

SUMMER- 18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

Subject Code:

17213

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1		Attempt any TEN:	20- Total Marks
	а	Define electronics. Give examples of active components.	2M
	Ans:	Definition : Electronics means study of flow of electrons in electrical circuits. (OR)	(definition: 1mark, any 2examples
		The word electronics is derived from electron mechanics which means the study of the behavior of an electron under different conditions of externally applied fields.	:1 mark)
		Examples of active components are: Diode, BJT,FET, MOSFET ,SCR, DIAC, TRIAC, ICs etc.	
	b	Draw the symbol of MOSFET.	2M

SUMMER-18 EXAMINATION

Γ

٦

Ans:	$G \longrightarrow G$ $G \longrightarrow G$ $G \longrightarrow G$ S	(1/2 marl each symbol)
	DRAIN GATE OF GATE OF GATE OF SOURCE SOURCE N- channel D-MOSFET P- channel D-MOSFET	
С	Write the application of Varactor Diode	2M
Ans:	 Applications of Varactor Diode: 1. Voltage controlled oscillators 2. RF filters 3. Tuning Circuits 	(any 2 applicatio s :2 mark
	4. High frequency amplifiers	
	5. Radio, Television and other commercial receivers.	
	 Radio, Television and other commercial receivers. Automatic frequency control devices 	
	6. Automatic frequency control devices	

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Basic Electronics

Ans:	The Voltage (or Power)gain of a single stage amplifier is not sufficient for all practical	2 Marks
	applications. The voltage level of a signal can be raised by using more than one stage such	
	that, output of each amplifier stage is coupled to the input of the next stage. The	
	resulting system is referred to as multi-stage amplifier or cascade amplifier.	
	Voltage gain of multistage (cascade amplifier) is given as:	
	$A_{V} = A_{V1} X A_{V2} X \dots X A_{Vn}$	
е	Define static and dynamic resistance.	2M
Ans:	Static resistance: It is the opposition offered by the diode to the direct current. It is	(1 mark
	given as ratio of d.c voltage across the diode to the resulting d.c current flowing	each definitio
	through it.	ueminio
	Rf = <u>Vf</u>	
	(ii) dynamic resistance: It is the opposition offered by the diode to the A.C current. It	
	is measured by the ratio of change in voltage across diode to the resulting change in	
	current through it.	
	$\mathbf{r}_{ac} = \frac{\Delta VF}{\Delta IF}$	

SUMMER- 18 EXAMINATION

Model Answer

Subject Code: 17213

Subject Name: Basic Electronics

The classification of ICs is as under : Ans: 2 Marks Integrated Circuits (ICs) Classification Classification Classification Classification based on the active based on the based on the based on number device application technology of transistors Bipolar Unipolar Linear or Non-linear Monolithic Hybrid SSI MSI LSI VLSI ICs ICs analog or digital tech. tech. ICs ICs **Bipolar** Unipolar ICs ICs Classification of integrated circuits (ICs) Define filter. State its types. 2M g Ans: Definition: A filter circuit is a device which removes unwanted A.C. component from rectifier (definition: 1 mark, output, and allows only the D.C. components to reach the load. types: 1 Types of filters: mark) 1. Shunt capacitor filter (Capacitor filter) 2. Series inductor filter (Choke filter) 3. Choke input filter (LC filter) 4. CLC or π filter h State the meaning of Idss and Vgs(off). 2M **IDSS (Drain saturation current):** Ans: (1 mark The maximum drain current corresponding to zero gate to source voltage VGS is each definition) known as drain saturation current IDSS. Vgs (off) : The value of gate to source voltage at which drain current becomes approximately zero in a JFET is called cut off voltage Vgs (off) or pinch off voltage (Vp).

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

i	Draw the symbol of Tunnel Diode and Schottky Diode	
Ans:	Anode Cathode Anode Cathode	(1 mark each)
	TUNNEL DIODE SCHOTTKY DIODE	
j	Name the examples of analog and digital IC. (Write any 1 of each).	2M
Ans:	 Analog ICs: LM741-, LM 324, LM358, NE555, LM78XX etc. Digital ICs: 7400, 7402, 7408, 4001, 4011 etc. 	(1 mark each) Marks may
	(OR)	be given for any examples
	1) Analog ICs: operational amplifiers, small signal amplifiers, power amplifiers,	
	RF and IF amplifiers, microwave amplifiers, voltage comparators, voltage regulators, etc.	
	2) Digital ICs: Logic circuits, flipflops, Counters, registers, clock chips, memory chips, microprocessor chips, microcontroller chips, Analog to digital convertor chips, etc.	
k	State the value of knee voltage for Si and Ge.	2M
Ans:	knee voltage for Silicon (Si) is 0.7 V and for Germanium (Ge) is 0.3V	(1 mark each)
I	Define variable capacitor. State its types.	2M
Ans:	A variable capacitor is a capacitor whose capacitance may be changed mechanically or electronically.	(definition: 1 mark , types:1
	Types of variable capacitor are:	mark)
	1.Tuning capacitor 2. Trimmer	
	3.Gang capacitor	
	4. Electronic capacitor	

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

Q. No.	Sub Q.	Answers	Marking Scheme		
	N.				
2		Attempt any FOUR:	16- Total Marks		
	а	Describe the working of Zener breakdown of Zener Diode.	4M		
	Ans:	Working:	(V-I		
		When a reverse voltage is applied to a Zener diode, it causes a very intense electric field to	characteris tics :2		
		appear across a narrow depletion region. Such an intense electric field is strong enough to	marks , explainatio		
		generate large number of electron-hole pair by breaking covalent bonds. Because of large			
		number of these carriers reverse current increases sharply and breakdown occurs which is			
		known as Zener Breakdown.			
		Breakdown Voltage Vz Vz Sharp Characteristics Reverse Biased Zener breakdown characterisitics			
	b	State the application of electronics (any 8).	4M		
	Ans:	Application of electronics:1. Wired communication or Line communication.2. Wireless communication	Any 8 application s (1/2 mark each)		
		3. Defense			
		4. Industrial Applications			
		5. Medical sciences			
		6. Instrumentation and control			
		7.Consumer electronics			

Subject Name: Basic Electronics

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Model Answer

SUMMER- 18 EXAMINATION

Subject Name: Basic Electronics Model Answer Subject Code: 17213

5. It is clear that emitter current is the sum of collector current and base current i.e.

 $I_E = I_B + I_C$

6. Since base current is very small

the collector current I_c.

 $I_E \approx I_C$

d Draw the circuit diagram of single stage amplifier? State the function of each component. 4M Q+V_{CC} (diagram: 2 Ans: marks, explainatio n:2 marks) C_{C_2} C_{C1} R C_{E} **Biasing Circuit:** The resistance R_1 , R_2 and R_E forms the biasing and stabilization circuit. Input Capacitor C_{c1}: It is used to couple the input AC signal to the base of the transistor. The capacitor C_{C1} allows only a.c. signal to flow but isolates signal source from R₂ Emitter bypass capacitor C_E: An emitter bypass capacitor C_E is used in parallel with R_E to provide low reactance path to the amplified a.c. signal. If it is not used, then amplified a.c. signal flowing through R_E will cause a voltage drop across it, thereby reducing the output voltage. **Coupling capacitor C_{c2}:** The capacitor C_{c2}couples output signal of amplifier to the next stage or load.

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Basic Electronics

е	State the working of Tunnel diode.	4M
Ans:	Meshscreen connector Ceramic body GaSb, GaAs or Ge pellet Anode	(diagram: marks, explainati n:2 marks
	Working of Tunnel diode:	
	The operation of tunnel diode is based on special characteristics known as negative resistance.	
	The width of the depletion region is inversely proportional to the square root of impurity	
	concentration. So with increase in the impurity concentration, the depletion region width will reduce. The thickness of depletion region of this diode is so small. That indicates there is	
	large probability of an electron can penetrate through this barrier.	
	This behavior is called is tunneling & hence the name of the high impurity density PN	
	junction is called as tunnel diode.	
f	Describe the working of crystal oscillator	4M
		(diagram:

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

		VccR1Image: Crystal orgen crys	
Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any FOUR:	16- Total Marks
	а	Draw and explain the construction of LDR. Explain its working principle.	4M

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Basic Electronics

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Basic Electronics

Subje

	or Iz= Is - IL		
	As the load current increase, the Zener current decreases so that the input current remains		
	constant.		
	According to Kirchhoff's voltage law, the output voltage is given by,		
	$Vo = V_i - Is .Rs$		
	As the input current is constant, the output voltage remains constant (i.e. unaltered o		
	unchanged). The reverse would be true, if the load current decreases. This circuit is also		
	correct for the changes in input voltage.		
	As the input voltage increases, more Zener current will flow through the Zener diode. This		
	increases the input voltage Is, and also the voltage drop across the resistor Rs, but the		
	load voltage Vo would remain constant. The reverse would be true, if the decrease in input		
	voltage is not below Zener voltage.		
	Thus, a Zener diode acts as a voltage regulator and the fixed voltage is maintained across the		
	load resistor R _L .		
c	Explain the FET parameters.	4M	
c Ans:			
		1 Mark fo Any four	
	Explain the FET parameters.	1 Mark fo Any four parameto	
	Explain the FET parameters. 1) Dynamic drain resistance(r _d) : It is defined as the ratio small change in drain to	4M 1 Mark fo Any four parameto s	
	 Explain the FET parameters. 1) Dynamic drain resistance(r_d) : It is defined as the ratio small change in drain to source voltage (ΔV_{DS}) to the resulting change in drain current(ΔI_D) for constant gate to source voltage(V_{GS}) It is also called A.C drain resistance. 	1 Mark fo Any four paramet	
	 Explain the FET parameters. 1) Dynamic drain resistance(r_d) : It is defined as the ratio small change in drain to source voltage (ΔV_{DS}) to the resulting change in drain current(ΔI_D) for constant 	1 Mark fo Any four paramet	
	 Explain the FET parameters. 1) Dynamic drain resistance(r_d) : It is defined as the ratio small change in drain to source voltage (ΔV_{DS}) to the resulting change in drain current(ΔI_D) for constant gate to source voltage(V_{GS}) It is also called A.C drain resistance. 	1 Mark fo Any four paramet	
	Explain the FET parameters.1) Dynamic drain resistance(rd) : It is defined as the ratio small change in drain to source voltage (ΔV_{DS}) to the resulting change in drain current(ΔI_D) for constant gate to source voltage(V_{GS}) It is also called A.C drain resistance. $r_d = \frac{\Delta V_{DS}}{\Delta I_D}$ for V_{GS} =Constant	1 Mark fo Any four paramet	
	Explain the FET parameters. 1) Dynamic drain resistance(r _d) : It is defined as the ratio small change in drain to source voltage (ΔV_{DS}) to the resulting change in drain current(ΔI_D) for constant gate to source voltage(V_{GS}) It is also called A.C drain resistance. $r_d = \frac{\Delta V_{DS}}{\Delta I_D}$ for V _{GS} =Constant 2) Transconductance(g _m): Transconductance is defined as the ratio of change in Drain current (ΔI_D) to change in Gate to Source Voltage (ΔV_{GS}) at a constant V _{DS} .	1 Mark fo Any four paramet	
	Explain the FET parameters. 1) Dynamic drain resistance(r _d) : It is defined as the ratio small change in drain to source voltage (ΔV_{DS}) to the resulting change in drain current(ΔI_D) for constant gate to source voltage(V_{GS}) It is also called A.C drain resistance. $r_d = \frac{\Delta V_{DS}}{\Delta I_D}$ for V _{GS} =Constant 2) Transconductance(g _m): Transconductance is defined as the ratio of change in Drain current (ΔI_D) to change in Gate to Source Voltage (ΔV_{GS}) at a constant V _{DS} .	1 Mark fo Any four paramet	
	 Explain the FET parameters. 1) Dynamic drain resistance(r_d) : It is defined as the ratio small change in drain to source voltage (ΔV_{DS}) to the resulting change in drain current(ΔI_D) for constant gate to source voltage(V_{GS}) It is also called A.C drain resistance. r_d = ^{ΔV_{DS}}/_{ΔI_D} for V_{GS} =Constant 2) Transconductance(g_m): Transconductance is defined as the ratio of change in 	1 Mark f Any fou parame	

Ans:

d

Circuit diagram of CE configuration:

2 Marks for any diagram

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

Subject Code:

17213

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

	f	State Barkhausen criteria for oscillator and describe its use.	4M		
	Ans:	Barkhausen's Criterion for Oscillations : 1. Loop gain (β.Av) ≥ 1	2 Marks for criteria		
		2. Phase shift between the input and output signal must be equal to 360 ⁰ or 0 ⁰ .			
		Use:			
		Oscillators are circuits which produce periodic waveforms of desired frequencies which a			
		necessary for functioning of various electronics circuits.	for use		
		When Barkhausen's Criterion is satisfied then these circuits will work as oscillators and			
		produce sustained oscillations.			
Q. No.	Sub Q. N.	Answers	Marking Scheme		
4		Attempt any FOUR:	16- Total Marks		
	а	Draw constructional diagram of Schottky diode and explain it.	4M		
	Ans:	SIO ₂ N-type P-type substrate Construction of a Schottky diode (OR)	2 Marks for any relevant diagram		

Τ

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Basic Electronics

	Explanation:	
	 The metal region of a Schottky diode is heavily occupied with the conduction band electrons and the N-type region is lightly doped. There are no minority carriers as in other types of diodes, but there are only majority carriers as electrons. It operates only with majority carriers. When it is forward biased, higher energy electrons in the N-region are injected into the metal region where they give up their excess energy very rapidly. Since there are no minority carriers as in a conventional diode, there is no charge storage and hence there is no reverse recovery diode when it is switched from the forward biased condition (i.e. ON state) to the reverse biased condition (i.e. OFF state). As junction capacitance is very less it has much faster switching time, it acts as a very for the state. 	2 Marks for explanatio n
b	fast switching diode. Explain center type F.W.R. with input output waveform.	4M
Ans:	A.C. $V_1 = 0$ P_1 $V_s = \frac{V_2}{2}$ P_2	1 Mark for circuit diagram
	2 Mark for explanatio n and	

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

c Compare BJT and FET, (any 4 points).						
	1	Bipolar Junction Transistor(BJT) It is bipolar device i.e. current in the device is carried either by both electrons & holes It is a current controlled device i.e.	Field Effect Transistor(FET) It is unipolar device i.e. current in the device is carried either by electrons or holes It is a voltage controlled device i.e.	4 Marks for any correct4 points.		
	2	the base current controlled device i.e. amount of collector current.	voltage at the gate (or drain) terminal controls amount of current flowing through the device.			

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

 				1
	4	It has a positive temperature co- efficient at high current levels. It means that current increases as temperature increases.	It has a negative temperature co- efficient at high current levels. It means that current decreases as temperature increases.	
	5	It is comparatively more noisy.	It is less noisy.	
	6	It has relatively higher gain bandwidth product as compared to FET	It has relatively lower gain bandwidth product as compared to BJT.	
	7	It is comparatively difficult to fabricate on IC & occupies more space on chip compared to FET.	It is simpler to fabricate as IC & occupies less space on chip compared to BJT.	
	8	Transfer characteristics is linear	Transfer characteristics is non- linear	
	9	Thermal runaway can damage the BJT	Thermal runaway does not take place	
	10	Symbol:	Symbol: G n-channel p-channel	
d	Draw l	block diagram of R-C coupled amplifie	r.	4M
Ans:				4 Marks for correct diagram

Subject Name: Basic Electronics

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 18 EXAMINATION

Model Answer

Subject Code:

17213

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Basic Electronics

<u> </u>		1
	Explanation :	
	CLC filter or π filter is used whenever a low output current and a high dc output voltage is	
	required. It consists of two capacitors C_1 and C_2 and an inductor L connected in the form of	2 Marks for
	Greek letter π . The pulsating output from the rectifier is applied at the input terminals of the	explanatio
	π filter.	n
	Working:	
	Capacitor C_1 filter: It offers a low reactance to ac component of rectifier output. This	
	capacitor C_1 by passes most of the ac component to the ground, while dc component moves	
	towards L.	
	Inductor L : It offers a high reactance to the ac component of the rectifier output but zero	
	resistance to the dc component. Thus, it allows the dc component to pass through it, and	
	blocks the ac component, which could have been bypassed by the capacitor C_1 .	
	Capacitor C_2 : This works similar to C_1 . It bypasses the ac component of rectifier output, which	
	could not be blocked by Inductor L. Thus only dc component is available at the output.	
f	Define the following :	4M
	1)Bandwidth	
	2)Power gain	
	3)Current gain	
	4)Voltage gain.	
Ans:		
	1) Bandwidth:	1 Mark fo
	The range of frequency over which the voltage gain of an amplifier remains constant is known	each definition
	as bandwidth of an amplifier.	
	It is denoted as BW= $F_H - F_L$ of an amplifier.	
	2) Power Gain:	

Subject Name: Basic Electronics

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Model Answer

		The ratio of output noursets input nourse of a DIT emplifier is known as nourse asia. It is	
		The ratio of output power to input power of a BJT amplifier is known as power gain. It is	
		denoted by a letter A_P .	
		$A_P = Output power/Input power= P_o/P_i$	
		3) Current Gain:	
		The ratio of output current to input current of a BJT amplifier is known as current gain. It is	
		denoted by a letter A _i	
		A_i = Output current/ Input current= I_0/I_i	
		4) Voltage Gain:	
		The ratio of output voltage to input voltage of a BJT amplifier is known as voltage gain. It is	
		denoted by a letter A _v .	
		A_v = Output voltage / Input voltage = V_o/V_i	
•	Sub	Answers	Marking
No.	Q. N.		Scheme
_			
5		Attempt any FOUR:	16- Total Marks
5			16- Total Marks
5	а	Attempt any FOUR: Define the following :	
5	а		Marks
5	а	Define the following :	Marks
5	a	Define the following : 1)Knee voltage	Marks
5	а	Define the following : 1)Knee voltage 2)Peak inverse voltage	Marks
5		Define the following : 1)Knee voltage 2)Peak inverse voltage 3)Reverse saturation current	Marks 4M
5	a Ans:	Define the following : 1)Knee voltage 2)Peak inverse voltage 3)Reverse saturation current 4)Maximum forward current	Marks
5		Define the following : 1)Knee voltage 2)Peak inverse voltage 3)Reverse saturation current 4)Maximum forward current 1) Knee voltage: The applied forward voltage, at which the PN junction starts conducting	Marks 4M 1Mark
5		Define the following : 1)Knee voltage 2)Peak inverse voltage 3)Reverse saturation current 4)Maximum forward current 1) Knee voltage: The applied forward voltage, at which the PN junction starts conducting is called knee voltage.The knee voltage for a silicon diode is 0.6 V (or 0.7 V) and that	Marks 4M 1Mark each
5		 Define the following : 1)Knee voltage 2)Peak inverse voltage 3)Reverse saturation current 4)Maximum forward current 1) Knee voltage: The applied forward voltage, at which the PN junction starts conducting is called knee voltage. The knee voltage for a silicon diode is 0.6 V (or 0.7 V) and that for a germanium diode is 0.2V (or 0.3 V) . 	Marks 4M 1Mark each
5		 Define the following : 1)Knee voltage 2)Peak inverse voltage 3)Reverse saturation current 4)Maximum forward current 1) Knee voltage: The applied forward voltage, at which the PN junction starts conducting is called knee voltage. The knee voltage for a silicon diode is 0.6 V (or 0.7 V) and that for a germanium diode is 0.2V (or 0.3 V) . 2) Peak inverse voltage(PIV): The maximum voltage at which non conducting PN 	Marks 4M 1Mark each
5		 Define the following : 1)Knee voltage 2)Peak inverse voltage 3)Reverse saturation current 4)Maximum forward current 1) Knee voltage: The applied forward voltage, at which the PN junction starts conducting is called knee voltage. The knee voltage for a silicon diode is 0.6 V (or 0.7 V) and that for a germanium diode is 0.2V (or 0.3 V) . 2) Peak inverse voltage(PIV): The maximum voltage at which non conducting PN junction diode must withstand without its damage during the negative half cycle of AC 	Marks 4M 1Mark each
5		 Define the following : 1)Knee voltage 2)Peak inverse voltage 3)Reverse saturation current 4)Maximum forward current 1) Knee voltage: The applied forward voltage, at which the PN junction starts conducting is called knee voltage. The knee voltage for a silicon diode is 0.6 V (or 0.7 V) and that for a germanium diode is 0.2V (or 0.3 V) . 2) Peak inverse voltage(PIV): The maximum voltage at which non conducting PN 	Marks 4M 1Mark each

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

of minority carrie electron pair as a though increase called as saturatio 4) Maximum forwa junction or diod Forward Current.	ers when diode is reverse a result of thermal energy. in reverse bias voltage if te on current. ard current: The Maximum v e can carry without dama	rrent which flows through diode biased. The minority carriers Thus the current remain const emperature is fixed. Thus the value of the forward current t aging the device is called its f	are hole- tant even current is that a PN	
electron pair as a though increase called as saturatio 4) Maximum forwa junction or diod Forward Current.	a result of thermal energy. in reverse bias voltage if te on current. ard current: The Maximum e can carry without dama	Thus the current remain consi emperature is fixed. Thus the value of the forward current t ging the device is called its I	tant even current is that a PN	
though increase called as saturatio 4) Maximum forwa junction or diod Forward Current. Compare H.W.R. and bri	in reverse bias voltage if te on current. In current: The Maximum v e can carry without dama	emperature is fixed. Thus the over a second se	current is that a PN	
called as saturation 4) Maximum forwa junction or diod Forward Current. Compare H.W.R. and bri	on current. I rd current: The Maximum v e can carry without dama	value of the forward current t iging the device is called its I	that a PN	
4) Maximum forwa junction or diod Forward Current. Compare H.W.R. and bri	e can carry without dama	iging the device is called its I		
junction or diod Forward Current. Compare H.W.R. and bri	e can carry without dama	iging the device is called its I		
Forward Current. Compare H.W.R. and bri			Maximum	
Compare H.W.R. and bri		<u>s)</u>		ļ
-	dge type F.W.R. (Four point	c)		
Parameter		5].		4M
	Half wave rectifier	full wave Bridge rectifier		
				4Marksfo
No of diodes	1	1	-	any four points
			-	points
	-	-	-	
			-	
TUF	0.287	0.812		
Ripple factor	1.21	0.482	-	
Efficiency	0.406	0.812		
Ripple frequency	50 Hz	100 Hz		
Transformer core	Possible	Not possible		
saturation				
Explain transistor as a sv	vitch.			4M
1. Transistor in Saturation region:				2Marks for Saturatic region
	Efficiency Ripple frequency Transformer core saturation xplain transistor as a sv	ConductionHalf cyclePIVVmTUF0.287Ripple factor1.21Efficiency0.406Ripple frequency50 HzTransformer corePossiblesaturationExplain transistor as a switch.	ConductionHalf cycleFull cyclePIVVmVmTUF0.2870.812Ripple factor1.210.482Efficiency0.4060.812Ripple frequency50 Hz100 HzTransformer corePossibleNot possiblesaturationSaturationSaturation	ConductionHalf cycleFull cyclePIVVmVmTUF0.2870.812Ripple factor1.210.482Efficiency0.4060.812Ripple frequency50 Hz100 HzTransformer core saturationPossibleNot possibleStaturationStaturationNot possible

SUMMER-18 EXAMINATION

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

	Thus transistor acts as open switch	
d	Explain Reverse Bias of P-N junction.	4M
Ans:	n p $ + \oplus \oplus \oplus \oplus \oplus \oplus + + + + + + + + + + +$	2 Marks for diagram
	 Majority carrier current: 1. When PN junction is reverse biased the holes in the P- region are attracted towards 	
	the negative terminal of the battery, and the free electrons in the N-region are	2 Marks
	attracted to the positive terminal of the battery	for
	 Thus the majority carriers are drawn away from the PN junction. 	Explanat n
	3. Thus depletion region is widens. And barrier potential increases.	
	4. This makes the majority carriers diffusion across PN junction very difficult, this	
	reduces the majority carrier current.	
	Minority carrier current:	
	1. In reverse biased PN diode Minority carrier is swept across the junction(ie. Holes from	
	N region and electrons from P region)	
	2. Very small amount of current flows through diode due to minority carriers. (nA in Si.	

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Basic Electronics

	diode and μA in Ge. Diode)			
	3. The rate of generation of minority carriers depend upon temperature.			
	4. If temperature is fixed, this current remain constant though the reverse voltage is			
	increased, thus the current is called as reverse saturation current.			
e	State the working of direct coupled amplifier with the help of its circuit diagram.	4M		
Ans:	Circuit diagram : $ \begin{array}{c} $	2 Marks for circuit diagram		
	Direct coupled amplifier			
	Description:			
	 There is no capacitor used for coupling one stage to the other. 			
	• Q ₁ and Q ₂ are the transistors, Vcc is the dc supply, R ₁ , R ₂ , R _{c1} , Rc ₂ , R _{E1} , R _{E2} are			
	the biasing elements. 2 fo			
	 Output of Q₁ (ie voltage at collector of Q₁) is connected to base of Q₂. n 			
	• The input AC signal is applied to base of Q ₁ , o/p at collector of Q ₁ is connected			
	directly to base of Q_2 . Final o/p is obtained at collector of Q_2 . Hence it is called direct coupled amplifier.			

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Basic Electronics

	Ans:		1 mark for
	а	Compare PN Junction and Zener Diode. (4 points)	4M
5		Attempt any FOUR:	16- Total Marks
). וס.	Sub Q. N.	Answers	Marking Scheme
		(Other suitable applications should also be considered)	
		9. In 7 segment display	
		8. To indicate power On/Off conditions	
		7. In optical communication system	
		6. In infrared remote control	
		5. In Opto couplers	
		4. At the traffic light signals led's are used.	ns
		3. These are used in the mobile phones to display the message.	applicatio
		2. The light emitting diodes are used in the motorcycles and cars.	2Marks for any 2
		1. LED is used as a bulb in the homes and industries.	
		Applications of LED :	
		4. Gallium Nitride(GaN) emits blue light	
		3. Gallium Arsenide Phosphide (GaAsP) emits red or yellow light.	
		2. Gallium Phosphide (GaP) emits red or green light	
		1. Gallium Arsenide (GaAs) emits infrared light	material
	Ans:	Material used for making LED :	2Marks for
	f	Name the materials which are used for LED making. State LED's applications.	4M
		 It suffers from the drift problem due to direct coupling. 	
		 The amplifier can amplify even the dc signals. 	
		lower frequency side.	
		• Due to the absence of coupling capacitors, the gain does not reduce on the	
	· · · · · · · · · · · · · · · · · · ·		

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

	Parameter	PN junction diode	Zener diode	eac	h npari
	Symbol	Anode Cathode	Anode		(any
	Conduction	Only in one direction	Conducts in both the directions		
	Operated	Only in forward direction	Only in reverse direction		
	Doping	Doping intensity is low	Doping intensity is high to achieve sharp breakdown		
	Application	Electronic switch, rectifiers, clippers, clampers	Voltage regulator		
b	Describe Regulate	ed power supply with block diag	gram.	4M	

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

SUMMER-18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

С	State the relation between α and β . Define Q point.	4M
Ans:		2 Marl
	Relationship :	for deriva
	• We know, $I_E = I_B + I_C$	of α ar
	• Dividing the above equation on both sides by I _C ,	
	$\mathbf{I}_{\mathbf{E}}/\mathbf{I}_{\mathbf{C}} = \mathbf{I}_{\mathbf{B}}/\mathbf{I}_{\mathbf{C}} + 1$	
	• Since $I_C/I_E = \alpha$ and $I_B/I_C = \beta$	
	So, $I_{\rm E}/I_{\rm C} = 1/\alpha$ and $I_{\rm C}/I_{\rm B} = 1/\beta$	
	Therefore, $1/\alpha = 1/\beta + 1$	
	Or $1/\alpha = 1 + \beta / \beta$	
	Therefore, $\alpha = \beta / (1+\beta)$	
	The above expression may be written as	
	α (1+ β) = β	
	$\alpha + \alpha \beta = \beta$	
	$\alpha = \beta - \alpha \beta = \beta (1 - \alpha)$	2 Marl for Q-
	Therefore, $\beta = \alpha / (1 - \alpha)$	point
	Q point: The operating point of a device, also known as bias point, quiescent point, or Q-	
	point, is the point on the output characteristics that shows the DC collector-emitter voltage	
	(V_{CE}) and the collector current (I_C) with no input signal applied.	
d	Explain Astable multivibrator with its circuit diagram.	4M
Ans:		2Mark
	Circuit diagram Astable multivibrator :	for cire
		diagra

SUMMER- 18 EXAMINATION

Subject Name: Basic Electronics

Model Answer

Characteristics of JFET

4M

2Marks

Transfer Characteri

for

stic

SUMMER-18 EXAMINATION

r.m.s. value of secondary voltage V₂is given by,

3Marks

SUMMER- 18 EXAMINATION

Г

Subject Name: Basic Electronics	Model Answer	Subject Code:	17213	
V ₂ /V ₁ =N ₂ /N ₁				for DC
$V_2 = V_1 * N_2 / N_1$				output voltage
V ₂ =230*1/2				
V ₂ =115V				
Maximum secondary voltag	ge V _m is given by,			
$V_{m} = \sqrt{2v_2}$				
$V_{m} = \sqrt{2} * 115$				
V _m =162.63V				
D.C. output voltage V _{dc} is giv	en by,			
$V_{dc} = 0.636* V_m(OR) 2* V_m/\pi$				
Thus the DC output voltage	e is given by			
V _{dc} = 103.43V				
2. PIV =For F.W.Bridge Rectifie	er is , PIV = V _m			
PIV= V _m =162.63				
				1Mark for PIV