                                   | 10    |
| 1-a      | Types of thermal insulation:                                               |       |
|          | Thermal insulations are classified as –                                    |       |
|          | 1) Organic insulations – e.g. wool (sheep), cork, cellulose, wood fiber,   | 1     |
|          | flax, cotton, hemp, phenolic foam, urea-formaldehyde foam,                 |       |
|          | polyurethane foam, expanded polystyrene foam (thermocol), extruded         |       |
|          | polystyrene foam, polyethylene foam etc.                                   |       |
|          | 2) Inorganic insulations – e.g. aerogel, asbestos, glass wool, slag wool,  | 1     |
|          | rock wool, gypsum powder, foamed glass, expanded perlite,                  |       |
|          | refractory bricks, ceramic wool (fiber), calcium silicate, vermiculat etc  |       |
|          |                                                                            |       |
| 1-b      | Biomaterials:                                                              | 2     |
|          | • A biomaterial is any material that has been engineered to interact with  |       |
|          | biological systems for a medical purpose (a therapeutic or a diagnostic    |       |
|          | one).                                                                      |       |
|          | • Material that come in contact with tissues , blood and biological fluids |       |
|          | and intended for use for therapeutic, prosthetic and diagnostic            |       |
|          | applications without affecting the living organism and its components.     |       |
|          |                                                                            |       |
| 1-c      | Thermal conductivity of engineering material:                              | 2     |
|          | • Thermal conductivity of engineering material is the property of a        |       |
|          | material that determines the rate at which it can transfer heat.           |       |
|          | OR                                                                         |       |
|          | • It is a measure of the ability of a material to transfer heat.           |       |
|          | • Thermal conductivity of material is the property to conduct heat.        |       |



| Subject Title: Ch | emistry of Engineering materials         | Subject code :            | 22233 | Pag    | ge <b>3</b> of <b>20</b> |
|-------------------|------------------------------------------|---------------------------|-------|--------|--------------------------|
|                   |                                          |                           |       |        |                          |
| 1-d               | Thermal properties of engineering m      | aterials:(any 2)          |       | 1 mark |                          |
|                   | 1. Melting point                         |                           |       | each   |                          |
|                   | 2. Specific heat                         |                           |       |        |                          |
|                   | 3. Heat capacity (specific heat cap      | acity)                    |       |        |                          |
|                   | 4. Thermal expansion                     |                           |       |        |                          |
|                   | 5. Thermal conductivity                  |                           |       |        |                          |
|                   | 6. Thermal stability                     |                           |       |        |                          |
|                   | 7. Thermal shock resistance              |                           |       |        |                          |
|                   | 8. Heat resistance/thermal resistan      | ice                       |       |        |                          |
|                   |                                          |                           |       |        |                          |
| 1-e               | Engineering applications of ceramics     | :: (any 2)                |       | 1 mark |                          |
|                   | Ans : Ceramics are used for following of | engineering applications, |       | each   |                          |
|                   | 1. Cutting io and dies                   |                           |       |        |                          |
|                   | 2. Molten metal filters                  |                           |       |        |                          |
|                   | 3. Bearings                              |                           |       |        |                          |
|                   | 4. Sealing rings                         |                           |       |        |                          |
|                   | 5. Bushes                                |                           |       |        |                          |
|                   | 6. Fuel injection components             |                           |       |        |                          |
|                   | 7. Spark plug insulators                 |                           |       |        |                          |
|                   | 8. Disk brakes and clutches              |                           |       |        |                          |
|                   | 9. Jet turbine blades                    |                           |       |        |                          |
|                   | 10. Fuel cells                           |                           |       |        |                          |
|                   | 11. Body armour                          |                           |       |        |                          |
|                   | 12. Tank power trains                    |                           |       |        |                          |
|                   | 13. Gas burner nozzles                   |                           |       |        |                          |
|                   | 14. Catalytic converters                 |                           |       |        |                          |



| ect Title: C | hemistry of Engineering materials    | Subject code :                   | 22233  | Page      | e <b>4</b> ( |
|--------------|--------------------------------------|----------------------------------|--------|-----------|--------------|
|              | 15. Catalyst supports                |                                  |        |           |              |
|              | 16. Catalyst                         |                                  |        |           |              |
|              | 17. Heat exchangers                  |                                  |        |           |              |
|              | 18. Reformers                        |                                  |        |           |              |
|              | 19. Kiln linings                     |                                  |        |           |              |
|              | 20. Crucibles for glass making       |                                  |        |           |              |
|              | 21. Firebricks for furnace and over  | 18                               |        |           |              |
|              | 22. Cylinder liners                  |                                  |        |           |              |
|              | 23. Capacitors                       |                                  |        |           |              |
|              | 24. Resistance heating elements      |                                  |        |           |              |
|              | 25. Flow control valves              |                                  |        |           |              |
|              | 26. Light emitting diodes , laser di | odes                             |        |           |              |
|              | 27. Optical communication cables     |                                  |        |           |              |
|              | 28. Heat sink for electronic parts   |                                  |        |           |              |
|              | 29. Filters                          |                                  |        |           |              |
|              | 30. Rotors and gears                 |                                  |        |           |              |
|              | 31. Electrode materials              |                                  |        |           |              |
|              | 32. Precise instrument parts         |                                  |        |           |              |
|              | 33. Grinding media                   |                                  |        |           |              |
|              | 34. Ballistic armour                 |                                  |        |           |              |
|              | 35. Bullet proof vests               |                                  |        |           |              |
|              | 36. Thread processing nozzles, oil   | ing nozzles, rollers and twister | parts. |           |              |
| 1-f          | Example of thermosetting polymer     | with its structure(any 1)        |        | 1 mark    |              |
|              | Ans:                                 |                                  |        | for name  |              |
|              | 1. Nylon                             |                                  |        | and 1     |              |
|              | 2. Nylon-6                           |                                  |        | mark for  |              |
|              | 3. Nylon-66                          |                                  |        | structure |              |



(ISO/IEC - 27001 - 2005 Certified)





(ISO/IEC - 27001 - 2005 Certified)





(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

| Subject T | Title: Ch | emistry of Engineering materials      | Subject code :             | 22233         | Page   | e <b>7</b> of <b>20</b> |
|-----------|-----------|---------------------------------------|----------------------------|---------------|--------|-------------------------|
|           |           | of carbon content are –               |                            |               |        |                         |
|           |           | 1. Low carbon steel : $0.05 - 0.3$ %  |                            |               |        |                         |
|           |           | 2. Medium carbon steel : $0.3 - 0.5$  | %                          |               |        |                         |
|           |           | 3. High carbon steel : $0.5 - 2$ %    |                            |               |        |                         |
|           |           |                                       |                            |               |        |                         |
|           | 2         | Any three                             |                            |               | 12     |                         |
|           | 2-a       | Differentiate between Nanostructure   | and Microstructure.        |               | 1 mark |                         |
|           |           | Nanostructure                         | Microstructu               | re            | each   |                         |
|           |           | Nanostructures are structures that    | Microstructures are struc  | tures that    |        |                         |
|           |           | range between 1nm and 100nm           | are revealed by a microso  | cope of 25x   |        |                         |
|           |           | $(1nm=10^{-9}m)$ in at least one      | or greater magnification.  |               |        |                         |
|           |           | dimension.                            |                            |               |        |                         |
|           |           | A nanostructure is a structure of     | A microstructure has very  | y small size  |        |                         |
|           |           | intermediate size between             | than other structures.     |               |        |                         |
|           |           | microstructures and molecular         |                            |               |        |                         |
|           |           | structures.                           |                            |               |        |                         |
|           |           | Nanostructures are one dimension,     | Microstructures are one of | limension in  |        |                         |
|           |           | two dimension and three dimension     | scale.                     |               |        |                         |
|           |           | in scale.                             |                            |               |        |                         |
|           |           | The nanostructure of a material       | The microstructure of a r  | naterial      |        |                         |
|           |           | influences physical properties of the | influences physical prope  | erties of the |        |                         |
|           |           | material such as size , shape ,       | material such as strength  | , toughness   |        |                         |
|           |           | specific surface area, aspect ratio   | , wear resistance etc.     |               |        |                         |
|           |           | etc.                                  |                            |               |        |                         |
|           | 2-b       | Definition:                           | 1                          |               |        |                         |
|           |           | i) Melting point –                    |                            |               | 1      |                         |
|           |           | • The melting point of a material     | is the temperature at whi  | ch it changes |        |                         |



| state from solid to liquid at normal atmospheric pressure.         • The temperature at which a solid material melts to become a liquid at normal atmospheric pressure.         (ii) Specific heat –         • The specific heat of a material is the amount of heat energy per unit mass required to raise the temperature of the material by one degree Celsius.         (iii) Heat capacity –         • Heat capacity is the quantity of heat energy needed to raise the temperature of a specific material by one degree Celsius.         1         • Heat capacity is the ratio of the quantity of heat energy transferred to a material and the resultant temperature rise.         (iv) Dielectric constant –         • The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.         1         • It is an amount measuring the ability of a material to store electrical in an electric field.         2-c       Definition:         Impact strength –         • The impact strength is the ability of a material to absorb shock and impact energy without breaking //racture.         Compressive strength -         • The impact strength is the ability of a material to resist         2         Compressive strength is the ability of a material to resist         2         compressive strength is the ability of a material to resist                                                                                                          | Subject Title: Che | mistry of Engineering materials     | Subject code :                  | 22233            | Pag | e <b>8</b> of <b>20</b> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------|---------------------------------|------------------|-----|-------------------------|
| anormal atmospheric pressure.       (ii) Specific heat -       1         • The specific heat of a material is the amount of heat energy per unit mass required to raise the temperature of the material by one degree Celsius.       1         (iii) Heat capacity -       • Heat capacity is the quantity of heat energy needed to raise the temperature of a specific material by one degree Celsius.       1         • Heat capacity is the quantity of heat energy needed to raise the temperature of a specific material by one degree Celsius.       1         • Heat capacity is the ratio of the quantity of heat energy transferred to a material and the resultant temperature rise.       1         (iv) Dielectric constant -       • The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.       1         • It is an amount measuring the ability of a material to store electrical in an electric field.       1         2-c       Definition:       1         Impact strength -       • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.       2         terms of the amount of energy absorbed before fracture.       • The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.       2         to material to rengt strength -       • The compressive strength is the ability of a material to resist       2 |                    | state from solid to liquid at no    | rmal atmospheric pressure.      |                  |     |                         |
| (ii) Specific heat –       • The specific heat of a material is the amount of heat energy per unit mass required to raise the temperature of the material by one degree Celsius.       1         (iii) Heat capacity –       • Heat capacity is the quantity of heat energy needed to raise the temperature of a specific material by one degree Celsius.       1         • Heat capacity is the quantity of heat energy needed to raise the temperature of a specific material by one degree Celsius.       1         • Heat capacity is the ratio of the quantity of heat energy transferred to a material and the resultant temperature rise.       1         (iv) Dielectric constant –       • The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.       1         • It is an amount measuring the ability of a material to store electrical in an electric field.       1         2-c       Definition:       1         Impact strength –       • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.       2         The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.       2         Compressive strength –       • The compressive strength is the ability of a material to resist       2                                                                                                                        |                    | • The temperature at which a se     | olid material melts to beco     | ome a liquid at  |     |                         |
| <ul> <li>The specific heat of a material is the amount of heat energy per unit mass required to raise the temperature of the material by one degree Celsius.</li> <li>(iii) Heat capacity –</li> <li>Heat capacity is the quantity of heat energy needed to raise the temperature of a specific material by one degree Celsius.</li> <li>Heat capacity is the ratio of the quantity of heat energy transferred to a material and the resultant temperature rise.</li> <li>(iv) Dielectric constant –</li> <li>The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.</li> <li>It is an amount measuring the ability of a material to store electrical in an electric field.</li> <li>2-c Definition:</li> <li>Impact strength –</li> <li>The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.</li> <li>The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.</li> <li>Compressive strength -</li> <li>The compressive strength is the ability of a material to resist</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |                    | normal atmospheric pressure.        |                                 |                  |     |                         |
| mass required to raise the temperature of the material by one degree         Celsius.         (iii) Heat capacity –         • Heat capacity is the quantity of heat energy needed to raise the         temperature of a specific material by one degree Celsius.         • Heat capacity is the ratio of the quantity of heat energy transferred to a         material and the resultant temperature rise.         (iv) Dielectric constant –         • The dielectric constant is the ratio of the permittivity of a material to         the permittivity of free space.         • It is an amount measuring the ability of a material to store electrical         in an electric field.         2-c         Definition:         Impact strength –         • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.         • The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.         Compressive strength –         • The compressive strength is the ability of a material to resist                                                                                                                                                                                                                                                                                                                                                                                            |                    | (ii) Specific heat –                |                                 |                  |     |                         |
| Celsius.       (iii) Heat capacity –         • Heat capacity is the quantity of heat energy needed to raise the temperature of a specific material by one degree Celsius.       1         • Heat capacity is the ratio of the quantity of heat energy transferred to a material and the resultant temperature rise.       1         (iv) Dielectric constant –       • The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.       1         • It is an amount measuring the ability of a material to store electrical in an electric field.       1         2-c       Definition:       1         Impact strength –       • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.       2         • The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.       2         • The compressive strength is the ability of a material to resist       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | • The specific heat of a material   | is the amount of heat energ     | y per unit       | 1   |                         |
| (iii) Heat capacity -       • Heat capacity is the quantity of heat energy needed to raise the temperature of a specific material by one degree Celsius.       1         • Heat capacity is the ratio of the quantity of heat energy transferred to a material and the resultant temperature rise.       1         (iv) Dielectric constant -       • The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.       1         • It is an amount measuring the ability of a material to store electrical in an electric field.       1         2-c       Definition:       1         Impact strength -       • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.       2         • The impact strength -       • The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.       2         Compressive strength -       • The compressive strength is the ability of a material to resist       2                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | mass required to raise the temp     | perature of the material by c   | one degree       |     |                         |
| <ul> <li>Heat capacity is the quantity of heat energy needed to raise the temperature of a specific material by one degree Celsius.         <ul> <li>Heat capacity is the ratio of the quantity of heat energy transferred to a material and the resultant temperature rise.</li> <li>(iv) Dielectric constant –                 <ul> <li>The dielectric constant -</li> <li>The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.</li> <li>It is an amount measuring the ability of a material to store electrical in an electric field.</li> <li>Definition:</li> <li>Impact strength –</li></ul></li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | Celsius.                            |                                 |                  |     |                         |
| temperature of a specific material by one degree Celsius.       1         • Heat capacity is the ratio of the quantity of heat energy transferred to a material and the resultant temperature rise.       1         (iv) Dielectric constant –       • The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.       1         • It is an amount measuring the ability of a material to store electrical in an electric field.       1         2-c       Definition:       1         Impact strength –       • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.       2         • The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.       2         Compressive strength –       • The compressive strength is the ability of a material to resist       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | (iii) Heat capacity –               |                                 |                  |     |                         |
| <ul> <li>Heat capacity is the ratio of the quantity of heat energy transferred to a material and the resultant temperature rise.</li> <li>(iv) Dielectric constant –         <ul> <li>The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.</li> <li>It is an amount measuring the ability of a material to store electrical in an electric field.</li> </ul> </li> <li>2-c Definition:         <ul> <li>Impact strength –</li> <li>The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.</li> <li>The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.</li> <li>Compressive strength –                 <ul> <li>The compressive strength is the ability of a material to resist</li> <li>The compressive strength is the ability of a material to resist</li> <li>2</li></ul></li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | • Heat capacity is the quantity of  | heat energy needed to rais      | e the            |     |                         |
| material and the resultant temperature rise.       (iv) Dielectric constant –       1         • The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.       1         • It is an amount measuring the ability of a material to store electrical in an electric field.       1         2-c       Definition:       1         Impact strength –       • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.       2         • The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.       2         Compressive strength –       • The compressive strength is the ability of a material to resist       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | temperature of a specific mater     | ial by one degree Celsius.      |                  | 1   |                         |
| (iv) Dielectric constant -       • The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.       1         • It is an amount measuring the ability of a material to store electrical in an electric field.       1         2-c       Definition:       1         Impact strength -       • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.       2         • The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.       2         Compressive strength -       • The compressive strength is the ability of a material to resist       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | • Heat capacity is the ratio of the | e quantity of heat energy tra   | insferred to a   |     |                         |
| <ul> <li>The dielectric constant is the ratio of the permittivity of a material to the permittivity of free space.</li> <li>It is an amount measuring the ability of a material to store electrical in an electric field.</li> <li>2-c Definition:         <ul> <li>Impact strength –</li> <li>The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.</li> <li>The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.</li> <li>Compressive strength –</li> <li>The compressive strength is the ability of a material to resist</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | material and the resultant temp     | erature rise.                   |                  |     |                         |
| the permittivity of free space.       1         the permittivity of free space.       1         It is an amount measuring the ability of a material to store electrical in an electric field.       1         2-c       Definition:         Impact strength –       • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.       2         • The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.       2         Compressive strength –       • The compressive strength is the ability of a material to resist       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | (iv) <b>Dielectric constant</b> –   |                                 |                  |     |                         |
| <ul> <li>It is an amount measuring the ability of a material to store electrical in an electric field.</li> <li>2-c Definition:         <ul> <li>Impact strength –</li> <li>The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.</li> <li>The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.</li> <li>Compressive strength –</li> <li>The compressive strength is the ability of a material to resist</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | • The dielectric constant is the    | ne ratio of the permittivity of | of a material to |     |                         |
| in an electric field.         2-c       Definition:         Impact strength –       • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.         • The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.       2         Compressive strength –       • The compressive strength is the ability of a material to resist       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | the permittivity of free space      | ce.                             |                  | 1   |                         |
| 2-c       Definition:         Impact strength –       • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.       2         • The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.       2         Compressive strength –       • The compressive strength is the ability of a material to resist       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | • It is an amount measuring         | the ability of a material to    | store electrical |     |                         |
| Impact strength –       • The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.       2         • The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.       2         Compressive strength –       • The compressive strength is the ability of a material to resist       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | in an electric field.               |                                 |                  |     |                         |
| <ul> <li>The resistance of a material to fracture by a blow , expressed in terms of the amount of energy absorbed before fracture.</li> <li>The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.</li> <li>Compressive strength –         <ul> <li>The compressive strength is the ability of a material to resist</li> <li>2</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-c                | Definition:                         |                                 |                  |     |                         |
| <ul> <li>terms of the amount of energy absorbed before fracture.</li> <li>The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.</li> <li>Compressive strength – <ul> <li>The compressive strength is the ability of a material to resist</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | Impact strength –                   |                                 |                  |     |                         |
| <ul> <li>The impact strength is the ability of a material to absorb shock and impact energy without breaking /fracture.</li> <li>Compressive strength –         <ul> <li>The compressive strength is the ability of a material to resist</li> <li>2</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | • The resistance of a mater         | ial to fracture by a blow       | , expressed in   | 2   |                         |
| impact energy without breaking /fracture.         Compressive strength –         • The compressive strength is the ability of a material to resist         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | terms of the amount of energy       | rgy absorbed before fractur     | e.               |     |                         |
| Compressive strength –         • The compressive strength is the ability of a material to resist       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | • The impact strength is the        | ability of a material to abs    | sorb shock and   |     |                         |
| • The compressive strength is the ability of a material to resist 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | impact energy without brea          | king /fracture.                 |                  |     |                         |
| The compressive strength is the donity of a material to resist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | Compressive strength –              |                                 |                  |     |                         |
| squeezing (compressive) load without fracture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | • The compressive strength          | is the ability of a mat         | terial to resist | 2   |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | squeezing (compressive) lo          | ad without fracture.            |                  |     |                         |



| • It is the maximum compressive stress that a material can sustain without fracture/failure , under gradually applied load.         2-d       Corrosion.         Definition -       2         • Corrosion is the gradual deterioration or destruction of materials (usually metals and alloys) by chemical or electrochemical reactions with its environment.       2         • Corrosion is defined as the gradual deterioration or destruction of a metal by chemical or electrochemical reactions with its environment.       2         • Any process of deterioration and consequent loss of a solid metallic material through undesired chemical or electrochemical attack by its environment starting at the surface.       Ya mark         Factors affecting rate of corrosion –       ½ mark         • Nature of the material (metal dependent factors) -       19 Position of the metal         • Surface of the metal       3 Surface of the metal         • Relative area of cathodic and anodic part ( anodeto cathode area ratio)       5) Nature of the oxide film         • Solubility of the corrosion product       7) Physical state of the metal         • Volatility of the corrosion product       10 Physical state of the metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subject Title: C | hemistry of Engineering materials Subject code : 22233                  | Page <b>9</b> of <b>20</b> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------|----------------------------|
| 2-d       Corrosion.       2         • Corrosion is the gradual deterioration or destruction of materials (usually metals and alloys) by chemical or electrochemical reactions with its environment.       2         • Corrosion is defined as the gradual deterioration or destruction of a metal by chemical or electrochemical reactions with its environment.       6         • Any process of deterioration and consequent loss of a solid metallic material through undesired chemical or electrochemical attack by its environment starting at the surface.       Factors affecting rate of corrosion –         The factors affecting rate of corrosion are :       ½ mark         A) Nature of the material (metal dependent factors) -       1         1) Position of the metal       3         3) Surface of the metal       4         4) Relative area of cathodic and anodic part ( anodeto cathode area ratio)       5) Nature of the oxide film         6) Solubility of the corrosion product       7         7) Physical state of the metal       8) Volatility of the corrosion product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | • It is the maximum compressive stress that a material can sustain      |                            |
| Definition -       2         • Corrosion is the gradual deterioration or destruction of materials (usually metals and alloys) by chemical or electrochemical reactions with its environment.       • Corrosion is defined as the gradual deterioration or destruction of a metal by chemical or electrochemical reactions with its environment.       • Corrosion is defined as the gradual deterioration or destruction of a metal by chemical or electrochemical reactions with its environment.       • Any process of deterioration and consequent loss of a solid metallic material through undesired chemical or electrochemical attack by its environment starting at the surface.         Factors affecting rate of corrosion –       ½ mark         • A) Nature of the material (metal dependent factors) -       1½ mark         • Position of the metal in the electrochemical or galvanic series       any 4         • Purity of the metal       3 Surface of the metal         • Relative area of cathodic and anodic part ( anodeto cathode area ratio)       5 Nature of the oxide film         • Solubility of the corrosion product       7 Physical state of the metal         • Volatility of the corrosion product       10 Physical state of the metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | without fracture/failure, under gradually applied load.                 |                            |
| <ul> <li>Corrosion is the gradual deterioration or destruction of materials (usually metals and alloys) by chemical or electrochemical reactions with its environment.</li> <li>Corrosion is defined as the gradual deterioration or destruction of a metal by chemical or electrochemical reactions with its environment.</li> <li>Any process of deterioration and consequent loss of a solid metallic material through undesired chemical or electrochemical attack by its environment starting at the surface.</li> <li>Factors affecting rate of corrosion –         <ul> <li>The factors affecting rate of corrosion are :</li> <li>Mature of the material (metal dependent factors) -</li> <li>Position of the metal in the electrochemical or galvanic series</li> <li>any 4</li> <li>Purity of the metal</li> <li>Surface of the metal</li> <li>Relative area of cathodic and anodic part ( anodeto cathode area ratio)</li> <li>Nature of the oxide film</li> <li>Solubility of the corrosion product</li> <li>Physical state of the metal</li> <li>Volatility of the corrosion product</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-d              | Corrosion.                                                              |                            |
| (usually metals and alloys) by chemical or electrochemical reactions with its environment.       • Corrosion is defined as the gradual deterioration or destruction of a metal by chemical or electrochemical reactions with its environment.         • Any process of deterioration and consequent loss of a solid metallic material through undesired chemical or electrochemical attack by its environment starting at the surface.         Factors affecting rate of corrosion –         The factors affecting rate of corrosion are :         1/2 mark         A) Nature of the material (metal dependent factors) -         1) Position of the metal in the electrochemical or galvanic series         2) Purity of the metal         3) Surface of the metal         4) Relative area of cathodic and anodic part ( anodeto cathode area ratio)         5) Nature of the oxide film         6) Solubility of the corrosion product         7) Physical state of the metal         8) Volatility of the corrosion product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | Definition -                                                            | 2                          |
| <ul> <li>with its environment.</li> <li>Corrosion is defined as the gradual deterioration or destruction of a metal by chemical or electrochemical reactions with its environment.</li> <li>Any process of deterioration and consequent loss of a solid metallic material through undesired chemical or electrochemical attack by its environment starting at the surface.</li> <li>Factors affecting rate of corrosion –</li> <li>The factors affecting rate of corrosion are : ½ mark</li> <li>A) Nature of the material (metal dependent factors) -</li> <li>Position of the metal in the electrochemical or galvanic series any 4</li> <li>2) Purity of the metal</li> <li>3) Surface of the metal</li> <li>4) Relative area of cathodic and anodic part ( anodeto cathode area ratio)</li> <li>5) Nature of the oxide film</li> <li>6) Solubility of the corrosion product</li> <li>7) Physical state of the metal</li> <li>8) Volatility of the corrosion product</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | • Corrosion is the gradual deterioration or destruction of materials    |                            |
| <ul> <li>Corrosion is defined as the gradual deterioration or destruction of a metal by chemical or electrochemical reactions with its environment.</li> <li>Any process of deterioration and consequent loss of a solid metallic material through undesired chemical or electrochemical attack by its environment starting at the surface.</li> <li>Factors affecting rate of corrosion –         <ul> <li>The factors affecting rate of corrosion are :</li> <li>Nature of the material (metal dependent factors) -</li> <li>Position of the metal</li> <li>Surface of the metal</li> <li>Surface of the metal</li> <li>Relative area of cathodic and anodic part ( anodeto cathode area ratio)</li> <li>Nature of the oxide film</li> <li>Solubility of the corrosion product</li> <li>Physical state of the metal</li> <li>Volatility of the corrosion product</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | (usually metals and alloys) by chemical or electrochemical reactions    |                            |
| <ul> <li>metal by chemical or electrochemical reactions with its environment.</li> <li>Any process of deterioration and consequent loss of a solid metallic material through undesired chemical or electrochemical attack by its environment starting at the surface.</li> <li>Factors affecting rate of corrosion – <ul> <li>The factors affecting rate of corrosion are :</li> <li>A) Nature of the material (metal dependent factors) -</li> <li>Position of the metal in the electrochemical or galvanic series</li> <li>any 4</li> </ul> </li> <li>2) Purity of the metal</li> <li>3) Surface of the metal</li> <li>4) Relative area of cathodic and anodic part ( anodeto cathode area ratio)</li> <li>5) Nature of the oxide film</li> <li>6) Solubility of the corrosion product</li> <li>7) Physical state of the metal</li> <li>8) Volatility of the corrosion product</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | with its environment.                                                   |                            |
| <ul> <li>environment.</li> <li>Any process of deterioration and consequent loss of a solid metallic material through undesired chemical or electrochemical attack by its environment starting at the surface.</li> <li>Factors affecting rate of corrosion – <ul> <li>The factors affecting rate of corrosion are :</li> <li>4) Nature of the material (metal dependent factors) -</li> <li>1) Position of the metal in the electrochemical or galvanic series</li> <li>2) Purity of the metal</li> <li>3) Surface of the metal</li> <li>4) Relative area of cathodic and anodic part ( anodeto cathode area ratio)</li> <li>5) Nature of the oxide film</li> <li>6) Solubility of the corrosion product</li> <li>7) Physical state of the metal</li> <li>8) Volatility of the corrosion product</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | • Corrosion is defined as the gradual deterioration or destruction of a |                            |
| <ul> <li>Any process of deterioration and consequent loss of a solid metallic material through undesired chemical or electrochemical attack by its environment starting at the surface.</li> <li>Factors affecting rate of corrosion – <ul> <li>The factors affecting rate of corrosion are :</li> <li>A) Nature of the material (metal dependent factors) -</li> <li>Position of the metal in the electrochemical or galvanic series</li> <li>Purity of the metal</li> <li>Surface of the metal</li> <li>Relative area of cathodic and anodic part ( anodeto cathode area ratio)</li> <li>Nature of the oxide film</li> <li>Solubility of the corrosion product</li> <li>Physical state of the metal</li> <li>Volatility of the corrosion product</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | metal by chemical or electrochemical reactions with its                 |                            |
| Image: |                  | environment.                                                            |                            |
| environment starting at the surface.<br>Factors affecting rate of corrosion –<br>The factors affecting rate of corrosion are : <sup>1/2</sup> mark<br>A) Nature of the material (metal dependent factors) - <sup>1/2</sup> mark<br>(A) Nature of the metal in the electrochemical or galvanic series any 4<br>2) Purity of the metal<br>3) Surface of the metal<br>4) Relative area of cathodic and anodic part ( anodeto cathode area<br>ratio)<br>5) Nature of the oxide film<br>6) Solubility of the corrosion product<br>7) Physical state of the metal<br>8) Volatility of the corrosion product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | • Any process of deterioration and consequent loss of a solid metallic  |                            |
| Factors affecting rate of corrosion –       1/2 mark         The factors affecting rate of corrosion are :       1/2 mark         A) Nature of the material (metal dependent factors) -       each for         1) Position of the metal in the electrochemical or galvanic series       any 4         2) Purity of the metal       .         3) Surface of the metal       .         4) Relative area of cathodic and anodic part ( anodeto cathode area ratio)       .         5) Nature of the oxide film       .         6) Solubility of the corrosion product       .         7) Physical state of the metal       .         8) Volatility of the corrosion product       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | material through undesired chemical or electrochemical attack by its    |                            |
| The factors affecting rate of corrosion are :½ markA) Nature of the material (metal dependent factors) -each for1) Position of the metal in the electrochemical or galvanic seriesany 42) Purity of the metal-3) Surface of the metal-4) Relative area of cathodic and anodic part ( anodeto cathode area<br>ratio)-5) Nature of the oxide film-6) Solubility of the corrosion product-7) Physical state of the metal-8) Volatility of the corrosion product-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | environment starting at the surface.                                    |                            |
| A) Nature of the material (metal dependent factors) -       each for         1) Position of the metal in the electrochemical or galvanic series       any 4         2) Purity of the metal       3         3) Surface of the metal       4         4) Relative area of cathodic and anodic part ( anodeto cathode area ratio)       5         5) Nature of the oxide film       6         6) Solubility of the corrosion product       7         7) Physical state of the metal       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Factors affecting rate of corrosion –                                   |                            |
| <ul> <li>any 4</li> <li>Position of the metal in the electrochemical or galvanic series</li> <li>Purity of the metal</li> <li>Surface of the metal</li> <li>Relative area of cathodic and anodic part ( anodeto cathode area ratio)</li> <li>Nature of the oxide film</li> <li>Solubility of the corrosion product</li> <li>Physical state of the metal</li> <li>Volatility of the corrosion product</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | The factors affecting rate of corrosion are :                           | ¹∕₂ mark                   |
| <ul> <li>2) Purity of the metal</li> <li>3) Surface of the metal</li> <li>4) Relative area of cathodic and anodic part ( anodeto cathode area ratio)</li> <li>5) Nature of the oxide film</li> <li>6) Solubility of the corrosion product</li> <li>7) Physical state of the metal</li> <li>8) Volatility of the corrosion product</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | A) Nature of the material (metal dependent factors) -                   | each for                   |
| <ul> <li>3) Surface of the metal</li> <li>4) Relative area of cathodic and anodic part ( anodeto cathode area ratio)</li> <li>5) Nature of the oxide film</li> <li>6) Solubility of the corrosion product</li> <li>7) Physical state of the metal</li> <li>8) Volatility of the corrosion product</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1) Position of the metal in the electrochemical or galvanic series      | any 4                      |
| <ul> <li>4) Relative area of cathodic and anodic part ( anodeto cathode area ratio)</li> <li>5) Nature of the oxide film</li> <li>6) Solubility of the corrosion product</li> <li>7) Physical state of the metal</li> <li>8) Volatility of the corrosion product</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 2) Purity of the metal                                                  |                            |
| ratio)<br>5) Nature of the oxide film<br>6) Solubility of the corrosion product<br>7) Physical state of the metal<br>8) Volatility of the corrosion product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 3) Surface of the metal                                                 |                            |
| <ul> <li>5) Nature of the oxide film</li> <li>6) Solubility of the corrosion product</li> <li>7) Physical state of the metal</li> <li>8) Volatility of the corrosion product</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 4) Relative area of cathodic and anodic part ( anodeto cathode area     |                            |
| <ul> <li>6) Solubility of the corrosion product</li> <li>7) Physical state of the metal</li> <li>8) Volatility of the corrosion product</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | ratio)                                                                  |                            |
| <ul><li>7) Physical state of the metal</li><li>8) Volatility of the corrosion product</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 5) Nature of the oxide film                                             |                            |
| 8) Volatility of the corrosion product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 6) Solubility of the corrosion product                                  |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 7) Physical state of the metal                                          |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 8) Volatility of the corrosion product                                  |                            |
| B) Nature of the environment (environment dependent factors) –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | B) Nature of the environment (environment dependent factors) –          |                            |



| Fitle: Ch                                                                                                                                                                                                                                                                                                                                                                                                   | emistry of Engineering materials                                                                                                                  | Subject code :                     | 22233 | Pa       | ge <b>10</b> of <b>20</b> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                             | 1) Temperature of the e                                                                                                                           | environment                        |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 2) pH of the environme                                                                                                                            | ent                                |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             | <ul><li>3) Humidity of the environment/presence of the moisture in the environment</li><li>4) Presence of impurities in the environment</li></ul> |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 5) Amount of oxygen in the environment                                                                                                            |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 6) Nature of anions and                                                                                                                           | l cations present in the environme | nt    |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 7) Presence of suspende                                                                                                                           | ed particles in the environment    |       |          |                           |
| <ul> <li>2-e Definition:</li> <li>1) Ductility <ul> <li>Ductility is the ability of a material to be deformed plastically without fracture under tensile strength.</li> </ul> </li> </ul>                                                                                                                                                                                                                   |                                                                                                                                                   |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       | 1.5      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             | • Ductility is the property of material by which materials can be drawn out into fine wire without fracture.                                      |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       |          |                           |
| <ul> <li>2) Plasticity <ul> <li>The ability of a material to deform under load and retain its new shape when the load is removed.</li> </ul> </li> <li>3) Hardness strength <ul> <li>It is the resistance of a material to plastic deformation-penetration , scratching , abrasion or cutting.</li> <li>The ability of a material to resist wear or abrasion and resist penetration.</li> </ul> </li> </ul> |                                                                                                                                                   |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       | 1        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       | 1.5      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                    |       |          |                           |
| 3                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                 |                                    |       | 12       |                           |
| 3-a                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                   |                                    |       | 1 mark   |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             | Thermosetting                                                                                                                                     | Thermoplastic                      |       | each for |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             | Polymers which once mould                                                                                                                         | Polymers whose shape can           |       | any 4    |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                             | /shaped do not soften when                                                                                                                        | be changed on application of       |       |          |                           |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

| Title: Che | emistry of Engineering materials | Subject code :                      | 22233 | Page <b>11</b> of <b>20</b> |
|------------|----------------------------------|-------------------------------------|-------|-----------------------------|
|            | heated and thus cannot be        | heat are k/as thermoplastic         |       |                             |
|            | reshaped                         | polymers                            |       |                             |
|            | It can be heated and shaped      | These are soften by heating,        |       |                             |
|            | once.                            | shaped when hot, harden             |       |                             |
|            |                                  | when cooled, reshaped when          |       |                             |
|            |                                  | heated again.                       |       |                             |
|            | It can be decamped when          | These are soften for no. of         |       |                             |
|            | reheated. No plasticity          | times on heating without            |       |                             |
|            |                                  | change in their properties.         |       |                             |
|            |                                  |                                     |       |                             |
|            | e.g. epoxy resins, urea          | e.g. polyethylene,                  |       |                             |
|            | formaldehyde etc                 | polypropylene etc                   |       |                             |
|            | They have 3 dimensional          | They have long chain linear         |       |                             |
|            | cross linked structure           | structure                           |       |                             |
|            | Produced by condensation         | Produced by addition                |       |                             |
|            | polymerization process           | polymerization process              |       |                             |
|            | High molecular weight            | Low molecular weight                |       |                             |
|            | These are hard, more brittle     | These are soft, less brittle        |       |                             |
|            | and strong                       | and weak                            |       |                             |
|            | Monomer used in this             | Monomer used in this                |       |                             |
|            | polymer is tri, tetra or poly    | polymer bi functional.              |       |                             |
|            | functional.                      |                                     |       |                             |
| 3-b        | Classification of metals:        | 11                                  |       |                             |
|            | Metals:                          |                                     |       | 1                           |
|            | 1. Ferrous. example: cast in     | ron, stainless steel                |       |                             |
|            | 2. Non ferrous. example: A       | Al and its alloys, Cu and its alloy | S     |                             |



|     | Classification of non metals:         1. Plastic       2. Rubber         3. Glass       3. | 1        |  |
|-----|--------------------------------------------------------------------------------------------|----------|--|
|     | 2. Rubber                                                                                  | 1        |  |
|     |                                                                                            |          |  |
|     | 3. Glass                                                                                   |          |  |
|     |                                                                                            |          |  |
|     | 4. Ceramics                                                                                |          |  |
|     | e.g. wood, asbestoses etc.                                                                 |          |  |
|     | Uses of metals:                                                                            |          |  |
|     | metals are used for MOC in steam boiler and steam pipeline                                 | ¹∕₂ mark |  |
|     | it is used in storage and transporting                                                     | each for |  |
|     | it used for distillation column, storage tank, pump, pipe etc.                             | any 2    |  |
|     | Uses of non metals:                                                                        |          |  |
|     | non-metals are used for gaskets.                                                           | ¹∕₂ mark |  |
|     | It is used for seals, bushes, glands etc.                                                  | each for |  |
|     | Used for vessel and reaction kettle lining. Etc.                                           | any 2    |  |
| 3-с | Corrosion in alkaline medium:                                                              |          |  |
|     | Cathodic reaction is : absorption of oxygen                                                | 4        |  |
|     | $O_2 + 2 H_2O + 4 e^- \rightarrow 4 OH^-$                                                  |          |  |
|     | Corrosion is less in alkaline medium                                                       |          |  |
|     | Example of alkaline medium is NaCl solution,                                               |          |  |
|     | e.g.                                                                                       |          |  |
|     | a piece of iron is immersed in sodium chloride solution                                    |          |  |
|     | $Fe -> Fe^{2+} + 2e^{-}$                                                                   |          |  |
|     | $NaCl \rightarrow Na^+ + Cl^-$                                                             |          |  |
|     | $\frac{1}{2}O_2 + H_2O + 2e^> 2 OH^-$                                                      |          |  |
|     | Na <sup>+</sup> + OH <sup>-</sup> -> NaOH                                                  |          |  |
|     | $Fe^{2+} + 2Cl^{-} \rightarrow FeCl_2$                                                     |          |  |
| 3-d | Composition of SS-304:                                                                     | <br>     |  |



| Subject Title: C | hemistry of Engineering materials                                                                         | Subject code :             | 22233                   | Page <b>13</b> | of <b>20</b> |
|------------------|-----------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|----------------|--------------|
|                  | 18 – 20 % Cr, 8 – 10.5 % Ni, 0.08 % I                                                                     | max C, small amount of I   | Mn, Si, P,S and         | 2              |              |
|                  | the balance is Fe.                                                                                        |                            |                         |                |              |
|                  | Properties:                                                                                               |                            |                         |                |              |
|                  | Density= 8000 Kg/ cu. m                                                                                   |                            |                         | 2              |              |
|                  | MP. : 1450 deg. C                                                                                         |                            |                         |                |              |
|                  | Thermal conductivity: 16.2 W/(mK)                                                                         |                            |                         |                |              |
|                  | Good weld ability                                                                                         |                            |                         |                |              |
|                  | Good heat resistance                                                                                      |                            |                         |                |              |
|                  | Good drawing and forming properties                                                                       |                            |                         |                |              |
| 4                | Any three                                                                                                 |                            |                         | 12             |              |
| 4-a              | Crystal structure of glass by Bragg'<br>The general relationship between the relationship between the cry | wavelength of the incider  |                         | 4              |              |
|                  | Braggg's law, expressed mathematica                                                                       | lly as                     |                         |                |              |
|                  | $2d\sin\theta = n\lambda$                                                                                 |                            |                         |                |              |
|                  | Where n is an integer, $\lambda$ is the waveler                                                           | ngth of the incident x ray | , d is the              |                |              |
|                  | interplanar spacing of the crystal or di                                                                  | stance between the layers  | s of atoms and $\theta$ |                |              |
|                  | is the angle of incidence.                                                                                |                            |                         |                |              |
|                  | <ol> <li>Consider that the x ray of wav angle θ. The incident rays AF</li> </ol>                          | -                          | -                       |                |              |



### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

| Subject Title: Chemistry of Engineering ma | terials Subject code :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22233                | Page <b>14</b> of <b>20</b> |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|
| lattice planes Y and                       | nd Z travel along BC and QR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                             |
| 2. Let the spacing be                      | etween the crystal lattice planes of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | atoms be d           |                             |
| 3. Draw perpendicul                        | ars BD and BE from point B on P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q and Qr             |                             |
| respectively. BD a                         | and BE are the perpendiculars from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n point B on lines   |                             |
| PQ and PR respec                           | ctively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                             |
| 4. Thus the path diff                      | erence between the two waves AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BC and PQR is DQ +   |                             |
| QE. The path of t                          | the wave PQR is longer than the particular the part     | ath of the wave ABC  |                             |
| by DQ+QE.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                             |
| In the $\triangle$ DBQ, si                 | $n \theta = DQ/BQ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                             |
| Therefore $DQ = H$                         | BQ sin θ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                             |
| In the $\triangle$ EBQ, sin                | $\mathbf{n} \ \mathbf{\theta} = \mathbf{Q}\mathbf{E}/\mathbf{B}\mathbf{Q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                             |
| Therefore $QE = B$                         | SQ sin θ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                             |
| Path difference be                         | etween two rays = $DQ+QE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                             |
| =                                          | BQ sin $\theta$ + BQ sin $\theta$ = 2 BQ sin $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |
| =                                          | 2d Sin $\theta$ since BQ =d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                             |
| If the path different                      | nce 2d Sin $\theta$ is equal to the integrated of the second s | al multiple of wave  |                             |
| length of x ray, i.e                       | e. $n\lambda$ , then constructive interference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e will occur between |                             |
| the reflected rays                         | and they will reinforce each other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and consequently     |                             |
| the intensity of re-                       | flected beam is maximum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                             |
| Thus, for construct                        | ctive interference to occur:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                             |
| $2d\sin\theta = n\lambda$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                             |
| This is known as                           | Bragg's law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                             |



| Title: C | hemistry of Engineering materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Subject code :               | 22233     | Pag      | ge <b>15</b> of <b>20</b> |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|----------|---------------------------|
|          | Bragg's law<br>$n\lambda = 2dsin\theta$<br>$n\lambda = 2$ |                              |           |          |                           |
| 4-b      | Chemical reactivity of iron with ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ír:                          |           | 4        |                           |
|          | Chemical reactivity is the ability of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | material to combine with the | other     |          |                           |
|          | materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |           |          |                           |
|          | Chemical reactivity of iron / mild ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |           |          |                           |
|          | MS react with air to form iron oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |           |          |                           |
|          | the presence of moisture or dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |           |          |                           |
|          | iron oxide Fe <sub>2</sub> O <sub>3</sub> .xH <sub>2</sub> O (called brow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |           |          |                           |
|          | protective and it flake-off from the su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | esh metal |          |                           |
|          | surface for further reaction with air a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd water.                    |           |          |                           |
| 4-c      | $Q = m x Cp x(T_2 - T_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |           | 2        |                           |
|          | = 50g  x  4.18  J/gK  x  (373 - 273)  K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                            |           |          |                           |
|          | = <b>20900 j</b> oules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |           | 2        |                           |
| 4-d      | Classification of ceramics:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |           | 1 mark   |                           |
|          | 1.Glasses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |           | each for |                           |
|          | Glasses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |           | any 4    |                           |
|          | Ceramic glasses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |           | with one |                           |
|          | 2.Natural ceramics:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |           | example  |                           |
|          | Bones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |           |          |                           |
|          | Rocks and minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |          |                           |



| ect Title: Chemistry of Engineering materials |                                   | Subject code :            | 22233 | Page <b>16</b> o |
|-----------------------------------------------|-----------------------------------|---------------------------|-------|------------------|
|                                               | 3.Traditional ceramics:           |                           |       |                  |
|                                               | White wares                       |                           |       |                  |
|                                               | Structural clay products          |                           |       |                  |
|                                               | Bricks and tiles                  |                           |       |                  |
|                                               | Refractories                      |                           |       |                  |
|                                               | Abrasives                         |                           |       |                  |
|                                               | Cements                           |                           |       |                  |
|                                               | 4.Advanced structural cerami      | cs:                       |       |                  |
|                                               | Bio ceramics                      |                           |       |                  |
|                                               | Automotive ceramics               |                           |       |                  |
|                                               | Nuclear ceramics                  |                           |       |                  |
|                                               | Wear resistance ceramics          |                           |       |                  |
|                                               | 5.Functional ceramics:            |                           |       |                  |
|                                               | Optical ceramics                  |                           |       |                  |
|                                               | Conductive ceramics               |                           |       |                  |
|                                               | Capacitors, dielectric, piezoelec | ctric ceramics            |       |                  |
|                                               | Electronic substrate, package co  | eramics                   |       |                  |
|                                               | Magnetic ceramics                 |                           |       |                  |
| 5                                             | Any two                           |                           |       | 12               |
| 5-a                                           | Addition polymerization           | Condensation              |       | 1 mark           |
|                                               |                                   | polymerization            |       | each for         |
|                                               | 1)the polymerization reaction     | Many monomers molecules   |       | 5 points         |
|                                               | involves the joining of           | join together to form the |       | 1 mark           |
|                                               | unsaturated monomers by           | polymer with the loss or  |       | for              |
|                                               | breaking of bonds in a chain      | elimination of a small by |       | example.         |
|                                               |                                   |                           |       | · 1              |



# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

| Subject Title: Chemistry of Engineering materials |                                              | Subject code :               | 22233 | Page <b>17</b> of <b>20</b> |  |
|---------------------------------------------------|----------------------------------------------|------------------------------|-------|-----------------------------|--|
|                                                   | any by products is k/as                      | methanol is k/as             |       |                             |  |
|                                                   | addition polymerization.                     | condensation polymerization  |       |                             |  |
|                                                   | 2)monomers must have at                      | Monomers must have at least  |       |                             |  |
|                                                   | least double or triple                       | two dis similar of different |       |                             |  |
|                                                   |                                              | functional groups.           |       |                             |  |
|                                                   | 3)monomers add to produce                    | Monomers are condensed to    |       |                             |  |
|                                                   | polymers                                     | produce polymers             |       |                             |  |
|                                                   | 4)no by product is form                      | By product is formed such as |       |                             |  |
|                                                   |                                              | water or methanol            |       |                             |  |
|                                                   | 5)it produces thermoplastics                 | It produces thermosetting    |       |                             |  |
|                                                   |                                              | polymers                     |       |                             |  |
|                                                   | Example: pvc(poly vinyl chloride)            | Example: formaldehyde        |       |                             |  |
| 5-b                                               | Industrial importance of:                    |                              |       |                             |  |
|                                                   | i) Silicon carbide:                          |                              |       | <sup>1</sup> ⁄2 mark        |  |
|                                                   | 1. It is used in car brakes and clutches.    |                              |       | each                        |  |
|                                                   | 2. Ceramic plates in bulletproof vests       |                              |       |                             |  |
|                                                   | 3. Bearings                                  |                              |       |                             |  |
|                                                   | 4. Semiconductors wafer processing equipment |                              |       |                             |  |
|                                                   | 5. Light emitting diode                      |                              |       |                             |  |
|                                                   | 6. Cutting tools and burner nozzles.         |                              |       |                             |  |
|                                                   | ii) Aluminium oxide:                         |                              |       |                             |  |
|                                                   | 1. Bearing liners and seals                  |                              |       | 3                           |  |
|                                                   | 2. Cutting tools                             |                              |       |                             |  |
|                                                   | 3. Artificial bones and teeth                |                              |       |                             |  |
|                                                   | 4. Engine and turbine parts                  |                              |       |                             |  |
|                                                   | 5. Thermometry sensors                       |                              |       |                             |  |



| Subject Title: Ch | nemistry of Engineering materials Subject code : 22233                                              | Page <b>18</b> of <b>20</b> |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|
| 5-с               | Classification of alloy steels                                                                      |                             |  |  |  |
|                   | Based on its composition:                                                                           | 2                           |  |  |  |
|                   | 1) Simple alloy steels:                                                                             |                             |  |  |  |
|                   | It is the alloy steel containing one alloying element eg nickel steel                               |                             |  |  |  |
|                   | 2) Quaternary alloy steel:                                                                          |                             |  |  |  |
|                   | It is the alloy steel containing two alloying elements eg chromium and                              | 2                           |  |  |  |
|                   | vanadium                                                                                            |                             |  |  |  |
|                   | 3) Complex alloy steel:                                                                             |                             |  |  |  |
|                   | It is the alloy steel containing more than two alloying elements eg. High                           | 2                           |  |  |  |
|                   | speed tool steel                                                                                    |                             |  |  |  |
| 6                 | 6 Any two                                                                                           |                             |  |  |  |
| 6-a               | 6-a       Prevention and control of corrosion:         1.Material selection and choice of materials |                             |  |  |  |
|                   |                                                                                                     |                             |  |  |  |
|                   | 2.Proper design and fabrication of components                                                       | any 6                       |  |  |  |
|                   | 3. Use of high purity metals: The impurities present in a metal cause                               | points                      |  |  |  |
|                   | heterogeneity and form tiny electrochemical cells with rest of the metal. Due to                    |                             |  |  |  |
|                   | this, metal undergoes corrosion at the region where impurities are present. Pure                    |                             |  |  |  |
|                   | metal does not corrode.                                                                             |                             |  |  |  |
|                   | 4.Specific heat treatment                                                                           |                             |  |  |  |
|                   | 5. Modification of corrosion environment                                                            |                             |  |  |  |
|                   | 6. Use of alloying: Corrosion resistance of many metals can be increased by                         |                             |  |  |  |
|                   | alloying them with suitable alloying elements.                                                      |                             |  |  |  |
|                   | 7. Use of inhibitors: Inhibitors are organic chemicals which are added in small                     |                             |  |  |  |
|                   | amounts to a corrosive medium in order to reduce its corrosive effect. Usually                      |                             |  |  |  |
|                   | they form and maintain a protective film on the metal surface and thus acts as a                    |                             |  |  |  |
|                   | barrier for further corrosion.                                                                      |                             |  |  |  |
|                   | 8.Cathodic protection (electrochemical protection): In this, the metal is forced                    |                             |  |  |  |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

| Subject Ti | itle: Ch                                                                                                                                  | emistry of                                                                      | Engineering materials           | Subject code :                 | 22233              | Pa | ge <b>19</b> of <b>20</b> |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|--------------------------------|--------------------|----|---------------------------|
| Γ          | to behave like a cathode thus protecting it from corrosion. This is achieved by                                                           |                                                                                 |                                 |                                |                    |    |                           |
|            |                                                                                                                                           | supplying electrons to the metal surface to be protected. Addition of electrons |                                 |                                |                    |    |                           |
|            |                                                                                                                                           | to the metal suppresses its dissolution into metal ions. Different types are:   |                                 |                                |                    |    |                           |
|            |                                                                                                                                           | Sacri                                                                           | ficial anodic method            |                                |                    |    |                           |
|            |                                                                                                                                           | Impressed current method                                                        |                                 |                                |                    |    |                           |
|            |                                                                                                                                           | 9.Use of protective surface coatings: Protective coatings provide a continuous  |                                 |                                |                    |    |                           |
|            |                                                                                                                                           | physical barrier between the surface to be protected and the environment. These |                                 |                                |                    |    |                           |
|            | are classified as:                                                                                                                        |                                                                                 |                                 |                                |                    |    |                           |
|            |                                                                                                                                           | Metallic coatings                                                               |                                 |                                |                    |    |                           |
|            |                                                                                                                                           | Inorga                                                                          | anic coatings                   |                                |                    |    |                           |
|            | Organic coatings                                                                                                                          |                                                                                 |                                 |                                |                    |    |                           |
| -          | 6-b Effect on iron:                                                                                                                       |                                                                                 |                                 |                                |                    |    |                           |
|            |                                                                                                                                           | i)                                                                              | Copper: it improves the resis   | stance to atmospheric corrosi  | on. It strengthens | 2  |                           |
|            |                                                                                                                                           |                                                                                 | steel. It may be added to imp   | prove formability. It improves | s pains adhesion   |    |                           |
|            |                                                                                                                                           | ii)                                                                             | Phosphorus: it is considered    | as the undesired impuries in   | steel because of   | 2  |                           |
|            |                                                                                                                                           |                                                                                 | its embrittling effect. It impr | roves strength but at the same | e time decrease    |    |                           |
|            | the ductility .it is upto 0.04 % by weight.                                                                                               |                                                                                 |                                 |                                |                    |    |                           |
|            | iii) Manganese:it increase tensile strength, abrasion resistance, hardenability                                                           |                                                                                 |                                 | 2                              |                    |    |                           |
|            | and toughness . it decrease weldability.                                                                                                  |                                                                                 |                                 |                                |                    |    |                           |
|            | 6-с                                                                                                                                       | Claddin                                                                         | g mechanism:                    |                                |                    |    |                           |
|            | Cladding is the bonding together of dissimilar metals. It is different from                                                               |                                                                                 |                                 |                                |                    |    |                           |
|            | fusion welding or gluing as a method to fasten the metals together. Cladding is                                                           |                                                                                 |                                 |                                | 2                  |    |                           |
|            | often achieved by extruding two metals through a die as well                                                                              |                                                                                 |                                 |                                |                    |    |                           |
|            | as pressing or rolling sheets together under high pressure.                                                                               |                                                                                 |                                 |                                |                    |    |                           |
|            |                                                                                                                                           | laser cladding is a method of depositing material by which a powdered or wire   |                                 |                                |                    |    |                           |
|            | feedstock material is melted and consolidated by use of a laser in order to coat part of a substrate or fabricate a near-net shape part . |                                                                                 |                                 |                                |                    |    |                           |
|            |                                                                                                                                           |                                                                                 |                                 |                                |                    |    |                           |
| L          |                                                                                                                                           |                                                                                 |                                 |                                |                    |    | l                         |



| Subject Title: | : Chemistry of Engineering materials Subject code : 22233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Page <b>20</b> of <b>20</b> |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                | It is often used to improve mechanical properties or increase corrosion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
|                | resistance, repair worn out parts and fabricate metal matrix composites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                | Process:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                | The powder used in laser cladding is normally of a metallic nature, and is<br>injected into the system by either coaxial or lateral nozzles. The interaction of<br>the metallic powder stream and the laser causes melting to occur, and is know<br>as the melt pool. This is deposited onto a substrate; moving the substrate allow<br>the melt pool to solidify and thus produces a track of solid metal. This is the<br>most common technique, however some processes involve moving the                                                             | 'n                          |
|                | laser/nozzle assembly over a stationary substrate to produce solidified tracks<br>Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
|                | <ul> <li>Best technique for coating any shape .</li> <li>Particular dispositions for repairing parts .</li> <li>Most suited technique for graded material application.</li> <li>Well adapted for near-net-shape manufacturing.</li> <li>Low dilution between track and substrate</li> <li>Low deformation of the substrate and small heat affected zone.</li> <li>High cooling rate .</li> <li>A lot of material flexibility (metal, ceramic, even polymer).</li> <li>Built part is free of crack and porosity.</li> <li>Compact technology.</li> </ul> | 1                           |