Scheme - I

Sample Question Paper

Program Name	: Diploma in Chemical Engineering	
Program Code	: CH	
Semester	ester : Fifth	
Course Title	: Chemical Reaction Engineering	
Marks	: 70	Time: 3 Hrs.

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1) Attempt any FIVE of the following.

- a. Define rate of reaction. Give the rate of reaction in terms of concentration of reactants.
- b. Define \mathcal{C}_A .
- c. Give the material balance equation for a reactor.
- d. List any two advantages of batch reactor.
- e. List any four application of fluidized bed reactor.
- f. Define autocatalytic reaction. Give one example
- g. Define space velocity. Give its unit.

Q.2) Attempt any THREE of the following.

- a. Differentiate between elementary and non-elementary reaction(four points)
- b. Derive a relation between total pressure of the system and the partial pressure of the reacting materials.
- c. Give the relation between C_A and X_A for constant density and changing density system.
- d. Compare MFR and PFR (four points)

Q.3) Attempt any THREE of the following.

a. List the three important properties of catalyst and explain.

1

12 Marks

10 Marks

- b. At certain temperature, the half-life periods and initial concentration for a reaction are $t_{1/2} = 420$ s when $C_{A0} = 0.405$ mol / 1 and $t_{1/2} = 275$ s when $C_{A0} = 0.64$ mol / 1. Find the order of the reaction.
- c. Derive the integrated form of rate expression for zero order reaction in terms of conversion. Give the graphical representation also
- d. Explain the procedure to find the conversion when MFR's of different sizes are connected in series.

Q.4) Attempt any THREE of the following.

- a. In an isothermal batch reactor, the conversion of liquid reactant A achieved in 15 minutes is 75%. Find the space time and space velocity necessary to effect this conversion in a PFR. Consider first order kinetics.
- b. For the first order reaction $A \rightarrow R$ occurring in a variable volume batch reactor, Obtain the relation $-\ln(1 - \frac{\Delta V}{\epsilon_A V_0}) = kt$
- c. Draw the graph between fractional conversion and time and give the value of slope also for
 - i. Variable volume zero order reaction
 - Variable volume first order reaction. ii.
- d. Explain the method of feeding when PFR's are connected in parallel.
- e. List the general rules to be followed for the best arrangement of a set of ideal reactors.

Q.5) Attempt any TWO of the following.

- a. Derive the temperature dependency of rate constant from transition state theory,
- b. Explain any four methods of catalyst preparation with eg.
- c. After 8 minutes in a batch reactor, reactant ($C_{A0} = 1 \text{ mol} / 1$) is 80% converted and after 18 minutes conversion is 90%. Find the rate of reaction (k and order both). Check for zero order, first order and second order.

Q.6) Attempt any TWO of the following.

- a. Derive the performance equation of constant volume MFR. Give the graphical representation of design equation.
- b. A batch reactor is used to convert $A \rightarrow R$. The rate of reaction is given in the table. Estimate the time required for the concentration to drop from $C_{A0} = 1.3$ moles / 1 to $C_A = 0.3 \text{ mole}/1$.

12 Marks

12 Marks

CA	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.3	2.0
mol /l										
-r _A	0.1	0.3	0.5	0.6	0.5	0.25	0.1	0.06	0.05	0.045
Mol/l.minute										

c. A homogeneous liquid phase reaction $A \rightarrow R$, $-r_A = k C_A^2$ takes place with 50% conversion in MFR. Find the conversion if the reactor is replaced by PFR of equal size-all else remaining unchanged.

Scheme - I

Sample Test Paper - I

Program Name	: Chemical Engineering	
Program Code	: CH	00510
Semester	: Fifth	22512
Course Title	: Chemical Reaction Engineering	
Marks	: 20	Time: 1 Hour.

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1 Attempt any FOUR.

- a. Define rate constant. Give the unit of rate constant for second order reaction.
- b. List the types of multiple reactions.
- c. Define fractional conversion x_A
- d. Draw the graph of concentration and time for irreversible reaction in series, give the value of slope also.
- e. For the gas phase reaction $A \rightarrow 3R$, initially reactant contain 50 mole% A and 50 mole% inert. Find ε_A
- f. For Zero order reaction, derive t $\frac{1}{2} = C_{A0}/2k$

Q.2 Attempt any THREE.

- a. Define activation energy. Explain the role of activation energy in chemical reaction.
- b. Rate constant at 27°C is 0.001min⁻¹ and at 37°C is 0.002min⁻¹. Find the activation energy of reaction?
- c. Explain the method of isolation and method of initial rates used in the partial analysis of rate equation.
- d. List the factors to be considered while designing a reactor. Give the material balance equation for batch reactor.
- e. Explain the procedure for integral method of analysis of data.
- f. Define half-life. Give the mathematical expression.

4

08 Marks

Scheme - I

Sample Test Paper - II

Program Name	: Diploma in Chemical Engineering			
Program Code	: CH			
Semester	: Fifth	22512		
Course Title	: Chemical Reaction Engineering			
Marks	: 20	Time: 1 Hour.		

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1 Attempt any FOUR.

- a. Define holding time. Give its unit.
- b. Give two advantages of PFR.
- c. Give the graphical representation for the design equation of constant volume batch reactor.
- d. List the methods to prevent hot spot formation in a fixed bed reactor.
- e. Explain the role of promoters in catalysis.
- f. List two methods of catalyst regeneration.

Q.2 Attempt any THREE.

- a. Explain the procedure to determine the best arrangement of different size MFR's in series to achieve a specified conversion of feed.
- b. Derive the design equation for PFR.
- c. A reaction with stoichiometry $A \rightarrow R$ is to be carried out in a MFR. Find the size of MFR needed for 75% conversion of feed stream of 1200 moles / 1 at 1.2 moles / 1. Take $k = 15hr^{-1}$.
- d. Compare packed and fluidised bed reactor based on the following points
 - i. Recovery units required.
 - ii. Isothermal operation
 - iii. Size of catalyst
 - iv. Regeneration of catalyst

12 Marks

- e. Draw the nature of graph (1/- r_A) Vs X_A for the following arrangements.
 - i. Two different size PFR connected in series.
 - ii. Two different size MFR connected in series.
- f. Give the advantages of MFR.