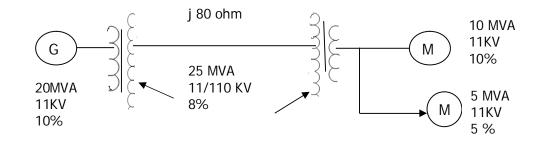
Scheme - I

Sample Question Paper

Program Name	: Electrical Engineering Program Group	
Program Code	: EE/EP/EU	22529
Semester	: Fifth	<i>LL</i> 5 <i>L</i> 9
Course Title	: Power System Analysis (Elective)	
Max. Marks	: 70	Time: 3 Hrs.

Instructions:


- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Sub-questions in a main question carry equal marks.
- (5) Assume suitable data if necessary.
- (6) Preferably, write the answers in sequential order.

Q.1) Attempt any Five of the following.

- a) List out the role of power system engineer for analysing of power system.
- b) Draw the Equivalent circuit of T network.
- c) State the impact of Resistance & Inductance in transmission line performance.
- d) List out four factors affecting Skin effect.
- e) State the formula for generalized circuit constants for the π model.
- f) Determine Generalized Circuit constant A if Z = (20+j52) ohm/ph& $Y = 315 \times 10^{-6}$ S/ph.
- g) Recall X & Y coordinates for center of Sending end Circle diagram

Q.2) Attempt any Three of the following.

a) Develop a reactance diagram for following structure considering generator rating as base value.

b) Calculate self GMD for following arrangements of conductors each having radius 'r'asshown in the figures.

•

10 Marks

- c) Determine the GCC for the resultant network, of two networks connected in series.
- d) A 220 kV transmission line has following generalized circuit constants $A=0.75 \angle 5^{\circ}$, $B=110 \angle 85^{\circ}$. Determine the power at unity power factor that can be delivered if the voltage at each end is maintained at 220 kV.

Q.3) Attempt any Three of the following.

- a) Summarize the advantages of Per unit system
- b) Explain skin effect & proximity Effect
- c) Explain the concept of Generalized Circuit Constant.
- d) A three phase line has parameters A=D =0.9∠0.4,B= 99∠77. Sending end voltage and receiving end voltage are maintained at 220 kV. Determine Maximum power supplied at sending end.

Q.4) Attempt any Three of the following.

- a) Give the equation for complex power, active & reactive powerat receiving end.
- b) A 3 phase 3 wire systems has its conductors arranged at corners of equilateral triangle of side 6m. The diameter of conductor is 2 cm. Evaluate the Inductance in mH/Km of each conductor.
- c) For Linear bilateral Passive network , show that $V_R=AV_S$ B I_S and I_R= C V_S+ D I_S
- d) Derive the condition for maximum power transferred at receiving end.
- e) State the benefits of generalised circuit representation.

Q.5) Attempt any Two of the following.

- a) Calculate the total capacitance in μF/Km/phof each conductor of 3.3 KV, 3 phase, 50 Hz,30 km long transmissionline havingdiameter of each conductor 20 mm& spacing between conductor 3m, 5m & 4m ..Find the charging current/ph.
- b) Calculate receiving end maximum power transferred by circle diagram for 3 phase line operating at 120KV and 100 KV on sending end & receiving end respectively. $A=0.96 \angle 3^0$ and $B=40 \angle 75^0$ ohm/ph.
- c) Describe the necessity of reactive power compensation. List out reactive power compensation devices. Suggest suitable device for following application
 - i) Substation
 - ii) Long transmission line
 - iii) Load center

Q.6) Attempt any Two of the following.

- a) Determine complex power at sending end for 3 phase transmission line delivering load 50MVA, 132 kV, 0.8 lag pf. Transmission line constants are A = $0.98 \angle 3^{\circ}$ and B = 110 $\angle 75^{\circ}$ ohm/ph. Load angle delta is 11[°]
- b) Write step by step procedure for drawing Sending End Circle diagram.
- c) A three phase 50 Hz transmission line having impedance (10 + j 32)ohm/ph. & admittance 2.8 x10⁻⁴S/phdelivers load of 35MW, 132 kV, 0.8 lag pf. Use π method & calculate Constant A&B. Calculate the voltage regulation.

12 Marks

12 Marks

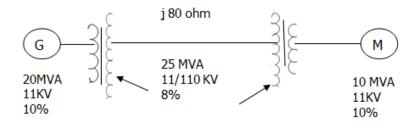
12 Marks

Scheme - I

Sample Test Paper - I

Program Name	: Electrical Engineering Program Group	
Program Code	: EE/EP/EU	22529
Semester	: Fifth	<i>LL</i> 3 <i>L</i> 9
Course Title	: Power System Analysis (Elective)	
Max. Marks	: 20	Time: 1 Hour

Instructions:


- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Sub-questions in a main question carry equal marks.
- (5) Assume suitable data if necessary.
- (6) Preferably, write the answers in sequential order.

Q.1 Attempt any FOUR.

- a. Draw equivalent circuit for Alternator
- b. Define per unit value.
- c. Define impedance diagram & reactance diagram.
- d. Compare R_{ac} with R_{dc} .
- e. State the necessity of transposition.
- f. State the factors affecting proximity effect

Q.2 Attempt any THREE.

a) Develop a reactance diagram for following structure considering Transformer rating as base value.

- b) Derive the expression for inductance of 3-phase line composed of solid conductors with asymmetrical spacing.
- c) Explain the method to consider the effect of the earth field on the capacitive parameter of the transmission line.
- d) Define self GMD & calculate it for following arrangement of conductors each having radius 'r' as shown in figures.

e) Calculate the capacitance of each conductor of 1 phase, 30 km long transmission line the diameter of each conductor is 20 mm& spacing between conductors is 3m.

08 Marks

Scheme - I

Sample Test Paper - II

Program Name	: Electrical Engineering Program Group	
Program Code	: EE/EP/EU	22529
Semester	: Fifth	22329
Course Title	: Power System Analysis (Elective)	
Max. Marks	: 20	Time: 1 Hour

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Sub-questions in a main question carry equal marks.
- (5) Assume suitable data if necessary.
- (6) Preferably, write the answers in sequential order.

Q.1 Attempt any FOUR.

- a) Define Generalized Circuit Constants
- b) Calculate ABCD constants for nominal T model if three phase line has series impedance of (20 + j 60) ohm/ph& shunt admittance of 600×10^{-4} mho/ph
- c) List out reactive power compensation devices.
- d) State the advantages of circle diagram
- e) Give the expression for Sending end complex power and define the parameters.
- f) Calculate complex power if voltage = $230 \angle 2^{\circ}$ & current = $5 \angle 30^{\circ}$.

Q.2 Attempt any THREE.

- a) Derive the expressions for Receiving end complex power, Active power & reactive power.
- b) Calculate coordinate of center & radius for receiving end circle diagram for 3 phase line operating at 110 KV and 100 KV on sending end & receiving end respectively. A $= 0.9 \angle 10^{\circ}$ and $B = 100 \angle 85^{\circ}$ ohm/ph
- c) Derive the condition for maximum power transferred at receiving end.
- d) A 220 kV transmission line has following generalized circuit constants A=0.75∠5°, B=110∠85°. Determine maximum power that can be delivered if the voltage at each end is maintained at 220 kV.

08 Marks