

SUMMER-18 EXAMINATION

Subject Code:

17102

Important Instructions to examiners:

Subject Name: Basic Physics

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

Model Answer

- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q.		Scheme
	N.		
1		Attempt any NINE of the following:	18
	a)	Define: i) Elastic limit ii) Factor of safety . Each definition	2 1
		i) Elastic limit: -It is the maximum value of the stress upto which the body shows elasticity.	
		ii) Factor of Safety: It is defined as the ratio of ultimate stress to working stress.	
	b)	Define compressibility. State its SI unit. Definition SI unit Compressibility: The reciprocal of bulk modulus is called compressibility.	2 1 1
		SI unit : m ² /N	
	c)	State the pressure depth relation. Give the meaning of each term in it. Equation Symbol meaning $P = h\rho g$ Where, P= Pressure h= height of the liquid column ρ = density of given liquid g= acceleration due to gravity	2 1 1
		g= acceleration due to gravity	

		S	UMMER-18 EXAMINATIO	N		
	Sub	ject Name: Basic Physics	Model Answer	Subject Code:	17102	
Q. No.	Sub Q. N.		Answer			Marking Scheme
1	d)		sec / m ² , calculate the vis 3.14 x 1.75 x 10 ⁻⁴ x 0.015	scous force acting on		2 1 1 1
	e)	$F = 1.08 \times 10^{-6}$ Define : (a) Molecular range Each Definition Molecular range: The maximum molecular range. Sphere of influence: The imaginattraction is present is called the OR The imaginary sphere drawn with called as sphere of influence.	(b) Sphere of influence m distance upto which con nary sphere, surrounding a sphere of influence of tha	hesive force can act is a molecule in which f t molecule.	orce of	2 1
	f)	Define temperature gradient & Definition SI unit Temperature gradient: It is det length of rod. Unit ⁰ C/m OR ⁰ K/m		e in temperature to ch	lange in	2 1 1
	g)	State Boyle's law & Charles's Each Law Boyle's law: - For fixed mass of a gas, tempera proportional to its volume.		nstant, its pressure is	inversely	2 1

	Sub	SUMMER-18 EXAMINATION ject Name: Basic Physics <u>Model Answer</u> Subject Code: 17102	
0.	Sub Q. N.	Answer	Marking Scheme
1	g)	Charles's Law: For fixed mass of a gas, pressure of a gas remaining constant, its volume is directly proportional to its absolute temperature.	
	h)	Explain why C_p is greater than C_v? Proper explanation C_v is the specific heat of gas at constant volume. It is utilized only to increase the temperature of the gas only. But	2 2 he
		C_p . is the specific heat of a gas at constant pressure. It is utilized by two way i.e. Therefore C _p is greater than C _v .	
	i)	Define simple harmonic motion. Give its two example. Definition Two examples	2 1 1
		Simple harmonic motion: The to and fro motion of the object about its mean position is called simple harmonic motion.Examples: motion of swing, motion of sewing machine, motion of clock pendulum, etc.	
	j)	Find the frequency of wave having velocity 300 m /s and wavelength 0.3 mm. Formula Answer with unit	2 1 1

	Sub	ject Name: Basic Physics	SUMMER-18 EXAMINATIO <u>Model Answer</u>	N Subject Code:	17102	
Q. No.	Sub Q. N.		Answer		17102	Marking Scheme
1	j)	Given :	Required:			
		v =300 m/s	n =?			
		$\lambda = 0.3 \text{ mm} = 0.3 \text{ x} 10^{-3} \text{ m}$				
		$v = n \lambda$				
		$n = v / \lambda$				
		$n = 300 / 0.3 \times 10^{-10}$)-3			
		$n = 1 \times 10^6 \text{Hz}$				
	k)	Define Resonance. Definition				2 2
		When the frequency of the ex-	ternal periodic force applied	l to a body is exactly	equal to (2
	matches) natural frequency of body, the body vibrates with maximum amplitude,					
		is known as resonance		-		
	1)	State four characteristics of Any four characteristics	stationary waves.			2 2
		Characteristics :				2
		· · · · ·	wo progressive waves movi	ng in opposite directi	on in a	
		medium. ii) There is no transfer of	energy in a medium.			
		iii) Nodes and antinodes a iv) Nodes are the points of	re formed successively. n the wave whose displacer	nent is zero		
		v) Antinodes are the point	its on the wave whose displ	acement is maximum		
			two successive nodes or and two successive nodes and a			
		,				

		S	SUMMER-18 EXAMINATIO	N		
	Sub	ject Name: Basic Physics	Model Answer	Subject Code:	17102	
Q. No.	Sub Q. N.		Answer			Marking Scheme
2		Attempt any FOUR of the fo	llowing:			16
	a)	A wire of diameter 2 mm is s mm , how far would a wire of stretched by 5 kg, Formula with substitution Answer with unit Given : First wire: Diameter(d ₁) =2 mm= 2 x 14 Radius(r_1) = d/2=1 x 10 ⁻³ m $L_1 = L_2$ Extended length(l_1) = 1 m Mass (M ₁) = 10 kg Second wire: Diameter(d ₂) =1 mm= 1 x 10 Radius(r_2) = d/2=0.5 x 10 ⁻³ $L_1 = L_2$ Extended length(l_2) = ? Mass (M ₂) = 5 kg	of same length & material 0^{-3} m mm = 1 x 10^{-3} m $^{-3}$ m			4 2 2
	b)	Formula:- $M_1 gL / \pi r$		x 10 ⁻³ / 10 x (0.5 x 1	(0 ⁻³) ²	4 2 2

Q.

2.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION 17102 **Subject Name: Basic Physics** Subject Code: **Model Answer** Sub Marking Answer No. Q. N. Scheme d) 4 Distinguish between streamline flow and turbulent flow. 4 Any four points Stream line flow **Turbulent flow** The path of every particle is same The path of every particle is different The velocity of particle is constant The velocity of particle at each point in magnitude and direction is not constant Flow is regular Flow is irregular No circular currents or eddies are Random circular called currents developed vertices are developed The liquid flows steadily The flow becomes turbulent after critical velocity. e.gThe flow of liquid through pipe, e.g flow of river in flood, water fall water flow of river in summer etc. etc. $V < v_c$ $V > v_c$ R < 2000 R > 3000 e) Explain Laplace's molecular theory of liquid & hence define surface tension. 4 Diagram 2 Explanation 1 Definition 1 Р

В

SUMMER-18 EXAMINATION

Sul	oject Name: Basic Physics	Model Answer	Subject Code:	17102	
Q. Sub No. Q. N.		Answer			Marking Scheme
2. e)	fig. The sphere of influence attracted in all directions II force acting on it is zero. The part of the sphere of in inside the liquid. Therefore For Molecule 'C' half of i liquid. So, the maximum re Thus molecule A experient force, C experience more of PQ experience zero resultat downward resultant force. Thus molecules which li resultant force and are b molecules come closer to of This gives rise to surface to of the liquid. Definition:- It is defined under constant tension due Find the quantity of heat cm of thickness 3 mm. If = 0.1 Kcal/m⁰Cs Formula with substitutio Answer with unit Given:- A = 1200 cm ² = 1 d = 3 mm = 3 x 10 ⁻³ m (θ_1 - θ_2) = (40 - 25) = 15 ⁰ C K = 0.1 Kcal/m ⁰ Cs t = 5 min = (5 x 60) = 300 Q = ? We have, Q =	200 x 10 ⁻⁴ m ²	inside the liquid, so i in its sphere. Hence the de the liquid & the mean enced downward. The liquid and half lies on molecule 'C' nce downward resultate molecules below imate PQ experience some of ace film) experience to balance this downwer e area of liquid. The which decreases the set of which the surface of ecupy minimum surface a silver sheet of size 4 of 40 °C & 25 °C, F	t is equally he resultant ajor part lie outside the int ginary line or more downward ward force, surface area of liquid is ce area.	4 1 2 4 2 2

	Sub	SUN ject Name: Basic Physics	IMER-18 EXAMINATION <u>Model Answer</u>	Subject Code: 17102]
Q. No.	Sub Q. N.		Answer		Marking Scheme
3.	a)	Attempt any FOUR of the follow Distinguish conduction, convect Any four points conduction	-	radiation	16 4 4
		1. It is the process of transfer of heat from a part of a body at higher temperature to a part of body at lower temperature without actual movement of particles.	1. It is the process of transfer of heat from a part of a body at higher temperature to a part of body at lower temperature with actual movement of particles.	1. It is the process of transfer of heat from a body at higher temperature to a body at lower temperature without necessity of intervening medium	
		2 If metal rod is heated at one end, its other end gets heated.	2. Heating of water in a beaker.	2. Heat from sun reaches the earth.	
		3. Material medium is essential.	3. Material medium is essential.	3. Material medium is not essential.	
		4. Metal rod itself acts as a medium.	4. Liquid itself acts as a medium.	4.Medium may be present like air or no medium. i.e. vacuum.	
			1		

	Sub	ject Name: Basic Physics	MER-18 EXAMINATIC <u>Model Answer</u>	Subject Code:	17102
). Io.	Sub Q. N.		Answer		Marking Scheme
3.	b)	State any four differences betw Any four points Isothermal pro Gas volume is chang keeping temperature For this, changes in v are made very slowly Exchange of heat bet system and surround takes place For carrying out this a perfect gas is taken cylinder having cond walls	cess Adia ed by Gas volum constant temperate volume For this, c y are made ween Exchange ling system an does not t process, For carryi in a process, a	batic process me and also its ure changes changes in volume very quick of heat between ad surrounding takes place ing out this perfect gas is cylinder having	process. 4 4
		WallsBoyle's law is validExpansion of gas takThere is no change in energye.g. Melting of solid boiling of water	Boyle's la es place Compress place internal There is c energy	w is not valid sion of gas takes hange in internal ing of cycle	
	c)	Derive prism formula. Diagram Derivation Prism formula	PQ = Incident ra QR = Refracted i RS = Emergent i i = Angle of in r_1 = Angle of re e = Angle of er δ = Angle of de r_2 = Angle of re \angle BAC = Angle	ray ray cidence fraction mergence eviation fraction	4 2 1 1

	Sub	SUMMER-18 EXAMINATION Dject Name: Basic Physics Model Answer Subject Code: 1710	าว
Q. No.	Sub Q. N.	Answer	JZ Marking Scheme
3.	c)	Consider Δ QDR	
	,	$r_1 + r_2 + \Box QDR = 180$	
		Consider AQDR	
		$\Box A + \Box QDR = 180$	
		$\mathbf{r}_1 + \mathbf{r}_{2+} \sqcup \mathbf{Q}\mathbf{D}\mathbf{R} = \sqcup \mathbf{A} + \sqcup \mathbf{Q}\mathbf{D}\mathbf{R}$	
		For certain value of $\sqsubseteq i$, angle of deviation δ is called angle of minimum deviation δ_m . At this stage $\bigsqcup i = \bigsqcup e$ and $r_1 = r_2 = r$	
		Therefore $r_1 + r_2 = 2r = A$, $A = r/2$	
		$\Delta QER \qquad \delta = x + y$	
		$\delta = (i - r_1) + (e - r_2)$	
		$\delta = i + e - (r_1 + r_2)$	
		At $\delta = \delta$ $r_1 = r_2 = r$ $i = e$,	
		$i = A + \delta_m / 2$	
		r = A/2	
		By Snell's law $\mu = \sin i / \sin r$	
		By substituting values of i and r in above law we get,	
		(1, Sm)	
		$\sin\left(\frac{A+Om}{2}\right)$	
		$\mu = \frac{\sin\left(\frac{A + \delta m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$	
		Where,	
		μ = refractive index of material of prism. A = Angle of prism.	
		δm = Angle of minimum deviation	11/13

			SUMMER-18 EXAMINATIO)N			
	Sub	oject Name: Basic Physics	Model Answer	Subject Code:	17102		
Q. No.	Sub Answer Q. N.						
3.	 d) i) State principle of optical fibre. Principle: - Optical fibre works on the principle of total internal reflection.i.e.when a ray of light is passing through denser medium, is incident on the surface of rarer medium at an angle greater than the critical angle, the ray is totally reflected in a denser medium. This phenomenon is called as TIR. ii) Find angle of incidence if angle of refraction is 30⁰ for a glass having refractive index 						
		ii) Find angle of incidence in1.5.	f angle of refraction is 30 ⁰ f	or a glass having ref	ractive index	2	
		Formula				1	
		Ans with unit Given: Angle of refraction = 30 ⁰ Refractive index (μ) = 1.5 Angle of incidence =? $\mu = \frac{\sin i}{\sin r}$ $\therefore \sin i = \sin r \times \mu$ $\sin i = \sin 30 \times 1.5$ $\sin i = 0.5 \times 1.5$ $\sin i = 0.75$				1	
		$i = \sin^{-1}(0.75)$)				
		$i = 48.59^{\circ}$					

	Subj	SUMMER-18 EXAMINATION ect Name: Basic Physics <u>Model Answer</u> Subject Code: 17102	
	ub). N.	Answer	Marking Scheme
). e)	·	Distinguish between transverse and longitudinal waves. Any four points	4 4
		Transverse WaveLongitudinal WavesThe wave in which direction of vibration of particles of material medium is perpendicular to the direction of propagation of wave is called transverse wave.The wave in which direction of vibration of particles of material medium is parallel to the direction of propagation of wave is called longitudinal wave.Wave travels in form of alternate crests and troughWave travels in form of alternate compressions and rarefactions.Density and pressure of 	
f)		A tuning fork of frequency 480 Hz resonates with an air column of length 16 cm, The end correction is 5 mm. Calculate velocity of sound in air. Formula Substitution Answer with unit Given: $n = 480$ Hz. $1 = 16$ cm $= 16 \times 10^{-2}$ m, $e = 5$ mm $= 5 \times 10^{-3}$ m, $v =$? Formula v = 4n(1+e) $v = 4 \times 480 \times (16 \times 10^{-2} + 5 \times 10^{-3})$ v = 316.8 m/s	4 2 2